Журнал прикладной химии. 2022. Т. 95. Вып. 8

КОНСТАНТЫ РАВНОВЕСИЯ СОРБЦИИ ПИРИДИНКАРБОНОВЫХ КИСЛОТ ИЗ ВОДНЫХ РАСТВОРОВ КАТИОНИТАМИ DOWEX 50

© Е. В. Остапова^{1,2}, С. Ю. Лырщиков¹, Г. Н. Альтшулер¹

 Федеральный исследовательский центр угля и углехимии СО РАН, 650000, г. Кемерово, пр. Советский, д. 18
 ² Кемеровский государственный университет, 650000, г. Кемерово, ул. Красная, д. 6 E-mail: ostapovaev@bk.ru

> Поступила в Редакцию 10 июня 2022 г. После доработки 18 ноября 2022 г. Принята к публикации 25 ноября 2022 г.

Исследованы процессы сорбции 2-пиридинкарбоновой, 3-пиридинкарбоновой и 4-пиридинкарбоновой кислот сульфокислотными катионитами полистирольного типа Dowex 50W-X8 и Dowex 50W-X4 из водных растворов. На основании анализа ИК-Фурье-спектров кислот, сульфатов их протонированных форм и катионита, насыщенного кислотой, показано, что в фазе катионита пиридинкарбоновая кислота находится в протонированной форме. По экспериментальным данным о равновесном распределении кислот в системе водный раствор-катионит рассчитаны значения констант равновесия процессов сорбции, протекающих с участием пиридинкарбоновой кислоты, сульфокатионита и протона. Значения константы равновесия катионного обмена протона сульфокитионита на катион пиридинкарбоновой кислоты из раствора лежат в интервале 3.2–4.4. Значения константы равновесия сорбции молекул 2-пиридинкарбоновой кислоты и достигают 320–330 дм³·моль⁻¹ для 3-пиридинкарбоновой кислоты и достигают 320–330 дм³·моль⁻¹ для 3-пиридинкарбоновой кислоты и потистирольного влияния на его сорбционную активность по отношению к пиридинкарбоновым кислотам.

Ключевые слова: 2-пиридинкарбоновая кислота; 3-пиридинкарбоновая кислота; 4-пиридинкарбоновая кислота; Dowex 50W-X8; Dowex 50W-X4; катионный обмен; сорбция; константа равновесия DOI: 10.31857/S004446182208014X; EDN: NYHOJL

Изомеры пиридинкарбоновой кислоты $C_6H_5NO_2$ (2-пиридинкарбоновая, 3-пиридинкарбоновая, 4-пиридинкарбоновая кислоты) и их производные вследствие выраженной биологической активности [1, 2] находят широкое применение в медицине, косметологии, сельском хозяйстве. Неуклонный рост мирового спроса на пиридинкарбоновые кислоты стимулирует создание новых высокоэффективных способов их синтеза. В частности, разрабатываются технологии получения пиридинкарбоновых кислот на основе процессов окисления пиридиновых оснований с использованием сульфокислотных катионитов полистирольного типа в качестве нанореакторов [3], показана [4] возможность проведения эффективной очистки 3-пиридинкарбоновой кислоты от примесей металлов на сульфокатионите Dowex 50. С целью получения лекарственных препаратов пролонгированного действия была выполнена иммобилизация 3-пиридинкарбоновой кислоты в сетчатых полимерах, обладающих ионообменными свойствами [5], и показано, что большую емкость по 3-пиридинкарбоновой кислоте имеет сульфокислотный катионит Dowex-50. Исследована кинетика процессов иммобилизации и высвобождения пиридинкарбоновых кислот из сульфокатионита КУ-2-8 и сульфированного поликаликсарена [6].

Цель работы — определение термодинамических характеристик процесса сорбции, в частности констант равновесия сорбции, структурных изомеров пиридинкарбоновых кислот из водных растворов сульфокатионитами полистирольного типа Dowex-50, которые позволяли бы рассчитывать концентрации кислот в полимерной фазе по данным о составе раствора.

