= ПРИКЛАДНАЯ ЭЛЕКТРОХИМИЯ И ЗАЩИТА МЕТАЛЛОВ ОТ КОРРОЗИИ =

УДК 620.197.3+546.56:543.552+543.428.3

ВЛИЯНИЕ ХЕЛАТНОГО КОМПЛЕКСА НИТРИЛО-*трис*-МЕТИЛЕНФОСФОНОВОЙ КИСЛОТЫ С МЕДЬЮ НА КОРРОЗИОННО-ЭЛЕКТРОХИМИЧЕСКОЕ ПОВЕДЕНИЕ УГЛЕРОДИСТОЙ СТАЛИ В ВОДНОЙ СРЕДЕ

© И. А. Жилин^{1,2}, Ф. Ф. Чаусов^{2,*}, Н. В. Ломова², И. С. Казанцева², Н. Ю. Исупов², И. К. Аверкиев²

 ¹ АО «Ижевский электромеханический завод «КУПОЛ», 426033, г. Ижевск, ул. Песочная, д. 3
 ² Удмуртский федеральный исследовательский центр УрО РАН, 426068, г. Ижевск, ул. Татьяны Барамзиной, д. 34 * E-mail: chaus@udman.ru

> Поступила в Редакцию 23 июня 2023 г. После доработки 22 августа 2023 г. Принята к публикации 24 августа 2023 г.

Влияние комплексного соединения $Na_4[CuN(CH_2PO_3)_3] \cdot 13H_2O$ с хелатной структурой на коррозионно-электрохимическое поведение стали 20 в среде боратного буферного раствора при pH 7.4 и естественной аэрации изучено потенциодинамическим методом и методами рентгеновской фотоэлектронной спектроскопии и сканирующей электронной микроскопии поверхности с микроанализом. Установлено, что в интервале концентраций 0.2-1.0 ммоль $\cdot dm^{-3}$ исследуемый комплекс тормозит анодное растворение металла, а при бо́льших концентрациях — стимулирует его. По влиянию на коррозионно-электрохимическое поведение стали комплекс $Na_4[CuN(CH_2PO_3)_3] \cdot 13H_2O$ существенно отличается от ранее изученных комплексов $Na_4[ZnN(CH_2PO_3)_3] \cdot 13H_2O$ и $Na_4[Cd(H_2O)$ $N(CH_2PO_3)_3] \cdot 7H_2O$. В интервале потенциалов $-0.66 \div -0.05$ В относительно Ag, AgCl|KCl-электрода (x.с.э.) на поверхности образуется слой металлической меди в виде наноразмерных кристаллов, экранирующих поверхность стали. В интервале потенциалов 0.05-0.13 В (x.с.э.) металлическая медь окисляется, а при дальнейшем повышении потенциала формируется слой смешанных оксидов железа и меди.

Ключевые слова: нитрило-трис-метиленфосфоновая кислота; комплекс меди(II); ингибиторы коррозии; сталь; коррозионно-электрохимическое поведение; нейтральные среды DOI: 10.31857/S004446182302007X; EDN: OULZRW

Известно [1, 2], что комплексы нитрило-*трис*-метиленфосфоновой кислоты $N(CH_2PO_3)_3H_6$ с Zn и Cd, имеющие хелатную структуру, являются более эффективными ингибиторами коррозии стали и некоторых других конструкционных материалов в нейтральных водных средах, чем комплексы с линейной структурой [3, 4]; соответствующие хелатные комплексы получили распространение в промышленности. Комплексы нитрило-*трис*-метиленфосфоновой кислоты с Си, в том числе комплексное соединение Na₄[CuN(CH₂PO₃)₃]·13H₂O с хелатной структурой, известны как соединения, оказывающие антибактериальное действие по отношению к сульфатвосстанавливающим бактериям [5]. Установлено, что термическая стойкость гетерометаллических комплексов нитрило-трис-метиленфосфоновой кислоты с Си и Zn выше, чем индивидуальных монометаллических комплексов [6]. Можно предположить, что эти гетерометаллические комплексы будут обладать выгодным сочетанием противокоррозионных и антибактериальных свойств, что актуально для создания препаратов комбинированного действия, сочетающих свойства ингибиторов коррозии и агентов против биообрастания. Такие препараты востребованы в нефтегазовой отрасли для обработки подтоварной воды и воды систем поддержания пластового давления, металлургической и химической промышленности для обработки воды циркуляционных систем охлаждения с градирнями и брызгальными бассейнами и в других промышленных системах. Все эти системы характеризуются более или менее активной аэрацией водной среды и протеканием интенсивной коррозии углеродистой стали с кислородной деполяризацией [7].

Для разработки новых ингибиторов коррозии на основе гетерометаллических комплексов нитрило-*трис*-метиленфосфоновой кислоты с Си и Zn необходимо исследовать противокоррозионную эффективность и факторы противокоррозионного действия как гетерометаллических, так и монометаллических комплексов. В том случае, если противокоррозионное действие комплексных ионов [CuN(CH₂PO₃)₃]^{4–} (рис. 1) и [ZnN(CH₂PO₃)₃]^{4–} обусловлено протеканием различных процессов, не конкурирующих друг с другом, при их совместном использовании может иметь место синергический эффект — достигаемая противокоррозионная эффективность может превышать суммарную эффективность отдельных компонентов.

Показано [4, 8], что механизм ингибирования коррозии стали соединениями Na₄[ZnN(CH₂PO₃)₃]× ×13H₂O и Na₄[Cd(H₂O)N(CH₂PO₃)₃]·7.5H₂O заключается в их взаимодействии с ионами Fe²⁺, выделяющимися при анодном растворении железа, с образованием гетерометаллических полиядерных комплексов [Zn_{1/2}Fe_{1/2}(H₂O)₃NH(CH₂PO₃H)₃]_n и [Cd_{1/8}Fe_{7/8}(H₂O)₃NH(CH₂PO₃H)₃]_n. Атомы железа, входящие в структуру гетерометаллических полиядерных комплексов с Zn и Cd, переходят в низкоспиновое состояние с резким возрастанием степени ковалентности и силовой константы координационной связи Fe—O [9, 10]. Это приводит к резкому снижению растворимости комплексов [Zn_{1/2}Fe_{1/2}(H₂O)₃NH(CH₂PO₃H)₃]_n и $[Cd_{1/8}Fe_{7/8}(H_2O)_3NH(CH_2PO_3H)_3]_n$ по сравнению с монометаллическим комплексом $[Fe(H_2O)_3NH(CH_2PO_3H)_3]_n$ и формированию на поверхности стали плотного защитного слоя.

