Синтез и строение фенилацетатов U(VI), Np(VI) и Pu(VI)

© В. Н. Сережкин*^{*a*}, М. С. Григорьев^{*b*}, А. М. Федосеев^{*b*}, Н. А. Буданцева^{*b*}, Л. Б. Сережкина^{*a*}

^а Самарский национальный исследовательский университет им. акад. С. П. Королева, 443011, Самара, ул. Акад. Павлова, д. 1; * e-mail: Serezhkin@samsu.ru
 ^б Институт физической химии и электрохимии им. А. Н. Фрумкина РАН, 119071, Москва, Ленинский пр., д. 31, корп. 4

Получена 02.04.2018, после доработки 02.05.2018, принята к публикации 02.05.2018 УДК 548.736

Осуществлены синтез и рентгеноструктурное исследование кристаллов фенилацетатов [AnO₂· (C₆H₅CH₂COO)₂], где An = U (I), Np (II) или Pu (III). Соединения I–III изоструктурны, кристаллизуются в моноклинной сингонии, пространственная группа C2/c, Z = 4. Основными структурными единицами кристаллов I–III являются 1D цепочки [AnO₂(C₆H₅CH₂COO)₂], относящиеся к кристаллохимической группе AB₂¹¹ (A = AnO₂²⁺, B¹¹ = C₆H₅CH₂COO⁻). С помощью метода молекулярных полиэдров Вороного– Дирихле проанализированы межмолекулярные взаимодействия в структурах кристаллов [AnO₂L₂], где L – бензоат- или фенилацетат-ион. Кристаллоструктурные данные подтверждены результатами исследования ИК и электронных спектров поглощения.

Ключевые слова: уранил, нептунил, плутонил, фенилацетаты, актинидное сжатие, молекулярные полиэдры Вороного–Дирихле.

DOI: 10.1134/S0033831119020011

К настоящему времени сравнительно подробно изучены дикарбоксилаты UO₂L₂·nH₂O, в составе которых содержатся анионы одноосновных насыщенных или ненасыщенных алифатических кислот HL [1]. Сведения же о дикарбоксилатах уранила, содержаших анионы одноосновных ароматических кислот, весьма ограничены. Наиболее широко охарактеризованы соединения U(VI) с бензойной кислотой (далее Hbox) и некоторыми ее галоген-, гидроксил- или алкилпроизводными. В частности, установлено, что взаимодействие гидроксида уранила с Нbox при 400 К [2] или ацетата уранила с Нbox в смеси воды и этилового спирта [3] приводит к образованию [UO₂(box)₂]. Согласно работам [2, 3]. в 1D цепочечной структуре кристаллов бензоата уранила атомы U имеют КЧ 6, а все бензоат-ионы играют роль бидентатных мостиковых лигандов B², поэтому уранилсодержащим комплексам отвечает кристаллохимическая формула AB_2^2 , где $A = UO_2^{2+}$, $a B^2 = box^-$. Здесь и далее обозначения типов координации лигандов и кристаллохимические формулы (КХФ) комплексов указаны в соответствии с методом [4, 5]. При взаимодействии раствора бензоата серебра в этаноле с водным раствором хлорида уранила были получены кристаллы [UO₂(box)₂: (H₂O)]·EtOH [6]. В их структуре уранилсодержащим комплексам, которые имеют 1D цепочечную структуру, отвечает КХФ АВ²В⁰¹М¹. Согласно этой формуле, каждый атом U имеет КЧ 7, поскольку связан с двумя атомами О иона уранила, двумя атомами О мостиковых анионов В², двумя атомами О бидентатного хелатного бензоат-иона B⁰¹, а также атомом О молекулы воды, которая играет роль монодентатного концевого лиганда М¹. Согласно работам [4, 5], для комплексов с $KX\Phi AB^2B^{01}M^1$ теоретически возможны два геометрических изомера, отличающихся взаимным положением (иис- или *транс-*) донорных атомов мостикового лиганда В² в экваториальной плоскости иона уранила. Для транс-изомеров реализуется цепочечная 1D структура, примером которой могут служить комплексы в указанных выше кристаллах [UO₂(box)₂(H₂O)]. EtOH [6]. В то же время иис-изомеры имеют двухъядерную 0D структуру, известным примером которой является [UO₂(box)₂(Dmfa)], где Dmfa – *N*,*N*-диметилформамид [7, 8]. Среди охарактеризованных бензоатсодержащих комплексов уранила известны также соединения, в которых атомы U реализуют и КЧ 8. Примером являются, в частности, одноядерные комплексы с КХФ АВ₃⁰¹ в структуре $Na[UO_2(box)_3] \cdot 2H_2O$ [9] и центросимметричные комплексы с КХФ AB₂⁰¹M₂¹ в кристаллах [UO₂(box)₂(Dmso)₂], где Dmso – диметилсульфоксид [10].

В настоящей работе исследовано строение впервые полученных солей фенилуксусной кислоты (Hphac) AnO₂(C₆H₅CH₂COO)₂ [An = U (I), Np (II), Pu (III)], которая является вторым членом гомологического ряда одноосновных ароматических кислот C₆H₅–(CH₂)_n–СООН. В настоящее время известна структура только одного фенилацетата U(VI) – Na[UO₂(phac)₃] [11]. Сведения о строении каких-либо соединений Np или Pu, содержащих phac-ионы, в базе данных [12] отсутствуют.

Таблица 1. Кристаллографические данные, параметры эксперимента и уточнения структур І-ІІІ