Экспериментальная часть

Сильнокислотные катиониты Dowex 50W-X8 (кат. номер 44504, Supelco) и Dowex 50W-X4 (кат. номер 44473, Supelco) — сферические гранулы диаметром $(1.8 \pm 1.2) \cdot 10^{-4}$ м сульфированных сополимеров стирола с 8 и 4% дивинилбензола соответственно — имеют гелевую структуру, содержат в виде ионогенных групп только сульфогруппы (SO₃H). Полная ионообменная емкость Dowex 50W-X8 составляет 4.8 мэкв на 1 г H-формы сухого полимера (2.4 мэкв на 1 см⁻³ истинного объема H-формы ионита, набухшего в воде), для Dowex 50W-X4 — соответственно 5.0 мэкв г⁻¹ (2.0 мэкв см⁻³).

2-Пиридинкарбоновая кислота (кат. номер P5503, Sigma-Aldrich), 3-пиридинкарбоновая кислота (G. Amphray Laboratories), 4-пиридинкарбоновая кислота (кат. номер I17508, Sigma-Aldrich) содержали не менее 99.0% основного вещества. Растворы электролитов готовили из HCl (ООО «Сигма Тек»), NaCl (ООО «Михайловский завод химических реактивов»), NaOH («ЭКОС-1») — все квалификации ч.д.а, HNO₃ (х.ч., AO «СДС Азот»).

Полимеры кондиционировали последовательной обработкой растворами NaCl, NaOH, HCl и H₂O по известной методике* подготовки ионитов и затем промывали до pH фильтрата 5.5 дистиллированной водой, полученной с помощью аквадистиллятора АДЭа-10 СЗМО (АО «Медоборудование»). Концентрацию пиридинкарбоновых кислот в растворах определяли с помощью спектрофотомера СФ-46 (OAO «ЛОМО») при $\lambda = 262.7$ нм в фосфатном буферном растворе с pH 6.9. Для измерения pH растворов использовали микропроцессорный лабораторный pH-метр HI 2215 (HANNA).

Молярную концентрацию компонентов в полимере рассчитывали на 1 дм³ истинного объема ионита, набухшего в воде. Истинный объем ионита определяли центрифугированием 5 мл слоя зерен ионита в изопиестических условиях с последующим вычитанием объема отделенного равновесного раствора [7]. При сорбции пиридинкарбоновых кислот изменение объема набухшего катионита не превышало ошибку измерений.

Равновесное распределение пиридинкарбоновых кислот между водным раствором и сульфокатионитом изучали динамическим методом при температуре 298 К. Через ионообменную колонку с внутренним диаметром 6 мм, заполненную 2 мл набухшей в воде Н-формой катионита, пропускали со скоростью 30 мл ч⁻¹ раствор с известными значениями концентрации пиридинкарбоновой кислоты и рН. Заданные значения рН раствора достигались добавлением к раствору пиридинкарбоновой кислоты 5%-ного раствора азотной кислоты. Ионная сила растворов, равная сумме концентраций протонированных молекул пиридинкарбоновой кислоты и протонов в растворе. не превышала 0.1 моль дм⁻³ (табл. 1). Раствор смеси пиридинкарбоновой и азотной кислот фильтровали через слой катионита до установления равновесия, т. е. до совпадения концентрации пиридинкарбоновой кислоты и рН в исходном растворе в трех последовательно отобранных пробах фильтрата. Для определения количества пиридинкарбоновой кислоты, перешедшего в фазу полимера из водного раствора, фильтрат собирали и определяли в нем концентрацию пиридинкарбоновой кислоты. После достижения состояния равновесия в системе весь раствор из колонки удаляли и промывали колонку потоком дистиллированной воды со скоростью 20 мл ч-1 для элюирования кислоты. Затем определяли концентрацию пиридинкарбоновой кислоты в элюате. Объем воды, необходимый для достижения полной десорбции пиридинкарбоновой кислоты, составлял 1.5 л в случае 2-пиридинкарбоновой кислоты и для 3-пиридинкарбоновой кислоты — 4 л. Количество сорбированной и элюированной пиридинкарбоновой кислоты совпадает в пределах погрешности измерений. Концентрации кислот в фазах водного раствора и катионита, находящихся в состоянии равновесия, приведены в табл. 1.

Эквивалентную долю катионов в полимере \bar{x}_i рассчитывали как отношение количества эквивалентов катиона *i* к общему содержанию эквивалентов противоионов в сульфокатионите. Значения констант равновесия рассчитывали с доверительной вероятностью 0.95.