Имеются оценочные данные [11] о высокой противокоррозионной активности комплекса нитрило-*трис*-метиленфосфоновой кислоты с Cu, сопоставимой с эффективностью комплексов Zn и Cd; однако других данных о влиянии таких соединений на коррозионно-электрохимическое поведение стали найти не удалось, а авторами цитированных работ не были установлены состав и структура образующихся комплексов меди и тем более не сделаны попытки выяснить факторы и процессы, определяющие противокоррозионную активность рассматриваемых систем.

Рис. 1. Строение комплексного аниона $[CuN(CH_2PO_3)_3]^{4-}$ в структуре комплекса $Na_4[CuN(CH_2PO_3)_3] \cdot 13H_2O$.

^{*} Атом соседней структурной единицы, занимающей симметрично-эквивалентную позицию – x, – y, – z.

С одной стороны, можно ожидать, что при введении в коррозионную среду достаточно стойких комплексных соединений меди осаждение металлической меди на поверхности стали будет ограничено вследствие малой диссоциации комплексов меди. С другой — можно предположить, что этот, хотя бы и малоинтенсивный, обменный процесс будет приводить к выделению в коррозионную среду ионов железа(II), которые, как показано ранее [12], образуют стойкий комплекс с нитрило-трис-метиленфосфоновой кислотой, способный создать на поверхности металла защитную пленку. Таким образом, можно ожидать, что коррозионно-электрохимическое поведение стали в присутствии исследуемого медного комплекса будет определяться двумя факторами, противоположно влияющими на интенсивность электродных процессов. В этом случае зависимость скорости анодного растворения металла от содержания исследуемого комплекса в коррозионной среде может иметь экстремум.

Цель работы — исследование влияния Na₄[CuN(CH₂PO₃)₃]·13H₂O на коррозионно-электрохимическое поведение стали 20.

Экспериментальная часть

Образцы стали 20 (ПАО «Магнитогорский металлургический комбинат», плавка № 316266), элементный состав которой приведен в табл. 1, размерами $15 \times 17 \times 1.5$ мм были отшлифованы до шероховатости $R_a = 0.6-1$ мкм, промыты этанолом («Экстра», ООО «Спиртзавод «Балезинский»), подвергнуты травлению в 15% HCl (х.ч., АО «Вектон») для удаления деформированного при шлифовании слоя, затем промыты дистиллированной водой (использовали дистиллятор ДЭ-25М).

Na4[CuN(CH₂PO₃)₃]·13H₂O синтезировали и выделяли по ранее описанной методике [6], используя нитрило-*трис*-метиленфосфоновую кислоту, предварительно дважды перекристаллизованную (ч., Wuhan Mulei New Material Co., Ltd, содержание PO₄^{3–} не более 0.3%); Cu₂CO₃(OH)₂ (ч.д.а., AO «Вектон»), NaOH (х.ч., AO «Башкирская содовая компания»), диметилсульфоксид (х.ч., AO «Купавнареактив») использовали без дополнительной очистки. Элементный анализ полученного соединения проводили, используя двунатриевую соль этилендиаминтетрауксусной кислоты («Трилон Б») (х.ч., АО «РЕАХИМ»), индикатор 4-(2-пиридилазо)резорцинол («ПАР») (ч.д.а., ООО «НПФ «Татхимпродукт»); результаты элементного анализа (мас%): найдено Р 13.50, Си 9.65; вычислено для Na₄[CuN(CH₂PO₃)₃]·13H₂O Р 13.61, Си 9.31. Результаты определения структуры полученного комплекса методом рентгеноструктурного анализа депонированы в Кембриджском центре кристаллографических данных (ССDС).*

Выбор модельной среды для коррозионных испытаний ограничен необходимостью компромисса между рядом противоречивых требований. С одной стороны — требуемым диапазоном рН, достаточной буферной емкостью для поддержания постоянного значения рН в ходе коррозионных экспериментов, с другой — желаемым минимальным влиянием буферного раствора на электродные процессы и обеспечением возможности разумной интерпретации спектроскопических данных для анализа поверхностных слоев с учетом имеющихся опубликованных данных для сравнения. Фосфатный буферный раствор не был выбран из-за сильной адсорбции ионов РО₄³⁻ на поверхности железа и их влияния на кинетику коррозионных процессов [13], что затрудняет достоверную интерпретацию измеренных спектров.

Анализ литературы (например, [14, 15]) показал, что в качестве модельной коррозионной среды чаще всего используют боратные буферные растворы. Несмотря на возможную адсорбцию ионов $B_4O_7^{2-}$ на поверхности железа [16], выбор боратного буферного раствора в качестве среды для коррозионных испытаний позволяет достичь компромисса между всеми указанными факторами и сделать возможным наиболее адекватную интерпретацию полученных данных. Соответственно электрохимические коррозионные испытания проводили в среде боратного буферного раствора с pH 7.4, приготовленного по методике [17] с использованием Na₂B₄O₇·10H₂O (х.ч., AO «Вектон») и H₃BO₃ (х.ч., AO «Вектон»). Использовали автоматизированный потенциостат с трехэлектродной электро-

* CCDC 1908017 (Na₄[CuN(CH₂PO₃)₃]·13H₂O), http://www.ccdc.cam.ac.uk/conts/retrieving.html

элементный состав использованных образцов стали										
Элемент	C	Si	Mn	Р	S	Cr	Ni	Cu	Fe	
Массовая доля, %	0.17	0.22	0.45	0.010	0.018	0.04	0.03	0.06	99.0	

Таблица 1 Элементный состав использованных образцов стали

химической ячейкой. В качестве электрода сравнения использовали Ag,AgCl|KCl-электрод ЭCp-10101, в качестве вспомогательного — платиновый электрод ЭПВ-1. Все измеренные потенциалы в настоящей работе приведены относительно Ag,AgCl|KCl-электрода (х.с.э.). Перед началом измерений образец выдерживали в рабочей среде при потенциале –0.8 В (х.с.э.) в течение 10 мин для разрушения оксидно-гидроксидного слоя на поверхности металла. Поляризационные кривые регистрировали в интервале потенциалов –1.0÷+1.5 В (х.с.э.) при скорости развертки потенциала 1 мВ·с⁻¹ в условиях естественной аэрации реакционной среды.

Для проведения исследований поверхности методом рентгеновской фотоэлектронной спектроскопии и сканирующей электронной микроскопии развертку потенциала в процессе регистрации поляризационной кривой останавливали и образец выдерживали при заданном потенциале в течение 10 мин. Затем образец извлекали из электрохимической ячейки и помещали в среду бутилацетата (х.ч., АО «Невиномысский Азот»), исключающего контакт с атмосферным воздухом.