Параметр	1	11	111		
Химическая формула	$UO_2(C_6H_5CH_2COO)_2$	$NpO_2(C_6H_5CH_2COO)_2$	$PuO_2(C_6H_5CH_2COO)_2$		
Сингония, пространственная группа, Z	Моноклинная, С2/с, 4	Моноклинная, С2/с, 4	Моноклинная, С2/с, 4		
a, Å	19.6381(4)	19.706(3)	19.7025(7)		
b, Å	10.6024(2)	10.3232(18)	10.4028(4)		
c, Å	8.4733(1)	8.4158(14)	8.3929(2)		
β, град	102.266(1)	102.127(5)	102.012(2)		
$V, Å^3$	1723.96(5)	1673.8(5)	1682.55(10)		
$D_{\rm x}$, $\Gamma/{\rm cm}^3$	2.082	2.140	2.149		
Излучение, λ, Å	Mo <i>K</i> _α , 0.71073	Mo <i>K</i> _α , 0.71073	ΜοΚ _α , 0.71073		
μ, мм ⁻¹	9.441	4.036	4.188		
Т, К	296(2)	100(2)	100(2)		
Размеры кристалла, мм	0.24 ′ 0.14 ′ 0.06	0.22 ′ 0.04 ′ 0.03	0.36 ′ 0.04 ′ 0.03		
Учет поглощения	Полуэ	мпирический, по эквива.	тентам		
T_{\min}, T_{\max}	0.344, 0.601	0.635, 0.835	0.775, 0.891		
θ _{max} , град	34.70	29.98	30.00		
Область <i>h</i> , <i>k</i> , <i>l</i>	$-28 \le h \le 31, -17 \le$	$-27 \le h \le 27, -14 \le$	$-27 \le h \le 27, -14 \le$		
	$k \le 16, -13 \le l \le 13$	$k \le 14, -11 \le l \le 11$	$k \le 14, -11 \le l \le 11$		
Число отражений: измеренных/независимых	9358/3759, 0.0286/2353	10675/2446, 0.0817/1445	8669/2456, 0.0418/1569		
$(N_1), R_{\rm int}/c I > 1.96\sigma(I) (N_2)$					
Метод уточнения	Полноматричный МНК по F^2				
Число уточняемых параметров	106	106	106		
Весовая схема	$w = 1/[\sigma^2(F_o^2) +$	$w = 1/[\sigma^2(F_o^2) +$	$w = 1/[\sigma^2(F_o^2) +$		
	$(0.0107P)^2 + 1.8029P],$	$(0.0218P)^2$,	$(0.0112P)^2$,		
	$P = (F_o^2 + 2F_c^2)/3$	$P = (F_o^2 + 2F_c^2)/3$	$P = (F_o^2 + 2F_c^2)/3$		
wR_2 по N_1	0.0360	0.0711	0.0434		
<i>R</i> ₁ по <i>N</i> ₂	0.0148	0.0300	0.0182		
S	0.997	0.984	0.953		
$\Delta \rho_{\text{max}} / \Delta \rho_{\text{min}}, e / Å^3$	0.610/-0.741	1.968/-1.668	0.780/-1.056		

Экспериментальная часть

Для синтеза использовали Hphac, перекристаллизованную из водного раствора. При получении I твердый UO₃, прокаленный при 300°С непосредственно перед использованием, растворяли в насыщенном при 40-50°С водном растворе Нрһас при периодическом перемешивании. Мольное соотношение Hphac : UO₃ составляло (1.2–1.4) : 1. В течение 1-2 ч в реакционной смеси формировались крупные призматические кристаллы ярко-желтого цвета. В случае синтеза II и III исходными веществами служили ²³⁷NpO₂(OH)₂ и ²³⁹PuO₂(OH)₂:xH₂O, приготовленные озонированием водной суспензии оксалатов четырехвалентных ²³⁷Np и ²³⁹Pu [13]. Реакцию проводили так же, как и в случае комплекса уранила, но температура реакционной смеси не превышала 40°С во избежание восстановления шестивалентных Np и Pu. В выбранных условиях побочная реакция восстановления не сказывается на росте кристаллов искомых соединений. Соли II и III выделяются в форме очень тонких игольчатых кристаллов, бледно-зеленых для Np и коричневатожелтых для Ри. В твердом виде все соединения устойчивы, по крайней мере, в течение нескольких дней.

Рентгеноструктурный анализ. Строение соединений I-III установлено методом рентгеноструктурного анализа монокристаллов. Измерения проводили на автоматическом четырехкружном дифрактометре с двумерным детектором Bruker Карра Арех II. Параметры элементарной ячейки уточняли по всему массиву данных [14]. В экспериментальные интенсивности рефлексов вносили поправки на поглощение с использованием программы SADABS [15]. Структуры расшифровывали прямым методом (SHELXS97 [16]) и уточняли полноматричным методом наименьших квадратов (SHELXL-2014 [17]) по F^2 по всем данным в анизотропном приближении для всех неводородных атомов. Атомы Н фенилацетат-ионов размещали в геометрически вычисленных позициях с изотропными температурными факторами, равными 1.2 эквивалентного изотропного фактора атома С, с которым они связаны. Кристаллографические данные, параметры эксперимента и уточнения структур I-III приведены в табл. 1. Основные длины связей и величины валентных углов, а также параметры водородных связей в структурах I-III представлены в табл. 2. КЧ всех атомов определяли с помощью метода пересекающихся сфер [18]. Координаты атомов и тепловые параметры депонированы в