Инфракрасные спектры поглощения с преобразованием Фурье (ИК-Фурье-спектры) получали на спектрометре Инфралюм ФТ-801 (ООО НПФ «СИМЕКС») в таблетках с КВг.

Обсуждение результатов

В водных растворах в зависимости от значения рН пиридинкарбоновые кислоты могут находиться

^{*} *Мархол М.* Ионообменники в аналитической химии / Пер. с англ. О. П. Швоевой. М.: Мир, 1985. Ч. 1. С. 74.

в форме молекул HL, катионов $[H_2L]^+$ и анионов L^- , участвующих в протолитических реакциях

$$H^+ + L^- = HL$$
, (1)

$$H^+ + HL = [H_2L]^+$$
. (2)

Исходя из значений констант (K_1 , K_2) протонирования 2-пиридинкарбоновой и 3-пиридинкарбоновой кислот,* 4-пиридинкарбоновой кислоты [8] рассчитали содержание различных форм кислот в конкретном водном растворе (табл. 1).

В фазе сульфокатионита типа Dowex 50, как установлено ранее [5], 3-пиридинкарбоновая кислота находится в форме катиона [H₂L]⁺. Анализ интенсивностей и положения полос поглощения в ИК-Фурье-спектрах 2-пиридинкарбоновой и 4-пиридинкарбоновой кислот, их солей (H₂L)₂SO₄ и сульфокатионита Dowex 50W-X8 показывает, что в диапазоне 1800-1400 см⁻¹ спектр сульфокатионита, заполненного кислотой, схож со спектром соли, содержащей протонированную форму кислоты, и отличается от спектра соответствующей кислоты (рис. 1). Интенсивные полосы 1724 и 1720 см⁻¹ в спектрах свободных 2-пиридинкарбоновой (рис. 1, а) и 4-пиридинкарбоновой кислот (рис. 1, б), соответствующие колебаниям С=О-связи в СООН, смещаются до 1740 и 1730 см⁻¹ в спектрах соли (H₂L)₂SO₄ и сульфокатионита, насыщенного одноименной кислотой.** Валентные колебания связей C=С и C=N пиридинового кольца*** [9] в соли и катионите, содержащем кислоту, имеют одинаковые интенсивность и частоты, характеризуются более высокими значениями волновых чисел по сравнению с соответствующей кислотой. Полосы 1636-1640, 1613-1614 и 1461-1462 см⁻¹, присутствующие в спектрах соли и катионита, содержащих 2-пиридинкарбоновую кислоту, смещаются в спектре кислоты до 1607, 1594 и 1454 см⁻¹ (рис. 1, *a*). В спектрах (H₂L)₂SO₄ и катионита, содержащих 4-пиридинкарбоновую кислоту (рис. 1, δ), присутствуют полосы 1638–1640, 1601–1602 и 1508–1510 см⁻¹ в отличие от спектра чистой 4-пиридинкарбоновой кислоты (1615,

*** Там же.

Рис. 1. ИК-Фурье-спектры твердотельных образцов, содержащих 2-пиридинкарбоновую кислоту (*a*) и 4-пиридинкарбоновую кислоту (б).

 кислота; 2 — сульфат протонированной формы кислоты (H₂L)₂SO₄; 3 — сульфокатионит Dowex 50W-X8, содержащий пиридинкарбоновую кислоту (1.5 моль·дм⁻³); 4 — Н-форма сульфокатионита Dowex 50W-X8.

1566 и 1485 см⁻¹). Таким образом, сопоставление ИК-Фурье-спектров показывает, что в фазе катионита 2-пиридинкарбоновая и 4-пиридинкарбоновая кислоты находятся в форме катиона [H₂L]⁺.

В рассмотренных в данной работе системах (табл. 1) пиридинкарбоновые кислоты находятся в

^{*} The IUPAC Stability Constants Database. http://www.acadsoft.co.uk/scdbase/scdbase.htm.

^{**} *Смит А*. Прикладная ИК-спектроскопия: Основы, техника, аналитическое применение / Пер. с англ. Б. Н. Тарасевича под ред. А. А. Мальцева. М.: Мир, 1982. С. 301–308.

Наканиси К. Инфракрасные спектры и строение органических соединений / Пер. с англ. под ред. А. А. Мальцева. М.: Мир, 1965. С. 51–54.