Рентгеновские фотоэлектронные спектры получали на автоматизированном рентгеновском электронном спектрометре ЭМС-3 (ФГБУН «Удмуртский федеральный исследовательский центр УрО РАН») с использованием $Al_{K_{\alpha}}$ -излучения (hv = 1486.6 эB) при остаточном давлении в рабочей камере спектрометра не более 10⁻⁵ Па. Шкалу энергии связи калибровали по максимуму интенсивности спектра C1s, принимая $E_{\rm B}({\rm C1}s) = 285$ эВ. Регистрировали спектры остовных уровней Cu2p, CuL₃M₄₅M₄₅, Fe2p, P2p, O1s и N1s. Статистическую обработку полученных экспериментальных данных, включая определение погрешности измерений, вычитание фона неупруго рассеянных электронов по Ширли и определение интегральной интенсивности отдельных составляющих спектра, проводили с использованием программы Fityk 0.9.8.

Микрофотографии поверхности образцов получали при помощи сканирующего электронного микроскопа Thermo Fisher Scientific Quattro S с электронной пушкой с полевой эмиссией. Микроанализ поверхности образца проводили при помощи системы энергодисперсионного микроанализа на основе спектрометра EDAX Octane Elect Plus EDS System.

Обсуждение результатов

В интервале значений концентрации Na₄[CuN(CH₂PO₃)₃]·13H₂O в реакционной сре-

де c_{inh} 0.1–1 ммоль·дм⁻³ введение соединения Na₄[CuN(CH₂PO₃)₃] \cdot 13H₂O в реакционную среду снижает критическую плотность тока *i*_C, отвечающую началу пассивации поверхности в области потенциала начала пассивации $E = -0.5 \div -0.4$ В (х.с.э.) (рис. 2). Также при $c_{inh} = 0.1 - 0.2$ ммоль дм⁻³ снижается плотность тока анодного растворения металла в пассивной области. Начиная с величины $c_{inh} = 2 \text{ ммоль} \cdot \text{дм}^{-3}$ плотность тока анодного растворения железа как в области начала пассивации, так и в области пассивного состояния возрастает, что свидетельствует о нарушении пассивности поверхности стали и интенсивном протекании на ней электрохимических процессов. Катодные ветви поляризационных кривых, лежащие в области потенциалов -1.0÷-0.8 В (х.с.э.), на рис. 2 не приведены, поскольку в этой области потенциалов при введении комплекса Na₄[CuN(CH₂PO₃)₃]·13H₂O в коррозионную среду не наблюдается заметных изменений по данным вольтамперометрии.

При малых значениях c_{inh} (до 1 ммоль дм⁻³) исследуемый комплекс смещает равновесный потенциал коррозии стали в сторону повышения, т. е. тормозит анодный процесс (табл. 2). При бо́льших значениях c_{inh} потенциал коррозии понижается, что свидетельствует о стимулировании анодного растворения металла (об этом можно судить также по крутизне участка активного растворения металла [$-0.7 \div -0.5$ В (х.с.э.)] и по высоте пика анодного растворения железа около -0.5 В (х.с.э.) (рис. 2).

В интервале $c_{inh} = 0.1-1$ ммоль dm^{-3} Na₄[CuN(CH₂PO₃)₃] \cdot 13H₂O тормозит анодное растворение металла, снижая критическую плотность

Таблица 2

Потенциал коррозии образцов стали 20 в боратном буферном растворе при рН 7.4 и температуре 25°С с добавками Na4[CuN(CH₂PO₃)₃]·13H₂O

Концентрация Na4[CuN(CH ₂ PO ₃) ₃]·13H ₂ O в коррозионной среде <i>c</i> _{inh} , ммоль·дм ⁻³	Потенциал коррозии стали 20, В (х.с.э.)			
0.0	-0.68			
0.1	-0.67			
0.2	-0.65			
0.4	-0.65			
1.0	-0.65			
2.0	-0.67			
4.0	-0.70			
10.0	-0.72			

Рис. 2. Анодные поляризационные кривые образцов стали 20 в боратном буферном растворе при рН 7.4 и температуре 25°С в фоновом растворе (1) и в присутствии Na₄[CuN(CH₂PO₃)₃]·13H₂O.
Кривые 2–6 соответствуют значениям c_{inh} 0.1 (2), 0.2 (3), 1.0 (4), 2.0 (5) и 10.0 ммоль ⋅дм⁻³ (6).

анодного тока. При бо́льших значениях *c*_{inh} исследуемый комплекс стимулирует анодное растворение металла (рис. 3). В области потенциала начала пассивации [около –0.47 В (х.с.э.)] на поверхности образца происходит формирование слоя оксидов железа и, вместе с тем,

Рис. 3. Зависимость критической плотности анодного тока *i*_C, отвечающей началу пассивации поверхности стали 20, от концентрации Na₄[CuN(CH₂PO₃)₃]·13H₂O в реакционной среде *c*_{inh}.

189

восстановление металлической меди в виде частиц размером 30–90 нм (рис. 4, a, δ). При потенциале полной пассивации [около –0.27 В (х.с.э.)] наблюдается увеличение слоя оксидов железа, застилающих поверхность, и одновременно уменьшение размера (до 18–80 нм) частиц металлической меди (рис. 4, e, z). Эта тенденция наблюдается и при дальнейшем повышении потенциала образца до +0.05 В (х.с.э.) (рис. 4, ∂ , e). При дальнейшем повышении потенциала образца на сравнительно небольшую величину [до +0.13 В (х.с.э.)] морфология его поверхности претерпевает радикальные изменения: появляются очаги глубокого растравливания (рис. 4, \mathcal{M}), а ограненные металлические частицы исчезают; остаются

Рис. 4. Микрофотографии поверхности образцов стали 20, поляризованных в боратном буферном растворе при рН 7.4 и температуре 25°С в присутствии Na₄[CuN(CH₂PO₃)₃]·13H₂O. Потенциал образца *E* = −0.47 В (*a*, *б*); −0.27 В (*в*, *г*); +0.05 В (*d*, *e*); +0.13 В (*ж*, *з*); +0.82 В (*u*, *к*); +1.20 В (х.с.э.) (*л*, *м*). Увеличение 2400× (*a*, *в*, *д*, *ж*, *u*, *л*) и 40 000× (*б*, *г*, *е*, *з*, *к*, *м*).

Рис. 4. Продолжение.

лишь локальные неоднородности оксидного слоя (рис. 4, 3). Дальнейшее повышение потенциала образца до +0.82 В (х.с.э.) приводит систему в область наиболее стабильного пассивного состояния (рис. 2), в которой вся поверхность образца покрыта плотным слоем оксидов, состоящим из мозаично упакованных зерен (рис. 4, u, κ). Наконец, в области транспассивного состояния [потенциал образца +1.20 В (х.с.э.)] металлическая поверхность образца в основном оголяется, обнажая участки глубокого растравливания, а основная часть поверхности покрывается многочисленными мелкими язвами (рис. 4, л, м), которые свидетельствуют о вкладе питтингообразования в разрушение пассивной пленки при переходе поверхности в транспассивное состояние.