Габлица 2. Основные длины связей и валентные углы в І	-II	I	
---	-----	---	--

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Параметр	Ι	II	III					
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Гексагональная бипирамида AnO ₂ O ₆								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Связь		d, Å						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	An(1)–O(1)	1.7476(18) (×2)	1.737(5) (×2)	1.735(3) (×2)					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	An(1)–O(2)	2.4940(14) (×2)	2.493(4) (×2)	2.495(3) (×2)					
An(1)-O(3') 2.5318(13) (<2) 2.505(4) (<2) 2.504(2) (<2) O(1)An(1)O(1) 180.0 180.0 180.0 180.0 O(2)An(1)O(3) 70.28(5) (<2)	An(1)–O(3)	2.4343(14) (×2)	2.423(4) (×2)	2.419(2) (×2)					
ψτοπ 0, ppar 0(1)An(1)O(1) 180.0 180.0 180.0 0(2)An(1)O(3) 70.28(5) (×2) 70.21(13) (×2) 69.91(8) (×2) 0(2)An(1)O(3) 50.78(4) (×2) 51.19(12) (×2) 51.29(8) (×2) 0(3)An(1)O(3) 60.97(6) (×2) 60.85(14) (×2) 61.11(10) (×2) Фенилацетат-анионы (тип координации В ¹¹) (C1)-O(2) 1.244(2) 1.238(7) 1.249(4) C(1)-O(2) 1.244(2) 1.238(7) 1.249(4) C(1)-O(2) 1.282(2) 1.294(7) 1.281(4) C(1)-O(2) 1.498(3) 1.499(8) 1.508(5) C(2)-C(3) 1.498(3) 1.499(8) 1.508(5) C(4)-C(5) 1.379(6) 1.338(11) 1.371(7) C(5)-C(6) 1.343(7) 1.36(13) 1.371(7) C(7)-C(8) 1.356(6) 1.370(9) 1.384(6) C(3)-C(1)(G3) 117.18(17) 117.0(5) 117.5(3) O(2)C(1)(O3) 117.57(19) 114.57(5) 119.6(3) C(2)C(3)C(4) 120.1(3)	An(1)–O(3')	2.5318(13) (×2)	2.505(4) (×2)	2.504(2) (×2)					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Угол		ω, град						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	O(1)An(1)O(1)	180.0	180.0	180.0					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	O(2)An(1)O(3)	70.28(5) (×2)	70.21(13) (×2)	69.91(8) (×2)					
O(3)An(1)O(3') 60.97(6) (<2) 60.85(14) (<2) 61.11(10) (<2) Фенилацетат-анионы (тип координации В ¹¹) (<th)< th=""> ((</th)<>	O(2)An(1)O(3')	50.78(4) (×2)	51.19(12) (×2)	51.29(8) (×2)					
Фенилацетат-анионы (тип координации В ¹) Сп) О.А. С(1)-O(2) 1.244(2) 1.238(7) 1.249(4) (C1)-O(3) 1.282(2) 1.294(7) 1.281(4) C(1)-O(2) 1.498(3) 1.499(8) 1.508(5) C(2)-C(3) 1.498(3) 1.499(8) 1.505(5) C(3)-C(4) 1.365(4) 1.383(9) 1.373(5) C(4)-C(5) 1.379(6) 1.383(11) 1.371(7) C(5)-C(6) 1.343(7) 1.36(13) 1.371(7) C(5)-C(6) 1.385(4) 1.320(9) 1.384(6) C(3)-C(8) 1.376(3) 1.370(9) 1.394(5) C(2)C(1)O(3) 117.18(17) 117.0(5) 117.5(3) O(2)C(1)C(2) 123.27(19) 124.2(6) 122.6(3) O(2)C(1)C(2) 119.47(18) 118.7(5) 119.6(3) C(2)C(3)C(4) 120.1(3) 119.6(6) 120.6(4) C(2)C(3)C(4) 121.6(3) 122.3(6) 120.4(4) C(2)C(3)C(6) 121.3(4) 118.4(7) 119.9(4) <	O(3)An(1)O(3')	60.97(6) (×2)	60.85(14) (×2)	61.11(10) (×2)					
Связь $d, Å$ C(1)-O(2)1.244(2)1.238(7)1.249(4)C(1)-O(3)1.282(2)1.294(7)1.281(4)C(1)-C(2)1.493(3)1.492(8)1.505(5)C(2)-C(3)1.498(3)1.499(8)1.505(5)C(3)-C(4)1.365(4)1.383(9)1.373(5)C(4)-C(5)1.379(6)1.383(11)1.371(7)C(5)-C(6)1.343(7)1.361(13)1.371(7)C(6)-C(7)1.356(6)1.370(12)1.393(7)C(7)-C(8)1.376(3)1.370(9)1.394(5)Угол0, градО(2)C(1)O(3)117.18(17)117.18(17)117.18(17)117.0(5)117.5(3)0, градO(2)C(1)O(2)117.18(17)117.0(5)117.5(3)0, градO(2)C(1)O(2)117.18(17)117.0(5)117.5(3)0, градO(2)C(1)C(2)119.4(18)118.7(5)119.6(6)120.6(3)C(1)C(2)C(3)112.6(3)122.3(6)120.4(4)122.3(6)120.4(4)121.6(3)122.3(6)120.4(4)121.6(3)	Фенила	цетат-анионы (тип коорд	цинации В11)						
С(1)-O(2) 1.244(2) 1.238(7) 1.249(4) C(1)-O(3) 1.282(2) 1.294(7) 1.281(4) C(1)-C(2) 1.493(3) 1.492(8) 1.508(5) C(2)-C(3) 1.498(3) 1.499(8) 1.505(5) C(3)-C(4) 1.365(4) 1.338(9) 1.373(5) C(4)-C(5) 1.379(6) 1.383(1) 1.371(7) C(5)-C(6) 1.343(7) 1.361(13) 1.371(7) C(5)-C(8) 1.385(4) 1.392(9) 1.384(6) C(3)-C(8) 1.376(3) 1.370(12) 1.393(7) O(2)C(1)O(3) 117.18(17) 117.0(5) 117.5(3) O(2)C(1)O(2) 123.27(19) 124.2(6) 122.6(3) O(2)C(1)O(2) 119.47(18) 118.7(5) 119.6(3) C(1)C(2)(3) 119.47(18) 118.7(5) 119.6(3) C(1)C(2)(3) 115.57(19) 114.5(5) 115.2(3) C(2)C(3)C(4) 120.1(3) 119.4(6) 120.2(4) C(2)C(3)C(4) 121.3(4) 118.7(8) 120.2(3) C(2)C(3	Связь		<i>d</i> , Å						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C(1)–O(2)	1.244(2)	1.238(7)	1.249(4)					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C(1)–O(3)	1.282(2)	1.294(7)	1.281(4)					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C(1)-C(2)	1.493(3)	1.492(8)	1.508(5)					