_

2.00

1.96

1.29

0.71

0.67

1.73

	P	Ионит						
<i>с</i> ·10 ³ , моль·дм ⁻³	pН	с _{нL} ·10 ³ , моль·дм ⁻³ с _[H2L] +·10 ³ , моль·дм ⁻³		<i>с</i> , моль·дм ⁻³	<i>с</i> _Н +, моль дм-3			
2-Пиридинкарбоновая кислота-Dowex 50W-X8								
5.00	1.69	4.33	0.67	0.32	2.08			
10.0	1.45	7.88	2.12	0.49	1.91			
28.0	3.49	27.4	0.07	1.05	1.35			
29.0	1.34	21.5	7.47	0.85	1.55			
30.0	1.14	19.4	10.6	0.80	1.60			
50.0	1.4	38.4	11.6	1.13	1.27			
51.0	3.49	49.9	0.12	1.30	1.10			
61.0	1.75	53.7	7.25	1.35	1.05			
77.5	1.71	67.5	9.98	1.42	0.98			
97.7	1.72	85.3	12.3	1.54	0.86			
3-Пиридинкарбоновая кислота-Dowex 50W-X8								
2.87	1.73	1.02	1.85	0.77	1.63			
3.00	1.53	0.77	2.23	0.58	1.82			
3.00	2.92	2.65	0.31	1.15	1.25			
4.86	2.92	4.29	0. 50	1.42	0.98			
5.00	2.2	3.09	1.91	1.22	1.18			
5.00	1.67	1.62	3.38	0.86	1.54			
5.20	1.5	1.27	3.93	0.84	1.56			
8.30	2.22	5.21	3.07	1.49	0.91			
10.0	2.18	6.06	3.92	1.58	0.82			
10.0	1.83	4.09	5.91	1.34	1.06			
15.4	3.53	14.1	0.41	1.97	0.43			
	3-П	иридинкарбонова	ая кислота—Dowex d	50W-X4				
1.00	2.7	0.83	0.16	0.54	1.46			
1.02	2.13	0.59	0.43	0.42	1.58			
1.94	1.91	0.88	1.06	0.5	1.50			
2.90	2.00	1.46	1.48	0.72	1.28			
2.95	1.75	1.08	1.91	0.64	1.36			
4.88	1.87	2.10	2.75	0.86	1.14			
5.00	2.29	3.32	1.63	1.02	0.98			
9.40	3.01	8.43	0.86	1.40	0.60			
9.50	3.57	8.66	0.23	1.40	0.60			
9.70	1.90	4.35	5.52	1.14	0.86			
9.80	2.10	5.51	4.36	1.20	0.80			
15.0	2.39	10.7	4.24	1.42	0.58			
	4-П	иридинкарбонова	ая кислота—Dowex d	50W-X8				
0.85	1.61	0.38	0.47	1.19	1.21			

Таблица 1 Составы фаз при сорбции пиридинкарбоновых кислот на сульфокатионитах Dowex 50W

Равновесный раствор				Ионит			
<i>с</i> ·10 ³ , моль·дм ⁻³	pН	<i>с</i> _{HL} ·10 ³ , моль·дм ⁻³ <i>с</i> _{[H₂L]^{+·}10³, моль·дм⁻³}		с, моль·дм ⁻³	<i>с</i> _Н +, моль∙дм ⁻³		
3.00	1.83	1.72	1.28	0.76	1.64		
3.00	2.25	2.34	0.66	0.89	1.51		
4.80	2.17	3.58	1.21	1.13	1.27		
4.90	1.82	2.78	2.11	0.94	1.46		
5.00	1.75	2.64	2.36	0.95	1.45		
9.80	2.88	9.11 0.60		1.45	0.95		
4-Пиридинкарбоновая кислота—Dowex 50W-X4							
2.00	1.82	1.14	0.86	0.40	1.60		
2.07	1.69	1.02	1.05	0.34	1.66		
3.00	2.72	2.72	0.26	0.72	1.28		
3.00	1.80	1.67	1.37	0.50	1.50		
3.00	1.60	1.33	1.67	0.44	1.56		
3.10	1.79	1.71	1.39	0.50	1.50		
3.77	2.98	3.54	0. 19	0.84	1.16		
4.50	1.80	2.51	1.991	0.70	1.30		
5.00	2.17	3.73	1.26	0.88	1.12		
10.0	3.57	9.42	0.13	1.26	0.74		
10.0	2.04	6.86	3.13	1.10	0.90		
15.6	3.02	14.70	0. 70	1.46	0.54		

Таблица 1 (продолжение)

П р и м е ч а н и е. *с* — концентрация пиридинкарбоновой кислоты, равная сумме концентраций всех форм; *c_i* — концентрация компонента *i*.