При потенциале открытой цепи [около –0.7 В (х.с.э.)] на поверхности образца наблюдается интенсивный спектр, содержащий одну составляющую Си2 $p_{1/2}$ с максимумом интенсивности при энергии связи $E_{\rm B} = 932.5-932.7$ эВ (рис. 5), характерный для Си⁰ [18]. Спектр CuL₃M₄₅M₄₅ также содержит четыре основные составляющие с максимумами интенсивности при $E_{\rm B} = 564.3-564.8$, 567.0–567.4, 568.8–569.6 и 572.1–572.6 эВ и соотношением интегральных интенсивностей около 10:45:25:20, что характерно для Cu⁰ [18]. В области начала пассивации [при потенциале около -0.47 В (х.с.э.)] интенсивность спектров Cu2 $p_{3/2}$ и CuL₃M₄₅M₄₅ несколько снижается, однако их структура не претерпевает изменений. При повышении потенциала образца до полной пассивации [около -0.27 В (х.с.э.)] и далее до +0.05 В (х.с.э.) в спектре Cu2 $p_{1/2}$ появляется слабо выраженная составляющая с максимумом интенсивности при $E_{\rm B} = 933.5-934.0$ эВ и сателлитная структура в обла-

Рис. 5. Фрагменты рентгеновских фотоэлектронных спектров $Cu2p_{3/2}$ -фотоэлектронов (*a*) и $CuL_3M_{45}M_{45}$ Ожеэлектронов (*б*) поверхности образцов стали 20, поляризованных в боратном буферном растворе при pH 7.4 и температуре 25°C в присутствии Na₄[CuN(CH₂PO₃)₃]·13H₂O при значениях потенциала *E* в области анодного растворения металла, характерных для протекания электрохимических процессов, регистрируемых вольтамперометрическим методом (рис. 2).

сти *E*_B = 937.3–937.6, 940.9–941.3 и 944.1–944.3 эВ, что характерно для ионов Cu²⁺ в низкосимметричном координационном окружении [18]. При повышении потенциала до +0.13 В (х.с.э.) интенсивность спектров Cu $2p_{3/2}$ и CuL₃M₄₅M₄₅ резко падает, а их структура претерпевает резкие изменения. В спектре $Cu2p_{1/2}$ остается только одна составляющая с максимумом интенсивности при $E_{\rm B} = 933.5 - 934.0$ эВ и интенсивная сателлитная структура при $E_{\rm B} = 939.2$, 941.2 и 947.4 эВ, соответствующая Cu²⁺. В спектре CuL₃M₄₅M₄₅ наблюдаются составляющие с максимумами интенсивности при $E_{\rm B} = 565.6, 568.2, 571.1$ и 573.5 эВ с соотношением интегральных интенсивностей около 20:30:30:20, что характерно для ионов Cu²⁺ [18]. Повышение потенциала до +0.82 В приводит к значительному усложнению спектров Cu2p_{3/2} и CuL₃M₄₅M₄₅. В спектре Cu $2p_{3/2}$ наблюдаются две составляющие с максимумами интенсивности при $E_{\rm B} = 932.5$ и 933.5 эВ при соотношении интегральных интенсивностей около 1:2 и интенсивная сателлитная структура при $E_{\rm B}$ = 936.4 и 944.2 эВ. В спектре CuL₃M₄₅M₄₅ наблюдаются составляющие с максимумами интенсивности при $E_{\rm B} = 564.3, 565.9, 567.3,$ 569.0, 571.0 и 572.3 эВ. Сложный характер спектра свидетельствует о наличии в пассивном слое на поверхности образца атомов меди в различном окислительном состоянии и (или) ближнем окружении. При повышении потенциала образца до достижения состояния транспассивности [+1.20 В (х.с.э.)] наблюдаются малоинтенсивные спектры Cu2p_{3/2} и CuL₃M₄₅M₄₅ со структурой, характерной для ионов Cu²⁺.

При потенциале открытой цепи [около -0.7 В (х.с.э.)] поверхность образца в основном покрыта слоем металлической меди (рис. 5), поэтому интенсивность спектра Fe2p_{3/2} сравнительно невелика (рис. 6). Основная составляющая спектра с максимумом интенсивности при $E_{\rm B} = 705.5$ эВ относится к Fe⁰, вклад оксидов железа незначителен. При потенциале начала пассивации [около -0.47 В (х.с.э.)] интенсивность спектра Fe2p_{3/2} возрастает вследствие частичного окисления и растворения меди. Наряду с составляющей спектра при $E_{\rm B} = 705.5$ эВ, обусловленной вкладом Fe⁰, в спектре наблюдается интенсивная составляющая с максимумом при $E_{\rm B}$ = 709.0 эВ, которая соответствует вкладу ионов Fe²⁺ в составе оксидов и гидроксидов, формирующих пассивный слой. Достижение полной пассивации [при потенциале образца около –0.27 В (х.с.э.)] сопровождается появлением в спектре Fe2p_{3/2} интенсивной составляющей с максимумом при $E_{\rm B} = 711.1$ эВ, характерной для ионов Fe³⁺, ответственных за формирование пассивной пленки. Повышение потенциала до +0.05 и +0.13 В (х.с.э.) не влечет за собой существенного изменения структуры спектра, что свидетельствует о неизменности состава и структуры пассивной пленки в этом интервале потенциалов. В области глубокой пассивности образца при потенциале +0.82 В (х.с.э.) изменяется характер распределения интенсивности между составляющими, соответствующими ионам Fe²⁺ и Fe³⁺, и интенсивность составляющей, соответствующей вкладу неокисленного железа, становится минимальной. Общий характер спектра Fe2p_{3/2} при этом потенциале близок к спектру магнетита Fe₃O₄ [19]. В условиях транспассивного состояния поверхности [потенциал образца +1.20 В (х.с.э.)] вследствие интенсивного разрушения пассивной пленки на поверхности стали значительно возрастает интенсивность составляющей, соответствующей вкладу Fe⁰, а также присутствует интенсивный вклад ионов Fe³⁺, характерных для продуктов окисления железа.