C(3)-C(4) 1.365(4) 1.383(9) 1.373(5) C(4)-C(5) 1.379(6) 1.383(1) 1.371(7) C(5)-C(6) 1.343(7) 1.361(13) 1.371(7) C(6)-C(7) 1.356(6) 1.370(12) 1.393(7) C(7)-C(8) 1.385(4) 1.392(9) 1.384(6) C(3)-C(8) 1.376(3) 1.370(9) 1.384(6) C(2)C(1)O(3) 117.18(17) 117.0(5) 117.5(3) O(2)C(1)C(2) 123.27(19) 124.2(6) 122.6(3) O(2)C(1)C(2) 115.57(19) 114.5(5) 115.2(3) C(2)C(3)C(4) 120.1(3) 119.6(6) 120.6(4) C(2)C(3)C(4) 120.1(3) 119.6(6) 120.2(4) C(2)C(3)C(4) 121.4(4) 118.7(8) 120.3(5) C(5)C(6)C(7) 121.3(4) 118.7(8) 120.3(5) C(5)C(6)C(7) 120.4(4) 121.8(7) 119.9(4) C(3)C(2)C(2),Å 3.146(3) 3.129(9) 3.151(5) d[C(2)-O(2)],Å 3.146(3) 3.129(9) 3.151(5)	C(2)-C(3)	1.498(3)	1.499(8)	1.505(5)					
C(4)-C(5)1.379(6)1.383(11)1.371(7)C(5)-C(6)1.343(7)1.361(13)1.371(7)C(6)-C(7)1.356(6)1.370(12)1.393(7)C(7)-C(8)1.385(4)1.392(9)1.384(6)C(3)-C(8)1.376(3)1.370(9)1.394(5)Vron0, rpanO(2)C(1)O(3)117.18(17)117.0(5)117.5(3)O(2)C(1)C(2)123.27(19)124.2(6)122.6(3)O(3)C(1)C(2)119.47(18)118.7(5)119.6(3)C(2)C(3)C(4)115.57(19)114.5(5)115.2(3)C(2)C(3)C(4)120.1(3)119.6(6)120.6(4)C(2)C(3)C(4)120.1(3)119.6(6)120.6(4)C(2)C(3)C(8)121.6(3)122.3(6)120.2(4)C(3)C(4)C(5)120.4(4)121.5(8)121.0(4)C(4)C(5)C(6)121.3(4)118.7(8)120.3(5)C(5)C(6)C(7)119.2(4)121.8(7)119.9(4)C(5)C(6)C(7)119.2(4)121.8(7)119.9(4)C(3)C(8)C(7)120.6(4)118.4(7)119.9(4)C(3)C(8)C(7)120.3(1)3.146(3)3.129(9)3.151(5)d[C(2)O(2)], Å3.146(3)3.129(9)3.151(5)d[C(2)O(2)], Å0.970.990.99d[H(2)O(2)], Å2.322.282.32Q1H(2)O(2)], Å3.152(4)3.127(8)3.125(5)d[C(6)O(1)], Å3.152(4)3.127(8)3.125(5)d[C(6)O(1)], Å0.930.950.95d[C(6)O(1)], Å2	C(3) - C(4)	1.365(4)	1.383(9)	1.373(5)					
C(5)-C(6)1.343(7)1.361(13)1.371(7)C(6)-C(7)1.356(6)1.370(12)1.393(7)C(7)-C(8)1.385(4)1.392(9)1.384(6)C(3)-C(8)1.376(3)1.370(9)1.394(5)Угол0, градO(2)C(1)O(3)117.18(17)117.0(5)117.5(3)O(2)C(1)C(2)123.27(19)124.2(6)122.6(3)O(3)C(1)C(2)119.47(18)118.7(5)119.6(3)C(1)C(2)C(3)115.57(19)114.5(5)115.2(3)C(2)C(3)C(4)120.1(3)119.6(6)120.6(4)C(2)C(3)C(8)121.6(3)122.3(6)120.2(4)C(3)C(4)C(5)120.4(4)121.5(8)121.0(4)C(4)C(5)C(6)121.3(4)118.7(8)120.3(5)C(5)C(6)C(7)119.2(4)121.8(7)119.9(4)C(3)C(4)C(5)120.6(4)121.8(7)119.9(4)C(3)C(4)C(7)120.6(4)118.4(7)119.6(4)C(3)C(8)C(7)120.2(3)121.5(6)120.0(4)Параметры водородных связейПараметры водородных связейСвязь C(2)-H(2)··O(2) [контакту H(2)··O(2) отвечает грань ПВД с РГ = 5) ^a d[C(2)···Q(2)], Å2.322.282.32Q[H(2)···O(2)], Å3.122(9)3.151(5)d[C(2)···Q(2)], Å3.146(3)3.129(9)3.151(5)d[C(2)···Q(2)], Å2.322.282.32Q[H(2)···O(2)], Å3.152(4)3.127(8)3.125(5)d[C(6)···Q(1)], Å3.152(4)3.127(8)3.125(5) <td>C(4) - C(5)</td> <td>1.379(6)</td> <td>1.383(11)</td> <td>1.371(7)</td>	C(4) - C(5)	1.379(6)	1.383(11)	1.371(7)					
C(6)-C(7) 1.356(6) 1.370(12) 1.393(7) C(7)-C(8) 1.385(4) 1.392(9) 1.384(6) C(3)-C(8) 1.376(3) 1.370(9) 1.394(5) Vron 0, rpad 0 0 17.18(17) 117.0(5) 117.5(3) O(2)C(1)O(3) 117.18(17) 117.0(5) 117.5(3) 0(3)C(1)C(2) 119.47(18) 118.7(5) 119.6(3) C(1)C(2)C(3) 115.57(19) 114.5(5) 115.2(3) C(2)C(3)C(4) 120.1(3) 119.6(6) 120.6(4) C(2)C(3)C(8) 121.6(3) 122.3(6) 120.2(4) C(3)C(4)C(5) 120.4(4) 121.5(8) 121.0(4) C(4)C(5)C(6) 121.3(4) 118.7(8) 120.3(5) C(5)C(6)C(7) 119.2(4) 121.8(7) 119.9(4) C(3)C(8)C(7) 120.2(3) 121.5(6) 120.0(4) 120.2(3) 121.5(6) 120.0(4) C(3)C(8)C(7) 120.2(3) 121.5(6) 120.0(4) 120.2(3) 121.5(6) 120.0(4) C(3)C(8)C(7) 120.2(3) 121.5(6) 120.0(4) 1	C(5)-C(6)	1.343(7)	1.361(13)	1.371(7)					