водном растворе в протонированной и молекулярной формах, а в фазе сульфокатионита — в протонированной форме. Поэтому, принимая во внимание известные подходы к описанию равновесия в системе катионит-раствор электролита [10] и процесса необменной сорбции нейтральных молекул ионитами [11, 12], перенос пиридинкарбоновой кислоты в сульфокатионит из водного раствора формально можно описать уравнениями катионного обмена и сорбции молекул:

$$\overline{\mathrm{H}^{+}} + [\mathrm{H}_{2}\mathrm{L}]^{+} = \mathrm{H}^{+} + \overline{[\mathrm{H}_{2}\mathrm{L}]^{+}}, \qquad (3)$$

$$\overline{\mathrm{H}^{+}} + \mathrm{HL} = \overline{[\mathrm{H}_{2}\mathrm{L}]^{+}}.$$
 (4)

Здесь и далее черта означает принадлежность к полимерной фазе.

Рассчитаем константы равновесия процессов катионного обмена (3) и сорбции молекул (4), предполагая, что они протекают независимо друг от друга. При расчете константы равновесия как процесса (3), так и процесса (4) используем значение общей суммарной (равновесной) емкости катионита по пиридинкарбоновой кислоте (табл. 1).

Экспериментальные данные о распределении кислоты между водным раствором и катионитом позволили вычислить коэффициенты селективности катионного обмена по уравнению

$$k_{[\rm H_2L]^+/\rm H^+} = \frac{\bar{c}_{[\rm H_2L]^+}c_{\rm H^+}}{\bar{c}_{\rm H^+}c_{[\rm H_2L]^+}},$$
(5)

где $k_{[H_2L]^+/H^+}$ — коэффициент селективности катионного обмена; c_i и $\overline{c_i}$ — равновесные концентрации компонента *i* в растворе и катионите (моль · дм⁻³).

Так как пиридинкарбоновые кислоты в фазе сульфокатионита находятся только в форме однозарядных катионов $[H_2L]^+$ и в рассмотренных системах присутствует всего два типа катионов $[H_2L]^+$ и H^+ , то равновесная концентрация протонов в фазе катионита (табл. 1) рассчитывалась по разнице между полной ионообменной емкостью катионита и концентрацией пиридинкарбоновой кислоты в нем.

Рис. 2. Зависимость коэффициента селективности катионного обмена от эквивалентной доли катионов 4-пиридинкарбоновой (1), 3-пиридинкарбоновой (2) и 2-пиридинкарбоновой (3) кислот в Dowex 50W-X8 (а) и Dowex 50W-X4 (б).

Значения логарифма коэффициента селективности катионного обмена линейно уменьшаются с ростом эквивалентной доли катионов пиридинкарбоновой кислоты в ионите (коэффициенты линейной корреляции 0.9–0.93 для Dowex 50W-X8 и 0.71–0.95 для Dowex 50W-X4) (рис. 2). Угол наклона зависимостей $lgk_{[H_2L]^+/H^+}(\bar{x}_{[H_2L]^+})$ отражает энергетическую неравноценность центров адсорбции катионов кислоты.

С учетом равенства зарядов обменивающихся катионов интегральные константы равновесия ионного обмена (3) могут быть рассчитаны по уравнению Гейнеса–Томаса [13]

$$\lg K_3 = \int_0^1 \lg k'_{[\mathrm{H}_2 \mathrm{L}]^+/\mathrm{H}^+} \mathrm{d}\bar{x}_{[\mathrm{H}_2 \mathrm{L}]^+}, \qquad (6)$$

где K_3 — интегральная (усредненная по всей области заполнения катионита) константа равновесия (3), $k'_{[H_2L]^+/H^+}$ — исправленный коэффициент селективности ионного обмена;

$$k'_{[\mathrm{H}_{2}\mathrm{L}]^{+}/\mathrm{H}^{+}} = \frac{\overline{c}_{[\mathrm{H}_{2}\mathrm{L}]^{+}}c_{\mathrm{H}^{+}}}{\overline{c}_{\mathrm{H}^{+}}c_{[\mathrm{H}_{2}\mathrm{L}]^{+}}}\frac{\mathcal{Y}_{\mathrm{H}^{+}}}{\mathcal{Y}_{[\mathrm{H}_{2}\mathrm{L}]^{+}}},$$
(7)

*у*_H+ и *у*_[H₂L]+ — молярные коэффициенты активности катионов в растворе.