При потенциале открытой цепи [около -0.7 В (х.с.э.)] спектр Р2р поверхности образца (рис. 7) представлен одной составляющей с максимумом интенсивности при $E_{\rm B} = 131.5$ эВ, характерной для атомов фосфора в структуре соединения Na₄[CuN(CH₂PO₃)₃]·13H₂O. Также в спектре прослеживается малозаметное (на уровне статистической погрешности) плечо в области $E_{\rm B} = 133 - 135$ эВ. При потенциале начала пассивации [около –0.47 В (х.с.э.)] составляющая с максимумом при $E_{\rm B} = 131.5$ эВ сохраняется, но наибольшая интенсивность приходится на составляющие спектра с максимумами при $E_{\rm B} = 133.1$ и 134.5 эВ, соответствующие атомам фосфора в составе комплекса $[Fe(H_2O)_3NH(CH_2PO_3H)_3]_n$ [12]. При потенциалах образца -0.27 и +0.05 В (х.с.э.) общий характер спектра Р2р остается неизменным, однако интенсивность составляющих, отвечающих комплексу $[Fe(H_2O)_3NH(CH_2PO_3H)_3]_n$, снижается по сравнению со вкладом соединения Na4[CuN(CH₂PO₃)₃]·13H₂O. При потенциалах образца +0.13 и +0.82 В (х.с.э.), напротив, интенсивность вклада комплекса $[Fe(H_2O)_3NH(CH_2PO_3H)_3]_n$ в спектр Р2р преобладает над интенсивностью вклада соединения Na₄[CuN(CH₂PO₃)₃]·13H₂O. Наконец, в области транспассивности, при потенциале образца +1.20 В (х.с.э.), сохраняется вклад комплекса $[Fe(H_2O)_3NH(CH_2PO_3H)_3]_n$ в спектр P2p, представленный составляющими с максимумами при $E_{\rm B} = 133.1$ и 134.5 эВ. Вместе с тем, значительно снижается интенсивность вклада исходного соединения Na₄[CuN(CH₂PO₃)₃] \cdot 13H₂O с максимумом при $E_{\rm B} = 131.5$ эВ, и появляются интенсивные максимумы

Рис. 6. Фрагменты рентгеновских фотоэлектронных спектров Fe2p_{3/2}-фотоэлектронов поверхности образцов стали 20, поляризованных в боратном буферном растворе при pH 7.4 и температуре 25°C в присутствии Na4[CuN(CH₂PO₃)₃]·13H₂O при значениях потенциала *E* в области анодного растворения металла, характерных для протекания электрохимических процессов, регистрируемых вольтамперометрическим методом (рис. 2).

при $E_{\rm B}$ = 135.3 и 136.2 эВ, отвечающие фосфатам ${\rm PO}_4^{3-}$ и пирофосфатам ${\rm P}_2{\rm O}_7^{4-}.*$

Наблюдаемые особенности влияния добавок соединения Na₄[CuN(CH₂PO₃)₃]·13H₂O на коррозионно-электрохимическое поведение углеродистой стали в боратном буферном растворе можно объяснить следующим образом.

Комплексный ион [CuN(CH₂PO₃)₃]^{4–} обладает меньшей устойчивостью, чем аналогичный по структуре комплекс цинка, изученный ранее [3, 6, 8]. Вследствие этого в водной среде он подвергается диссоциации по упрощенной схеме $[CuN(CH_2PO_3)_3]^{4-} \rightleftharpoons Cu^{2+} + N(CH_2PO_3)_3^{6-}.$ (I)

Однако преимущественно ионы меди присутствуют в коррозионной среде в составе комплексного соединения, вследствие чего концентрация свободных ионов Cu²⁺, способных к катодному восстановлению, весьма мала. Этим объясняется то, что введение в состав коррозионной среды медьсодержащего комплексного соединения практически не влияет на коррозионно-электрохимическое поведение стали в катодной области. Основным катодным процессом является восстановление растворенного кислорода с образованием гидроксид-ионов:

$$O_2 + 2H_2O \rightarrow 4OH^-. \tag{II}$$

^{*} *Moulder J. F., Stickle W. F., Sobol P. E., Bomben K. D.* Handbook of X-ray Photoelectron Spectroscopy. Perkin-Elmer Corporation, Eden Prairie, 1992. P. 59.

Рис. 7. Фрагменты рентгеновских фотоэлектронных спектров P2*p*-фотоэлектронов поверхности образцов стали 20, поляризованных в боратном буферном растворе при pH 7.4 и температуре 25°C в присутствии Na₄[CuN(CH₂PO₃)₃]·13H₂O (CuNTP) при значениях потенциала *E* в области анодного растворения металла, характерных для протекания электрохимических процессов, регистрируемых вольтамперометрическим методом (рис. 2).

Образование металлической меди на поверхности образца наблюдается только в области потенциала разомкнутой цепи и анодных токов, так как в этой области благодаря анодному окислению железа по реакции

$$Fe^0 \rightarrow Fe^{2+} + 2e^-$$
 (IIIa)

в коррозионную среду начинают поступать свободные ионы Fe²⁺. Образующиеся по реакции (Ша) ионы Fe²⁺ вступают также во внутрисферную обменную реакцию с комплексными анионами [CuN(CH₂PO₃)₃]⁴⁻ [4]

$$nFe^{2+} + n[CuN(CH_2PO_3)_3]^{4-} + 7nH_2O \rightarrow$$
$$\rightarrow nCu^{2+} + [Fe(H_2O)_3NH(CH_2PO_3H)_3]_n \downarrow + (III6)$$
$$+ 4nOH^{-}$$

с образованием малорастворимого комплекса $[Fe(H_2O)_3NH(CH_2PO_3H)_3]_n$ и свободных ионов Cu^{2+} , которые далее восстанавливаются на поверхности стали по реакции

$$\operatorname{Cu}^{2+} + 2e^{-} \to \operatorname{Cu}^{0} \downarrow.$$
 (IIIB)

Происходит также адсорбция ионов $N(CH_2PO_3)_3^{6-}$ и [CuN(CH_2PO_3)_3]⁴⁻. Продукты этих процессов обнаруживаются на поверхности образца спектроскопически (рис. 5–7).

Повышение потенциала образца приводит к повышению плотности анодного тока до величины i_C (рис. 2); при этом скорость анодной полуреакции (IIIa) повышается, в связи с чем при взаимодействии ионов Fe²⁺ с ионами OH⁻, образующимися по реакции (II), на поверхности образца начинают накапливаться Fe(OH)₂ и FeO:

 $Fe^{2+} + 2OH^{-} \rightarrow Fe(OH)_{2}\downarrow,$ (IVa)

$$Fe(OH)_2 \rightarrow FeO\downarrow + H_2O,$$
 (IV6)

$$3\text{FeO} + 2\text{OH}^{-} \rightarrow \text{Fe}_3\text{O}_4\downarrow + \text{H}_2\text{O} + 2e^{-}, \quad (\text{IV}_B)$$

которые формируют на поверхности стали пассивный слой и обусловливают начало пассивации при потенциале около -0.47 В (х.с.э.). Накопление Fe(OH)₂ и FeO при потенциале образца -0.47 В (х.с.э.) прослеживается спектроскопически (рис. 6). Плотность анодного тока в этой области резко падает (рис. 2). Металлическая медь и комплекс [Fe(H₂O)₃NH(CH₂PO₃H)₃]_n на поверхности образца обнаруживаются в спектрах меди (рис. 5) и фосфора (рис. 7). Дальнейшее повышение потенциала до -0.27 В (х.с.э.) делает возможным протекание в твердой фазе реакций

$$FeO + H_2O + OH^- \rightarrow Fe(OH)_3 \downarrow + e^-,$$
 (Va)