C(7)-C(8)1.385(4)1.392(9)1.384(6)C(3)-C(8)Угол $\omega, град$ Viron $\omega, град$ O(2)C(1)O(3)117.18(17)117.0(5)117.5(3)O(2)C(1)C(2)123.27(19)124.2(6)122.6(3)O(3)C(1)C(2)119.47(18)118.7(5)119.6(3)C(1)C(2)C(3)115.57(19)114.5(5)115.2(3)C(2)C(3)C(4)120.1(3)119.6(6)120.2(4)C(2)C(3)C(8)121.6(3)122.3(6)120.2(4)C(3)C(4)C(5)120.4(4)121.5(8)121.0(4)C(4)C(5)C(6)121.3(4)118.7(8)120.3(5)C(5)C(6)C(7)119.2(4)121.8(7)119.9(4)C(6)C(7)C(8)120.6(4)121.8(7)119.9(4)C(3)C(8)C(7)120.2(3)121.5(6)120.0(4)Параметры водородных связейСвязь C(2)-H(2)···O(2) (контакту H(2)···O(2) отвечает грань ПВД с PГ = 5) ^a (C1C(2)···Q(2)], ÅQ(1)(2)···Q(2)], Å3.146(3)3.129(9)3.151(5)Q(2)···Q(2)], Å2.322.282.32Q[H(2)···O(2)], Å3.146(3)3.129(9)3.151(5)Viron C(2)-H(2)···O(2), град143143141Cвязь C(6)-H(5)···O(1) (контакту H(5)···O(1) отвечает грань ПВД с PГ = 0) ^a 3.125(5)d[C(6)···(1)], Å3.152(4)3.127(8)3.125(5)d[C(6)···(1)], Å3.152(4)3.127(8)3.125(5)d[C(6)···(1)], Å3.0930.950.95d[C(6)···(1)], Å2.832.782.79 <td>C(6)-C(7)</td> <td>1.356(6)</td> <td>1.370(12)</td> <td>1.393(7)</td>	C(6)-C(7)	1.356(6)	1.370(12)	1.393(7)					
C(3)-C(8)1.376(3)1.370(9)1.394(5) $V_{\Gamma O \pi}$ 0, rpa,O(2)C(1)O(3)117.18(17)117.0(5)117.5(3)O(2)C(1)C(2)123.27(19)124.2(6)122.6(3)O(3)C(1)C(2)119.47(18)118.7(5)119.6(3)C(1)C(2)C(3)115.57(19)114.5(5)115.2(3)C(2)C(3)C(4)120.1(3)119.6(6)120.6(4)C(2)C(3)C(4)120.1(3)119.6(6)120.2(4)C(3)C(4)C(5)120.4(4)121.5(8)121.0(4)C(4)C(5)C(6)121.3(4)118.7(8)120.3(5)C(5)C(6)C(7)119.2(4)121.8(7)119.9(4)C(6)C(7)C(8)120.6(4)118.4(7)119.6(4)C(3)C(8)C(7)120.6(4)118.4(7)119.6(4)C(3)C(8)C(7)120.2(3)3.125(6)120.0(4)Параметры водородных связейСвязь C(2)-H(2)···O(2) контакту H(2)···O(2) отвечает грань ПВД с PГ = 5) ^a d[C(2)···Q(2)], Å0.970.990.99d[H(2)···O(2)], Å2.322.282.32Q[H(2)···O(2)], Å17.817.917.5Yron C(2)-H(2)···O(2), rpaд143143141Cвязь C(6)-H(5)···O(1) [контакту H(5)···O(1) отвечает грань ПВД с PГ = 0) ^a d[C(6)···H(5)], Å0.93d[C(6)···H(5)], Å0.930.950.95d[C(6)····(1)], Å2.832.782.79	C(7) - C(8)	1.385(4)	1.392(9)	1.384(6)					
Угол $0, град$ O(2)C(1)O(3)117.18(17)117.0(5)117.5(3)O(2)C(1)C(2)123.27(19)124.2(6)122.6(3)O(3)C(1)C(2)119.47(18)118.7(5)119.6(3)C(1)C(2)C(3)115.57(19)114.5(5)115.2(3)C(2)C(3)C(4)120.1(3)119.6(6)120.6(4)C(2)C(3)C(8)121.6(3)122.3(6)120.2(4)C(3)C(4)C(5)120.4(4)121.5(8)121.0(4)C(4)C(5)C(6)121.3(4)118.7(8)120.3(5)C(5)C(6)C(7)119.2(4)121.8(7)119.9(4)C(6)C(7)C(8)120.6(4)118.4(7)119.6(4)C(3)C(8)C(7)120.2(3)121.5(6)120.0(4)Параметры водородных связейСвязь C(2)-H(2)···O(2) [контакту H(2)···O(2) отвечает грань ПВД с PГ = 5) ^a d[C(2)···O(2)], Å0.970.990.99d[H(2)···O(2)], Å2.322.282.32Q[H(2)···O(2)], Å2.322.282.32Q[H(2)···O(2)], % ⁶ 17.817.917.5Угол C(2)-H(2)···O(2), град143141Cвязь C(6)-H(5)···O(1) [контакту H(5)···O(1) отвечает грань ПВД с PГ = 0) ^a d[C(6)···O(1)], Å0.930.950.95d[C(6)···I(5)], Å0.930.950.95d[C(6)···I(5)], Å0.930.950.95d[C(6)···O(1)], Å2.832.782.79	C(3) - C(8)	1.376(3)	1.370(9)	1.394(5)					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Угол		ω, град						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	O(2)C(1)O(3)	117.18(17)	117.0(5)	117.5(3)					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	O(2)C(1)C(2)	123.27(19)	124.2(6)	122.6(3)					
C(1)C(2)C(3) 115.57(19) 114.5(5) 115.2(3) C(2)C(3)C(4) 120.1(3) 119.6(6) 120.6(4) C(2)C(3)C(8) 121.6(3) 122.3(6) 120.2(4) C(3)C(4)C(5) 120.4(4) 121.5(8) 121.0(4) C(4)C(5)C(6) 121.3(4) 118.7(8) 120.3(5) C(5)C(6)C(7) 119.2(4) 121.8(7) 119.9(4) C(3)C(8)C(7) 120.4(4) 121.5(6) 120.0(4) C(3)C(8)C(7) 120.2(3) 121.5(6) 120.0(4) C(3)C(2)O(2)], Å 3.146(3) 3.129(9) 3.151(5) d[C(2)O(2)], Å 0.97 0.99 0.99 <tr< td=""><td>O(3)C(1)C(2)</td><td>119.47(18)</td><td>118.7(5)</td><td>119.6(3)</td></tr<>	O(3)C(1)C(2)	119.47(18)	118.7(5)	119.6(3)					
C(2)C(3)C(4)120.1(3)119.6(6)120.6(4)C(2)C(3)C(8)121.6(3)122.3(6)120.2(4)C(3)C(4)C(5)120.4(4)121.5(8)121.0(4)C(4)C(5)C(6)121.3(4)118.7(8)120.3(5)C(5)C(6)C(7)119.2(4)121.8(7)119.9(4)C(6)C(7)C(8)120.6(4)118.4(7)119.6(4)C(3)C(8)C(7)120.2(3)121.5(6)120.0(4)Параметры водородных связейСвязь C(2)-H(2)···O(2) [контакту H(2)···O(2) отвечает грань ПВД с РГ = 5) ^a d[C(2)···O(2)], Å3.146(3)3.129(9)3.151(5)d[C(2)···O(2)], Å2.322.282.32Ω[H(2)···O(2)], Å17.817.917.5Угол C(2)-H(2)···O(2), град143143141Cвязь C(6)-H(5)···O(1) [контакту H(5)···O(1) отвечает грань ПВД с РГ = 0) ^a d[C(6)···O(1)], Å3.152(4)3.127(8)3.125(5)d[C(6)···O(1)], Å2.832.782.79	C(1)C(2)C(3)	115.57(19)	114.5(5)	115.2(3)					