В уравнение (7) входит отношение коэффициентов активности однозарядных катионов в растворе. В работе рассмотрены растворы, ионная сила которых равнялась сумме концентраций протонированных молекул пиридинкарбоновой кислоты и протонов в растворе и не превышала 0.1 моль дм⁻³ (табл. 1). Отношение коэффициентов активности равнозарядных ионов в водном растворе при ионной силе менее 0.1 моль дм⁻³ стремится к 1 [14], и уравнение (7) принимает вид уравнения (5), соответствующего закону действующих масс. Поэтому данные, приведенные на рис. 2, с учетом равенства зарядов обменивающихся катионов позволили рассчитать интегральные константы равновесия ионного обмена (3) по уравнению

$$\lg K_3 = \int_0^1 \lg k_{[H_2L]^+/H^+} d\bar{x}_{[H_2L]^+}.$$
 (8)

Константа равновесия катионного обмена $\overline{\mathrm{H}^+} \rightarrow \overline{[\mathrm{H}_2\mathrm{L}]^+}$ (табл. 2) возрастает при переходе от 2-пиридинкарбоновой и 3-пиридинкарбоновой к 4-пиридинкарбоновой кислоте, т. е. по мере удаления карбоксильной группы от атома азота. Селективность сульфокатионитов к катионам увеличивается в ряду протон, катион 2-пиридинкарбоновой кислоты, катион 3-пиридинкарбоновой кислоты, катион 4-пиридинкарбоновой кислоты. Двукратное увеличение количества дивинилбензола в составе полимерной матрицы сопровождается незначительным повышением значения константы равновесия ионного обмена K_3 .

Равновесие молекулярной сорбции (4) может быть охарактеризовано концентрационной константой

$$K_c = \frac{c_{[\mathrm{H}_2\mathrm{L}]^+}}{\overline{c}_{\mathrm{H}^+}c_{\mathrm{H}\mathrm{L}}},\tag{9}$$

где, как и в уравнении (5), c_i и $\overline{c_i}$ — равновесные концентрации компонента *i* в растворе и катионите (моль·дм⁻³).

TC	lgK ₁	lgK ₂	Dowex 50W-X8		Dowex 50W-X4	
Кислота			K_3	K_4 , дм ³ ·моль ⁻¹	K_3	K_4 , дм ³ ·моль ⁻¹
2-Пиридинкарбоновая	5.18*	0.88*	3.2 ± 0.3	25 ± 5		
3-Пиридинкарбоновая	4.72*	1.99*	3.5 ± 0.3	330 ± 10	3.2 ± 0.3	320 ± 10
4-Пиридинкарбоновая	4.89 [10]	1.70 [10]	4.2 ± 0.4	202 ± 10	3.9 ± 0.4	193 ± 10

Таблица 2 Константы равновесия процессов протонирования (*K*₁, *K*₂), ионного обмена (*K*₃) и молекулярной сорбции (*K*₄) с участием пиридинкарбоновых кислот, протона и сульфокатионита при 298 К

* The IUPAC Stability Constants Database. http://www.acadsoft.co.uk/scdbase/scdbase.htm

Примечание. «—» — величины не определялись.