потенциал которой при pH 7.4 равен -0.36 В (х.с.э.),* и

$$2Fe_3O_4 + 2OH^- \rightarrow 3Fe_2O_3 \downarrow + H_2O + 2e^-, \quad (V\delta)$$

потенциал которой при тех же условиях составляет -0.41 В (х.с.э.).** Протеканию реакций (Va), (Vб) соответствует группа пиков в интервале потенциалов -0.27÷-0.05 В (х.с.э.) на вольтамперометрических кривых, полученных при малом содержании ингибитора (0-0.1 ммоль·дм⁻³). Заметное смещение пиков в область повышенных потенциалов объясняется перенапряжением протекания реакций в твердой фазе. Протекают также реакции дегидратации Fe(OH)₃ при старении и уплотнении пассивной пленки:

$$Fe(OH)_3 \rightarrow FeO(OH) + H_2O,$$
 (VB)

$$2FeO(OH) \rightarrow Fe_2O_3 + H_2O, \qquad (Vr)$$

продукты которых, содержащие ион Fe^{3+} , обнаруживаются в спектре железа (рис. 6). Реакция (Va) проявляется слабым пиком плотности анодного тока или плечом на поляризационных кривых (рис. 2). Расходование ионов Fe^{2+} в реакциях (IVa) и (Va) приводит к замедлению конкурирующей реакции (IIIб), в которой также участвуют ионы Fe^{2+} ; уменьшение количества продукта реакции (IIIб) прослеживается в спектре фосфора (рис. 7). При дальнейшем повышении потенциала образца до +0.05 В (х.с.э.) протекают аналогичные процессы.

По данным электрохимических и спектроскопических исследований, при потенциале –0.27 В (х.с.э.) на поверхности образца формируется слой оксидов и комплексных соединений железа, а плотность анодного тока растворения металла резко снижается. Соответственно классическим представлениям о пассивности [20], это состояние можно рассматривать как полную пассивацию стали. При дальнейшем росте потенциала наблюдаются пики анодной плотности тока, которые относятся не к растворению металла рабочего образца по реакции (Ша), а к электрохимическим реакциям с участием компонентов самого пассивного слоя.

195

^{*} *Pourbaix M.* Atlas of Electrochemical Equilibria in Aqueous Solutions. National Association of Corrosion Engineers, Houston, 1974. Р. 309. ** Там же.

При повышении потенциала образца до +0.13 В (х.с.э.) направление реакции (Шв), потенциал которой относительно хлоридсеребряного электрода составляет около 0.13 В (х.с.э.),* меняется с катодного на анодное. Вследствие этого растворяются и частично переходят в оксид частицы металлической меди, что прослеживается как микроскопически (рис. 4, ж, 3), так и спектроскопически (рис. 5). Реакция, обратная (IIIв), проявляется пиком плотности анодного тока на поляризационных кривых (рис. 2). В опыте без добавления мельсолержашего ингибитора данный пик не наблюдается. При концентрации медьсодержащего ингибитора от 0.1 до 2 ммоль дм⁻³ на соответствующих вольтамперометрических кривых наблюдаются пики как в области -0.27÷-0.05 В (х.с.э.), отвечающие протеканию реакций (Va) и (Vб), так и пик в области 0-0.13 В (х.с.э.), соответствующий протеканию реакции, обратной (Шв). При концентрации медьсодержащего ингибитора 10 ммоль дм-3 на вольтамперометрической кривой наблюдается только пик, отвечающий протеканию реакции, обратной (IIIв). Максимум этого пика с увеличением концентрации медьсодержащего ингибитора в растворе смещается в сторону более высоких потенциалов соответственно влиянию логарифмического члена в уравнении Нернста.

При потенциале образца +0.82 В (х.с.э.) на поверхности формируется плотный оксидный слой с мозаичной структурой (рис. 4, u, κ), содержащий ионы Fe²⁺, Fe³⁺, Cu²⁺ и комплекс [Fe(H₂O)₃NH(CH₂PO₃H)₃]_n, обнаруживаемые по спектрам (рис. 5–7). Этот слой плотно экранирует поверхность стали, и плотность анодного тока растворения металла в этой области минимальна.

В области транспассивности [при потенциале образца +1.20 В (х.с.э.)] происходит разрушение оксидно-гидроксидного слоя, обусловленное образованием хорошо растворимых оксидов высших степеней окисления [20]:

$$\begin{split} & \text{FeO} + 6\text{OH}^- \rightarrow \text{FeO}_4{}^{2-} + 3\text{H}_2\text{O} + 4e^-, \quad \text{(VIa)} \\ & \text{Fe(OH)}_3 + 5\text{OH}^- \rightarrow \text{FeO}_4{}^{2-} + 4\text{H}_2\text{O} + 3e^-, \quad \text{(VI6)} \\ & \text{Fe}_2\text{O}_3 + 10\text{OH}^- \rightarrow 2\text{FeO}_4{}^{2-} + 5\text{H}_2\text{O} + 6e^-, \quad \text{(VIB)} \\ & \text{Fe}_3\text{O}_4 + 16\text{OH}^- \rightarrow 3\text{FeO}_4{}^{2-} + 8\text{H}_2\text{O} + 10e^-. \quad \text{(VIr)} \end{split}$$

Протекание реакций (VIa)-(VIг) объясняется тем, что в нейтральных средах образование феррат-ионов протекает при меньших потенциалах, чем окисление воды.** Повышение наблюдаемого потенциала транспассивности по сравнению с расчетным потенциалом для реакций (VIa)-(VIв) объясняется перенапряжением протекания твердофазных реакций. Протекание реакций (VIa)–(VIг) подтверждается микроскопически (рис. 4, л, м) и спектроскопически (рис. 6). При этом медь также полностью переходит в окисленное состояние (рис. 5). Несмотря на разрушение пассивной пленки, комплекс $[Fe(H_2O)_3NH(CH_2PO_3H)_3]_n$ сохраняется на поверхности образца, а исходный комплексный ион [CuN(CH₂PO₃)₃]⁴⁻, не вступивший в реакцию (IIIб), в основном окисляется до ионов PO_4^{3-} и $P_2O_7^{4-}$ (рис. 7).

Выводы

Потенциодинамические коррозионные исследования с использованием сканирующей электронной микроскопии и рентгеновской фотоэлектронной спектроскопии позволили получить детальную информацию о влиянии соединения Na4[CuN(CH₂PO₃)₃]·13H₂O на коррозионно-электрохимическое поведение углеродистой стали в нейтральных средах в условиях естественной аэрации. В концентрации 0.2–1.0 ммоль·дм⁻³ исследуемый комплекс ингибирует анодное растворение металла, а при бо́льших концентрациях — стимулирует его.