C(2)C(3)C(8) 121.6(3) 122.3(6) 120.2(4) C(3)C(4)C(5) 120.4(4) 121.5(8) 121.0(4) C(4)C(5)C(6) 121.3(4) 118.7(8) 120.3(5) C(5)C(6)C(7) 119.2(4) 121.8(7) 119.9(4) C(6)C(7)C(8) 120.6(4) 118.4(7) 119.6(4) C(3)C(8)C(7) 120.2(3) 121.5(6) 120.0(4) Параметры водородных связей Связь C(2)-H(2)···O(2) [контакту H(2)···O(2) отвечает грань ПВД с PГ = 5) ^a d[C(2)···O(2)], Å 3.146(3) 3.129(9) 3.151(5) d[C(2)···O(2)], Å 0.97 0.99 0.99 d[H(2)···O(2)], Å 2.32 2.28 2.32 Q[H(2)···O(2)], Å 143 141 141 Cвязь C(6)-H(5)···O(1) [контакту H(5)···O(1) отвечает грань ПВД с PГ = 0) ^a d[C(6)···O(1)], Å 3.152(4) 3.127(8) 3.125(5) d[C(6)···H(5)], Å 0.93 0.95 0.95 d[C(6)···H(5)], Å 2.83 2.78 2.79	C(2)C(3)C(4)	120.1(3)	119.6(6)	120.6(4)					
C(3)C(4)C(5) 120.4(4) 121.5(8) 121.0(4) C(4)C(5)C(6) 121.3(4) 118.7(8) 120.3(5) C(5)C(6)C(7) 119.2(4) 121.8(7) 119.9(4) C(6)C(7)C(8) 120.6(4) 118.4(7) 119.6(4) C(3)C(8)C(7) 120.2(3) 121.5(6) 120.0(4) Параметры водородных связей Связь C(2)-H(2)···O(2) [контакту H(2)···O(2) отвечает грань ПВД с PГ = 5) ^a d[C(2)···O(2)], Å 3.146(3) 3.129(9) 3.151(5) d[C(2)···O(2)], Å 0.97 0.99 0.99 d[H(2)···O(2)], Å 2.32 2.28 2.32 Ω[H(2)···O(2)], % ⁶ 17.8 17.9 17.5 Угол C(2)-H(2)···O(2), град 143 143 141 Связь C(6)-H(5)···O(1) [контакту H(5)···O(1) отвечает грань ПВД с PГ = 0) ^a d[C(6)···O(1)], Å 3.152(4) 3.127(8) 3.125(5) d[C(6)····H(5)], Å 0.93 0.95 0.95 d[H(5)···O(1)], Å 2.83 2.78 2.79	C(2)C(3)C(8)	121.6(3)	122.3(6)	120.2(4)					
C(4)C(5)C(6)121.3(4)118.7(8)120.3(5)C(5)C(6)C(7)119.2(4)121.8(7)119.9(4)C(6)C(7)C(8)120.6(4)118.4(7)119.6(4)C(3)C(8)C(7)120.2(3)121.5(6)120.0(4)Параметры водородных связейСвязь C(2)-H(2)···O(2) [контакту H(2)···O(2) отвечает грань ПВД с РГ = 5) ^a $d[C(2)···O(2)], Å$ 3.146(3)3.129(9)3.151(5) $d[C(2)···H(2)], Å$ 0.970.990.99 $d[H(2)···O(2)], Å$ 2.322.282.32 $\Omega[H(2)···O(2)], \%^{5}$ 17.817.917.5Угол C(2)-H(2)···O(2), град143143141Связь C(6)-H(5)···O(1) [контакту H(5)···O(1) отвечает грань ПВД с РГ = 0) ^a $d[C(6)···O(1)], Å$ 3.152(4)3.127(8)3.125(5) $d[C(6)···O(1)], Å$ 0.930.950.95 $d[H(5)···O(1)], Å_{5}$ 2.832.782.79	C(3)C(4)C(5)	120.4(4)	121.5(8)	121.0(4)					
C(5)C(6)C(7)119.2(4)121.8(7)119.9(4)C(6)C(7)C(8)120.6(4)118.4(7)119.6(4)C(3)C(8)C(7)120.2(3)121.5(6)120.0(4)Параметры водородных связейСвязь C(2)-H(2)···O(2) [контакту H(2)···O(2) отвечает грань ПВД с PГ = 5) ^a $d[C(2)···O(2)], Å$ 3.146(3)3.129(9)3.151(5) $d[C(2)···H(2)], Å$ 0.970.990.99 $d[H(2)···O(2)], Å$ 2.322.282.32 $\Omega[H(2)···O(2)], \%^6$ 17.817.917.5Угол C(2)-H(2)···O(2), град143143141Связь C(6)-H(5)···O(1) [контакту H(5)···O(1) отвечает грань ПВД с PГ = 0) ^a $d[C(6)···O(1)], Å$ 3.152(4)3.127(8)3.125(5) $d[C(6)···O(1)], Å$ 0.930.950.950.95 $d[H(5)···O(1)], Å_{5}$ 2.832.782.79	C(4)C(5)C(6)	121.3(4)	118.7(8)	120.3(5)					
C(6)C(7)C(8)120.6(4)118.4(7)119.6(4)C(3)C(8)C(7)120.2(3)121.5(6)120.0(4)Параметры водородных связейСвязь C(2)-H(2)···O(2) [контакту H(2)···O(2) отвечает грань ПВД с PГ = 5) ^a $d[C(2)···O(2)], Å$ 3.146(3)3.129(9)3.151(5) $d[C(2)···H(2)], Å$ 0.970.990.99 $d[H(2)···O(2)], Å$ 2.322.282.32 $\Omega[H(2)···O(2)], \%^{6}$ 17.817.917.5Угол C(2)-H(2)···O(2), град143143141Связь C(6)-H(5)···O(1) [контакту H(5)···O(1) отвечает грань ПВД с PГ = 0) ^a $d[C(6)···O(1)], Å$ 3.152(4)3.127(8)3.125(5) $d[C(6)···H(5)], Å$ 0.930.950.950.95 $d[H(5)···O(1)], Å_{5}$ 2.832.782.79	C(5)C(6)C(7)	119.2(4)	121.8(7)	119.9(4)					
C(3)C(8)C(7)120.2(3)121.5(6)120.0(4)Параметры водородных связейСвязь C(2)-H(2)···O(2) [контакту H(2)···O(2) отвечает грань ПВД с $P\Gamma = 5$) ^a $d[C(2)···O(2)], Å$ $3.146(3)$ $3.129(9)$ $3.151(5)$ $d[C(2)···H(2)], Å$ 0.97 0.99 0.99 $d[H(2)···O(2)], Å$ 2.32 2.28 2.32 $\Omega[H(2)···O(2)], \%^6$ 17.8 17.9 17.5 $V \text{гол } C(2)$ -H(2)···O(2), град 143 143 141 Связь C(6)-H(5)···O(1) [контакту H(5)···O(1) отвечает грань ПВД с $P\Gamma = 0$) ^a $d[C(6)···O(1)], Å$ $3.152(4)$ $3.127(8)$ $3.125(5)$ $d[C(6)···O(1)], Å$ 0.93 0.95 0.95 $d[H(5)···O(1)], Å$ 2.83 2.78 2.79	C(6)C(7)C(8)	120.6(4)	118.4(7)	119.6(4)					