Значения логарифма концентрационной константы молекулярной сорбции (рис. 3) линейно уменьшаются с возрастанием эквивалентной доли катионов пиридинкарбоновых кислот в ионите (коэффициенты линейной корреляции 0.83-0.93 для Dowex 50W-X8 и 0.77-0.96 для Dowex 50W-X4). Угол наклона прямых $\lg K_c(\bar{x}_{[H_2L]^+})$ отражает энергетическую неравноценность центров адсорбции молекул кислоты, как и в случае катионного обмена угол наклона зависимости $lgk_{[H_2L]^+/H^+}(\bar{x}_{[H_2L]^+})$ — энергетическую неравноценность центров адсорбции катионов протонированной кислоты. Коэффициенты активности молекул в растворе при малых ионных силах остаются постоянными [14]. В рассмотренных системах растворы имеют низкое значения ионной силы, поэтому коэффициент активности молекул кислоты в растворе может быть включен в константу К. Таким образом, интегральные константы молекулярной сорбции могут быть рассчитаны по уравнению

$$\lg K_4 = \int_0^1 \lg K_c d\bar{x}_{[H_2 L]^+}.$$
 (10)

Значения интегральной константы молекулярной сорбции кислот (K_4) на Dowex 50W-X8 (табл. 2) изменяются симбатно изменению значений константы протонирования кислот (K_2) в водном растворе, увеличиваясь в ряду 2-пиридинкарбоновая кислота < < 4-пиридинкарбоновая кислота < 3-пиридинкарбоновая кислота. Различие в содержании сшивающего агента (дивинилбензола) в сульфокатионите полистирольного типа не оказывает существенного влияния на его сорбционную активность по отношению к пиридинкарбоновым кислотам: интегральные константы молекулярной сорбции одноименных кислот на Dowex 50W-X8 и Dowex 50W-X4 совпадают в пределах ошибки определения.

Рис. 3. Зависимость концентрационной константы молекулярной сорбции от эквивалентной доли катионов 3-пиридинкарбоновой (1), 4-пиридинкарбоновой (2) и 2-пиридинкарбоновой (3) кислот в Dowex 50W-X8 (*a*) и Dowex 50W-X4 (*б*).

Выводы

Перенос изомеров пиридинкарбоновых кислот из водного раствора в сульфокатионит типа Dowex 50W происходит за счет протекания процессов катионного обмена и молекулярной сорбции. Полученные значения констант равновесия этих процессов показывают, что селективность сульфокатионитов к катионам увеличивается в ряду протон < катион 2-пиридинкарбоновой кислоты ≤ катион 3-пиридинкарбоновой кислоты < катион 4-пиридинкарбоновой кислоты; сродство катионитов к молекулам кислот возрастает в ряду 2-пиридинкарбоновая кислота < 4-пиридинкарбоновая кислота < 3-пиридинкарбоновая кислота. Изменение количества сшивающего агента (от 4 до 8% дивинилбензола) в исследованных сульфокатионитах полистирольного типа не оказывает существенного влияния на их сорбционную активность по отношению к пиридинкарбоновым кислотам.

Значения констант равновесия сорбционных процессов позволяют количественно оценить равновесные концентрации кислот в полимерной фазе по данным о составе раствора и выбирать составы растворов для иммобилизации заданного количества кислоты в полимерной фазе при разработке технологий получения пиридинкарбоновых кислот и лекарственных препаратов на их основе с использованием сульфокатионитов полистирольного типа.

Финансирование работы

Работа выполнена в рамках государственного задания Института углехимии и химического материаловедения Федерального исследовательского центра угля и углехимии СО РАН (проект № 121031500194-5) с использованием оборудования Центра коллективного пользования Федерального исследовательского центра угля и углехимии СО РАН.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

Информация об авторах

Остапова Елена Владимировна, д.х.н., проф., в.н.с. Федерального исследовательского центра угля и углехимии СО РАН ORCID: https://orcid.org/0000-0002-4704-484X *Лырщиков Сергей Юрьевич*, к.ф.-м.н., н.с. Федерального исследовательского центра угля и углехимии СО РАН

ORCID: https://orcid.org/0000-0002-4570-7160

Альтиулер Генрих Наумович, д.х.н., проф., г.н.с. Федерального исследовательского центра угля и углехимии СО РАН

ORCID: https://orcid.org/0000-0003-1733-7649

Список литературы

- Gille A., Bodor E., Ahmed K., Offermanns S. Nicotinic acid: Pharmacological effects and mechanisms of action // Annu. Rev. Pharmacol. Toxicol. 2008. V. 48. P. 79–106. https://doi.org/10.1146/annurev. pharmtox.48.113006.094746
- [2] Grant R. S., Coggan S. E., Smythe G. A. The physiological action of picolinic acid in the human brain // Int. J. Tryptophan Res. 2009. N 2. P. 71–79. https://doi.org/10.4137/ijtr.s2469
- [3] Альтиулер Г. Н. Синтез пиридинкарбоновых кислот каталитическим окислением компонентов каменноугольной смолы на металлополимерных нанокомпозитах // XTT. 2012. № 4. С. 74–77 [Al'tshuler G. N. Synthesis of pyridinecarboxylic acids by the catalytic oxidation of coal tar components on metal-polymer nanocomposites // Solid Fuel Chem. 2012. V. 46. N 4. P. 275–278.

https://doi.org/10.3103/S0361521912040027].