Насколько можно судить по полученным данным, влияние комплекса Na₄[CuN(CH₂PO₃)₃]·13H₂O на анодное растворение металла существенно отличается от ранее изученных соединений Na₄[ZnN(CH₂PO₃)₃]·13H₂O и Na₄[Cd(H₂O)N(CH₂PO₃)₃]·7H₂O, которые взаимодействуют с ионами Fe²⁺, выделяющимися при анодном растворении железа, с образованием нерастворимых гетерометаллических комплексов [Zn_{1/2}Fe_{1/2}(H₂O)₃NH(CH₂PO₃H)₃]_{*n*} и $[Cd_{1/8}Fe_{7/8}(H_2O)_3NH(CH_2PO_3H)_3]_n$ и формируют на поверхности стали плотный защитный слой. В отличие от этого Na₄[CuN(CH₂PO₃)₃]·13H₂O в интервале потенциалов -0.66÷-0.05 В (х.с.э.) образует на поверхности стали слой наноразмерных частиц металлической меди, экранирующих поверхность стали, и

^{*} *Pourbaix M.* Atlas of Electrochemical Equilibria in Aqueous Solutions. National Association of Corrosion Engineers, Houston, 1974. P. 386.

^{**} *Pourbaix M*. Atlas of Electrochemical Equilibria in Aqueous Solutions. National Association of Corrosion Engineers, Houston, 1974. P. 311–312.

комплекса [Fe(H₂O)₃NH(CH₂PO₃H)₃]_{*n*}. В интервале потенциалов 0.05–0.13 В (х.с.э.) металлическая медь окисляется, а при +0.82 В (х.с.э.) на поверхности стали формируется слой смешанных оксидов железа и меди и комплекса [Fe(H₂O)₃NH(CH₂PO₃H)₃]_{*n*}. Комплекс [Fe(H₂O)₃NH(CH₂PO₃H)₃]_{*n*} сохраняется в поверхностном слое и в области транспассивности, когда оксидно-гидроксидная пленка на поверхности стали разрушается.

Исследование влияния смешанных медно-цинковых комплексных соединений, как и влияния ионов-депассиваторов (галогенидов и др.), на коррозионно-электрохимическое поведение стали в соответствующих средах и эффективность ингибиторов коррозии требует дальнейших исследований.

Благодарности

Работа выполнена с использованием оборудования Центра коллективного пользования Удмуртского федерального исследовательского центра УрО РАН «Поверхность и новые материалы».

Финансирование работы

Работа выполнена в соответствии с планом научных исследований № 121030100002-0 Министерства науки и высшей школы Российской Федерации. Исследования методом РФЭС выполнены при поддержке Министерства науки и высшего образования России в рамках соглашения № 075-15-2021-1351 в части развития метода рентгеновской фотоэлектронной спектроскопии.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

Информация о вкладе авторов

И. А. Жилин и Ф. Ф. Чаусов предложили постановку задачи и разработали программу исследований, подготовили исходные реагенты и образцы, провели электрохимические исследования; Н. В. Ломова и Н. Ю. Исупов провели рентгеновскую фотоэлектронную спектроскопию поверхности образцов; И. С. Казанцева интерпретировала результаты электрохимических исследований; И. К. Аверкиев провел электронно-микроскопические исследования образцов.

Информация об авторах

Жилин Игорь Александрович, инженер-технолог АО «Ижевский электромеханический завод «КУПОЛ», инженер-исследователь ФГБУН «Удмуртский федеральный исследовательский центр УрО РАН»

ORCID: https://orcid.org/0009-0008-2380-1050

Чаусов Федор Федорович, д.х.н., в.н.с. ФГБУН «Удмуртский федеральный исследовательский центр УрО РАН»

ORCID: https://orcid.org/0000-0003-4950-2370 ResearcherID Web of Science: ABH-2695-2020 Scopus Author ID: 6602129105

Ломова Наталья Валентиновна, к.ф.-м.н., с.н.с. ФГБУН «Удмуртский федеральный исследовательский центр УрО РАН»

ORCID: https://orcid.org/0000-0002-6568-4736

Казанцева Ирина Сергеевна, н.с. ФГБУН «Удмуртский федеральный исследовательский центр УрО РАН»

ORCID: https://orcid.org/0000-0003-4556-3854

Исупов Никита Юрьевич, ведущий конструктор ФГБУН «Удмуртский федеральный исследовательский центр УрО РАН»

ORCID: https://orcid.org/0000-0002-2515-8117

Аверкиев Игорь Кронидович, м.н.с. ФГБУН «Удмуртский федеральный исследовательский центр УрО РАН»

ORCID: https://orcid.org/0000-0001-9952-8363

Список литературы

[1] Demadis K. D., Katarachia S. D., Koutmos M. Crystal growth and characterization of zinc-(amino-tris-(methylenephosphonate)) organic-inorganic hybrid networks and their inhibiting effect on metallic corrosion // Inorg. Chem. Commun. 2005. N 8. P. 254– 258. https://doi.org/10.1016/j.inoche.2004.12.019

[2] Сомов Н. В., Чаусов Ф. Ф. Структура ингибитора солеотложений и коррозии – тридекагидрата нитрилотриметилентрифосфонатоцинката тетранатрия Na4[N(CH₂PO₃)₃Zn]·13H₂O // Кристаллография. 2014. Т. 59. № 1. С. 71–75. https://doi.org/10.7868/S0023476113050123 [Somov N. V., Chausov F. F. Structure of tetrasodium nitrilotrimethylenetriphosphonatozincate tridecahydrate Na4[N(CH₂PO₃)₃Zn]·13H₂O, an inhibitor of scaling and corrosion // Crystallography Reports. 2014. V. 59. N 1. P. 66–70. https://doi.org/10.1134/S1063774513050118].