Параметры водородных связейСвязь C(2)–H(2)···O(2) [контакту H(2)···O(2) отвечает грань ПВД с РГ = 5) ^a $d[C(2)···O(2)], Å$ $3.146(3)$ $3.129(9)$ $3.151(5)$ $d[C(2)···H(2)], Å$ 0.97 0.99 0.99 $d[H(2)···O(2)], Å$ 2.32 2.28 2.32 $\Omega[H(2)···O(2)], \%^6$ 17.8 17.9 17.5 Угол C(2)–H(2)···O(2), град 143 143 141 Связь C(6)–H(5)···O(1) [контакту H(5)···O(1) отвечает грань ПВД с РГ = 0) ^a $d[C(6)···O(1)], Å$ $3.152(4)$ $3.127(8)$ $3.125(5)$ $d[C(6)···H(5)], Å$ 0.93 0.95 0.95 $d[H(5)···O(1)], Å_{5}$ 2.83 2.78 2.79	C(3)C(8)C(7)	120.2(3)	121.5(6)	120.0(4)					
CEBR36 C(2)-H(2)···O(2) [KOHTAKTY H(2)···O(2) OTBEGAT FPARE IIBJ(c PI = 5) $d[C(2)···O(2)], Å$ $3.146(3)$ $3.129(9)$ $3.151(5)$ $d[C(2)···H(2)], Å$ 0.97 0.99 0.99 $d[H(2)···O(2)], Å$ 2.32 2.28 2.32 $\Omega[H(2)···O(2)], \%^6$ 17.8 17.9 17.5 Y гол C(2)-H(2)···O(2), град 143 143 141 Связь C(6)-H(5)···O(1) [Контакту H(5)···O(1) отвечает грань ПВД с PГ = 0) ^a $d[C(6)···O(1)], Å$ $3.152(4)$ $3.127(8)$ $3.125(5)$ $d[C(6)···O(1)], Å$ 0.93 0.95 0.95 $d[H(5)···O(1)], Å$ 2.83 2.78 2.79		араметры водородных с	вязеи	()a					
$a[C(2)O(2)], A$ $5.140(3)$ $5.129(9)$ $5.131(5)$ $d[C(2)O(2)], Å$ 0.97 0.99 0.99 $d[H(2)O(2)], Å$ 2.32 2.28 2.32 $\Omega[H(2)O(2)], \%^6$ 17.8 17.9 17.5 $Yron C(2)-H(2)O(2), rpad$ 143 143 141 Связь C(6)-H(5)O(1) [контакту H(5)O(1) отвечает грань ПВД с PГ = 0) ^a $d[C(6)O(1)], Å$ $3.152(4)$ $3.127(8)$ $3.125(5)$ $d[C(6)H(5)], Å$ 0.93 0.95 0.95 $d[H(5)O(1)], Å_{-5}$ 2.83 2.78 2.79	$\frac{\text{CB335 C(2)-H(2)O(2)}}{\text{dLC(2)O(2)}}$	$\frac{146(2)}{2}$	2 120(0)	= 3) 2.151(5)					
$a[C(2)\cdots H(2)], A$ 0.97 0.99 0.99 $d[H(2)\cdots O(2)], Å$ 2.32 2.28 2.32 $\Omega[H(2)\cdots O(2)], \%^6$ 17.8 17.9 17.5 $Yron C(2)-H(2)\cdots O(2), rpad$ 143 143 141 Связь C(6)-H(5)\cdots O(1) [контакту H(5)\cdots O(1) отвечает грань ПВД с PГ = 0) ^a $d[C(6)\cdots O(1)], Å$ $3.152(4)$ $3.127(8)$ $3.125(5)$ $d[C(6)\cdots H(5)], Å$ 0.93 0.95 0.95 $d[H(5)\cdots O(1)], Å_{5}$ 2.83 2.78 2.79	$a[C(2) \cdots O(2)], A$	5.140(5)	5.129(9)	3.151(5)					
$a[\Pi(2)^{}O(2)], A$ 2.52 2.26 2.52 $\Omega[H(2)^{}O(2)], \%^6$ 17.8 17.9 17.5 $\forall ron C(2)-H(2)^{}O(2), rpag$ 143 143 141 Связь C(6)-H(5)^{}O(1) [контакту H(5)^{}O(1) отвечает грань ПВД с PГ = 0) ^a $d[C(6)^{}O(1)], Å$ $d[C(6)^{}H(5)], Å$ 0.93 0.95 0.95 $d[H(5)^{}O(1)], Å$ 2.83 2.78 2.79	a[C(2) G(2)], A	0.97	0.99	0.99					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$a[\Pi(2)O(2)], A$ $O[H(2)O(2)], 9/^{6}$	2.32	2.28	2.52					
Утоп C(2)=H(2)::O(2), град143143141Связь C(6)-H(5)::O(1) [контакту H(5)::O(1) отвечает грань ПВД с PГ = 0) ^a $d[C(6)::O(1)], Å$ $3.152(4)$ $3.127(8)$ $3.125(5)$ $d[C(6)::H(5)], Å$ 0.930.950.95 $d[H(5)::O(1)], Å$ 2.832.782.79	$\Sigma_{2}[\Pi(2)^{(1)}O(2)], 70$	17.0	1/.9	17.5					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{y_10_1 C(2) - \Pi(2)^{++}O(2), 1pad}{C_{PB21} C(6) - H(5) \cdots O(1)}$	143 [KOUTSKTV H(5)(1) OTI		$= 0)^{a}$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	d[C(6)O(1)] Å	$\frac{152}{3}$	з 127(8)	3 125(5)					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$d[C(6) \cdots H(5)]$, A	0.03	0.95	0.95					
<i>u</i> [1(5) O(1)], <i>A</i> 2.05 2.76 2.77	d[H(5)O(1)] Å	2.83	2.78	2 79					
O[H(5)O(1)] % 12.2 12.8 12.6	$\Omega[H(5)O(1)], N$	12.05	12.78	12.6					
$V_{\Gamma 0 I} C(6) - H(5) \cdots O(1)$ rpa I 102 102 102	$V_{\Gamma \cap \Pi} C(6) - H(5) \cdots O(1)$ град	102	102	102					
Связь С(7)–H(6)···O(2) [контакту H(6)···O(2) отвечает грань ПВЛ с $P\Gamma = 0$) ^a	Связь С(7)-Н(6)…О(2)	 [контакту Н(б)…О(2) отя	ечает грань ПВЛ с РГ	$= 0)^{a}$					
$\frac{d[C(7)\cdots O(2)]}{4} = \frac{3}{3} \frac{656(4)}{3} \frac{3}{558(9)} = \frac{3}{3} \frac{552}{53} \frac{552}{53$	$d[C(7)\cdots O(2)]$ Å	3 656(4)	3 558(9)	3 552 (5)					
$d[C(7)\cdots H(6)]$ Å 0.93 0.95 0.95	$d[C(7)\cdots H(6)]$ Å	0.93	0.95	0.95					
$d[H(6)\cdots O(2)]$ Å 273 261 261	d[H(6)O(2)] Å	2.73	2.61	2.61					
$O[H(6)\cdots O(2)] \%^{6}$ 12.3 13.3 13.5	$O[H(6)\cdots O(2)] \%^{6}$	12.3	13 3	13 5					
Угол С(7)–Н(6)···O(2), град 174 174 174	Угол С(7)–Н(6)…О(2), град	174	174	174					