- [4] Остапова Е. В., Малышенко Н. В., Лырщиков С. Ю., Альтиулер Г. Н. Разделение бинарных смесей пиридин-3-карбоновой кислоты с нитратом меди или хлоридом железа на сульфокатионите КУ-2 // Бутлеровские сообщ. 2021. Т. 65. № 1. С. 1–8.
- [5] Altshuler H., Ostapova E., Altshuler O., Shkurenko G., Malyshenko N., Lyrschikov S., Parshkov R. Nicotinic acid in nanocontainers. Encapsulation and release from ion exchangers // ADMET and DMPK. 2019. T. 7. N 1. P. 76–87. http://dx.doi.org/10.5599/admet.626
- [6] Альтиулер Г. Н., Шкуренко Г. Ю., Остапова Е. В., Альтиулер О. Г. Кинетика катионного обмена пиридинкарбоновых кислот // Изв. АН. Сер. хим. 2017. № 7. С. 1177–1182 [Altshuler G. N., Shkurenko G. Y., Ostapova E. V., Altshuler O. G. Cation exchange kinetics of pyridinecarboxylic acids // Russ. Chem. Bull. 2017. N 7. P. 1177–1182. http://dx.doi.org/10.1007/s11172-017-1869-6].

[7] Pepper K. W., Reichenberg D., Hale D. K. 599. Properties of ion-exchange resins in relation to their structure. Part IV. Swelling and shrinkage of sulphonated polystyrenes of different cross-linking // J. Chem. Soc. 1952. V. 10. P. 3129–3136. https://doi.org/10.1039/JR9520003129.

- [8] Asuero A. G., Navas M. J., Herrador A. Numerical evaluation of overlapping acidity constants from the ratio of absorbances at two wavelengths // Microchim. Acta. 1986. N 5–6. P. 395–406.
- [9] Koczon P., Dobrowolski J. Cz., Lewandowski W., Mazurekd A. P. Experimental and theoretical IR and Raman spectra of picolinic, nicotinic and isonicotinic acids // J. Mol. Struct. 2003. V. 655. P. 89–95.
- [10] Гельферих Ф. Иониты / Пер. с нем. под ред. С. М. Черноброва. М.: ИЛ, 1962. С. 11–13.
- [11] Кононова О. Н., Горяева Н. Г., Кононов Ю. С. Сорбция тиоцианатионов на ионитах комплексообразующего типа // ЖФХ. 2011. Т. 85. № 6. С. 1142–1147 [Kononova O. N., Goryaeva N. G., Kononov Y. S. The sorption of thiocyanate ions on complex-forming ionites // Russ. J. Phys. Chem. A. 2011. V. 85. N 6. P. 1041–1046. https://doi.org/10.1134/S0036024411060197].
- [12] Трунаева Е. С., Хохлова О. Н., Хохлова В. Ю. Термодинамическое описание необменной сорбции веществ ионообменниками // ЖФХ. 2018. Т. 92. № 12. С. 1920–1924 [*Trunaeva E. S., Khokhlova O. N., Khokhlov V. Yu.* Thermodynamic description of the nonexchange sorption of substances by ion exchangers // Russ. J. Phys. Chem. A. 2018. V. 92. N 12. P. 2440–2444. https://doi.org/10.1134/S0036024418120440].
- [13] Gaines G. L. (Jr.), Thomas H. C. Adsorption studies on clay minerals. II. A formulation of the thermodynamics of exchange adsorption // J. Chem. Phys. 1953. V. 11. N 4. P. 714–716.
- [14] Робинсон Р., Стокс Р. Растворы электролитов / Пер. с англ. под ред. А. Н. Фрумкина. М.: ИЛ, 1963. С. 264–281 [Robinson R. A., Stokes R. H. Electrolyte solutions. London: Butterworths Scientific Publications, 1959].