[3] Chausov F. F., Kazantseva I. S., Reshetnikov S. M., Lomova N. V., Maratkanova A. N., Somov N. V. Zinc and cadmium nitrilotris(methylenephosphonate)s: A Comparative study of different coordination structures for corrosion inhibition of steels in neutral aqueous media // ChemistrySelect. 2020. V. 5. N 43. P. 13711–13719.

https://doi.org/10.1002/slct.202003255

- [4] Kuznetsov Y. I., Redkina G. V. Thin protective coatings on metals formed by organic corrosion inhibitors in neutral media // Coatings. 2022. V. 12. N 2. ID 149. https://doi.org/10.3390/coatings12020149
- [5] Сомов Н. В., Чаусов Ф. Ф. Структура комплексов нитрилотрисметиленфосфоновой кислоты с медью [CuN(CH₂PO₃)₃(H₂O)₃] и Na₄[CuN(CH₂PO₃)₃]₂·19H₂O бактерицидов и ингибиторов солеотложений и коррозии // Кристаллография. 2015. Т. 60. № 2. С. 233–239. https://doi.org/10.7868/S0023476115010221 [Somov N. V., Chausov F. F. Structure of complexes of nitrilo tris methylene phosphonic acid with copper, [CuN(CH₂PO₃)₃(H₂O)₃] and Na₄[CuN(CH₂PO₃)₃]₂·19H₂O, as bactericides and inhibitors of scaling and corrosion // Crystallography Reports. 2015. V. 60. N 2. P. 210–216. https://doi.org/10.1134/S1063774515010228].
- [6] Чаусов Ф. Ф., Казанцева И. С., Ломова Н. В., Холзаков А. В., Шабанова И. Н., Суксин Н. Е. Термохимическое поведение кристаллических медно-цинковых комплексов нитрило-*трис*-метиленфосфоновой кислоты // ЖПХ. 2022. Т. 95. № 4. С. 458–467.

https://doi.org/10.31857/S0044461822040065 https://www.elibrary.ru/dgyksg

[*Chausov F. F., Kazantseva I. S., Lomova N. V., Kholzakov A. V., Shabanova I. N., Suksin N. E.* Thermochemical behavior of crystalline copper–zinc complexes of nitrilotris(methylenephosphonic) acid // Russ. J. Appl. Chem. 2022. V. 95. N 4. P. 519–528. https://doi.org/10.1134/S1070427222040073].

- [7] Жук Н. П. Курс теории коррозии и защиты металлов. М.: Альянс, 2006. С. 231.
- [8] Чаусов Ф. Ф., Сомов Н. В., Закирова Р. М., Алалыкин А. А., Решетников С. М., Петров В. Г., Александров В. А., Шумилова М. А. Линейные органическо-неорганические гетерометаллические сополимеры [(Fe,Zn)(H₂O)₃ {NH(CH₂PO₃H)₃}]_n и [(Fe,Cd)(H₂O)₃ {NH(CH₂PO₃H)₃}]_n: недостающее звено механизма ингибирования локальной коррозии стали фосфонатами // Изв. РАН. Сер. физ. 2017. Т. 81. № 3. С. 394–396.

https://doi.org/10.7868/S0367676517030085

 $[Chausov \ \bar{F}. F., Somov \ N. V., Zakirova \ R. M., Alalykin \ A. A., Reshetnikov \ S. M., Petrov \ V. G., Aleksandrov \ V. A., Shumilova \ M. A. Linear organic-inorganic heterometallic copolymers <math display="block">[(Fe,Zn)(H_2O)_3\{NH(CH_2PO_3H)_3\}]_n \quad and \\ [(Fe,Cd)(H_2O)_3\{NH(CH_2PO_3H)_3\}]_n: The Missing link$

in the mechanism of inhibiting local steel corrosion with phosphonates // Bull. Russ. Acad. Sci.: Physics. 2017. V 81. N 3. P. 365–367.

https://doi.org/10.3103/S106287381703008X].

- [9] Chausov F. F., Lomova N. V., Dobysheva L. V., Somov N. V., Ul'yanov A. L., Maratkanova A. N., Kholzakov A. V., Kazantseva I. S. Linear organic/ inorganic iron(II) coordination polymer based on Nitrilo-tris(Methylenephosphonic acid): Spin crossover induced by Cd doping // J. Solid State Chem. 2020. V. 286. Article number 121324. https://doi.org/10.1016/j.jssc.2020.121324
- [10] Dobysheva L. V., Chausov F. F., Lomova N. V. Electronic structure and chemical bonding in smart anti-corrosion coatings // Mater. Today Commun. 2021. V. 29. ID 102892.

https://doi.org/10.1016/j.mtcomm.2021.102892

- [11] *Кузнецов Ю. И., Раскольников А. Ф.* Ингибирование коррозии железа нитрилотриметилфосфонатными комплексами // Защита металлов. 1992. Т. 28. № 2. С. 249–256.
- [12] Сомов Н. В., Чаусов Ф. Ф., Закирова Р. М., Шумилова М. А., Александров В. А., Петров В. Г. Синтез, структура и свойства нитрило-трис-(метиленфосфонато)-триакважелеза(II) {Fe[µ-NH(CH₂PO₃H)₃](H₂O)₃} — ингредиента защитных противокоррозионных покрытий на поверхности стали // Кристаллография. 2015. Т. 60. № 6. С. 915–921.

https://doi.org/10.7868/S0023476115060338 [Somov N. V., Chausov F. F., Zakirova R. M., Shumilova M. A., Aleksandrov V. A., Petrov V. G. Synthesis, structure, and properties of nitrilotris(methylenephosphonato)-triaquairon(II) {Fe[μ-NH(CH₂PO₃H)₃](H₂O)₃}, as an ingredient of anticorrosive protective coatings on the steel surface // Crystallography Reports. 2015. V. 60. P. 853–859. https://doi.org/10.1134/S1063774515060334].

- [13] Benzakour J., Daerja A. Electrochemical passivation of iron in phosphate medium // Electrochim. Acta. 1993. V. 38. P. 2547–2550. https://doi.org/10.1016/0013-4686(93)80151-O
- [14] Cohen M., Mitchell D., Hashimoto K. The composition of anodically formed iron oxide films // J. Electrochem. Soc. 1979. V. 126. P. 442–444. https://doi.org/10.1149/1.2128899
- [15] Delplanke J. L. Anodic oxidation of iron and cathodic reduction of the anodic film: A Review // Surf. Technol. 1983. V. 20. P. 71–81. https://doi.org/10.1016/0376-4583(83)90078-X
- [16] Martini E. M. A., Muller I. L. Passivation of iron in solution containing borate using rotating ring-disk mesuarments // J. Braz. Chem. Soc. 1999. V. 10. N 6. P. 505–511.

https://doi.org/10.1590/S0103-50531999000600014

199

- [17] Holmes W. Silver staining of nerve axons in paraffin sections // The Anatomical Record. 1943. V. 86.
 P. 157–187. https://doi.org/10.1002/ar.1090860205
- [18] Biesinger M. C. Advanced analysis of copper X-ray photoelectron spectra // Surface and Interface Analysis. 2017. V. 49. P. 1325–1334. https://doi.org/10.1002/sia.6239
- [19] Grosvenor A. P., Kobe B. A., Biesinger M. C., McIntyre N. S. Investigation of multiplet splitting of Fe2p XPS spectra and bonding in iron compounds // Surface and Interface Analysis. 2004. V. 36. P. 1564– 1574. https://doi.org/10.1002/sia.1984
- [20] Томашов Н. Д., Чернова Г. П. Пассивность и защита металлов от коррозии. М.: Наука, 1965. С. 46.