^a PГ – ранг грани, указывает минимальное число химических связей, соединяющих атомы, ПВД которых имеют общую грань. Для межмолекулярных взаимодействий РГ = 0, а для внутримолекулярных РГ > 1.
 ⁶ Ω – телесный угол (выражен в процентах от 4π стерадиан), под которым общая грань полиэдров Вороного–Дирихле соседних атомов видна из ядра любого из них.

Кембриджском банке структурных данных, ССDС 1831774, 1831772 и 1831773 для **I**, **II** и **III** соответственно.

Спектры поглощения кристаллических комплексов измеряли при комнатной температуре на спектрометрах IR Prestige21 и Shimadzu 3100 в диапазонах 4000–400 см⁻¹ (разрешение 2 см⁻¹, число сканирований 60) и 400–1300 нм (разрешение 1 нм, ширина щели 1 нм) соответственно. Образцы для измерений готовили по обычной методике прессованием тонкодисперсной смеси соединения с плавленым NaCl. Содержание исследуемого вещества в матрице составляло около 1% для ИК спектров и 2–10% для электронных спектров в зависимости от коэффициента экстинкции соответствующего актинил-иона.

Результаты и обсуждение

Полученные рентгенографические данные свидетельствуют об изоструктурности соединений I-III, кристаллизующихся в пространственной группе C2/c. Атомы актинида (An = U, Np или Pu) занимают частные позиции с симметрией С_i и проявляют КЧ 8. Координационными полиэдрами An являются гексагональные бипирамиды, на главной оси которых находятся атомы кислорода актинильных групп AnO₂²⁺. В экваториальной плоскости бипирамид AnO₈ находятся шесть атомов О четырех фенилацетат-ионов. Каждый анион реализует тип координации B¹¹, поскольку одновременно связан с двумя атомами U, причем с одним монодентатно, а с другим - бидентатно с образованием четырехчленного цикла (рис. 1). Расстояния An=O находятся в диапазоне 1.73–1.75 Å, а длины связей Ап–О в экваториальной плоскости лежат в области 2.42-2.53 Å (табл. 2). Основной структурной единицей кристаллов I-III являются электронейтральные 1D цепочки [AnO₂(phac)₂], которым отвечает КХФ AB_2^{11} (A = AnO₂²⁺, B¹¹ = phac⁻).

В цепочках $[AnO_2(phac)_2]$ (рис. 2, *a*), которые распространяются вдоль направления [001], кратчайшие расстояния An–An равны *c*/2 и составляют ≈4.24 (I), 4.21 (II) и 4.20 Å (III). Отметим, что в цепочках упомянутой выше структуры [UO₂· (box)₂] (IV) [2, 3] с КХФ AB²₂ (рис. 2, *б*) кратчайшее расстояние U–U в цепочке значительно больше и равно 5.30 Å (совпадает с трансляцией *c*). Различие более чем на 1 Å минимального *d*(An–An) в стехиометрически однотипных линейных цепочках [AnO₂(L)₂] является следствием изменения типа координации бидентатного карбоксилатного лиганда L от B² (бензоат-ион) к B¹¹ (фенилацетат-ион), что приводит к росту КЧ урана от 6 до 8. Заметим,

Рис. 1. Строение группы [UO₂(C₆H₃CH₂COO)₂] в структуре I (эллипсоиды 50%-ной вероятности).

Рис. 2. Фрагмент уранилкарбоксилатной цепочки в структуре кристаллов. $a - [UO_2(C_6H_5CH_2COO)_2]$ **(I)**, $\delta - [UO_2(C_6H_5COO)_2]$ **(IV**). *Слева* показан координационный полиэдр атома U. Для упрощения атомы H опущены.

что, несмотря на разные КЧ атомов U, объем полиэдров Вороного–Дирихле (V_{vdp}) в кристаллах I (9.43 Å³) и IV (9.10 Å³ [2] или 9.31 Å³ [3]) в пределах погрешности совпадает со средней величиной V_{vdp} атомов U(VI) в полиэдрах UO_n [9.3(4) Å³] при *n* от 5 до 9 [19].

Наличие метиленового мостика –СH₂– в фенилацетате позволяет бензольному циклу легко изменять пространственную ориентацию за счет вращения вокруг одинарной связи С–С. Если в бензоатионах диэдрический угол между плоскостью, проходящей через атомы С и О карбоксильной группы, и плоскостью бензольного цикла из-за сопряжения π -связей обычно близок к 0 (в структуре **IV** он составляет ≈13° [3], а в [UO₂(box)₂(Dmso)₂] [10] – ≈5°), то в структуре **I** такой угол равен ≈66°. Кро-

Vourour		Ι				II				III	[IV [2]	
A/Z	<i>k</i> _{AZ}	<i>d</i> , Å	S _{AZ} , Å ²	Δ _{AZ} , %	<i>k</i> _{AZ}	<i>d</i> , Å	$\begin{array}{c} S_{\mathrm{AZ}},\\ \mathrm{\AA}^2 \end{array}$	$\Delta_{\text{AZ}},$ %	$k_{\rm AZ}$	<i>d</i> , Å	$\begin{array}{c} S_{\mathrm{AZ}},\\ \mathrm{\AA}^2 \end{array}$	$\Delta_{\text{AZ}},$ %	<i>k</i> _{AZ}	<i>d</i> , Å	$\begin{array}{c} S_{\mathrm{AZ}},\\ \mathrm{\AA}^2 \end{array}$	$\Delta_{\text{AZ}},$
O/O	-	-	—	—	-	-	_	_	-	-	—	_	2	4.37	3.3	1.3
C/O	16	3.15-3.92	7.6	2.3	16	3.13-3.88	7.1	2.1	16	3.13-3.91	7.3	2.2	16	3.77-3.82	7.7	3.0
H/O	52	2.73-5.92	95.5	28.8	52	2.61-5.86	95.1	28.9	52	2.61-5.87	94.3	28.6	72	3.02-4.20	124.6	48.4
C/C	2	3.66	< 0.1	< 0.1	2	3.54	0.4	0.1	2	3.56	0.3	0.1	76	3.56-4.09	41.6	16.1
H/C	90	2.95-4.26	69.9	21.1	94	2.83-4.67	73.5	22.3	90	2.84-4.16	73.8	22.4	56	3.25-4.02	19.2	7.5
H/H	80	2.64-5.51	158.2	47.8	78	2.53-5.69	153.2	46.5	78	2.56-5.69	154.2	46.7	22	2.45-3.81	61.1	23.7
Сумма	240	2.64-5.92	331.3	100.0	242	2.53-5.86	329.2	100.0	238	2.56-5.87	329.9	100.0	244	2.45-4.37	257.5	100.0

Таблица 3. Основные параметры межмолекулярных взаимодействий в структурах I-IV^a

^а k_{AZ} – общее число всех граней A/Z с рангом, равным 0 у молекулярного ПВД, в расчете на одну формульную единицу [AnO₂(L)₂], d – диапазон соответствующих межатомных расстояний A–Z, S_{AZ} – общая площадь всех граней указанного типа у ПВД атомов, содержащихся в одной формульной единице вещества, Δ_{AZ} – парциальный вклад (в процентах) соответствующих невалентных контактов A/Z в величину интегрального параметра ${}^{0}S = \sum S_{AZ}$ (указан в последней строке) молекулярного ПВД.

ме того, если в цепочках $[UO_2(box)_2]$ бензольные циклы всех бензоат-ионов взаимно параллельны, то в цепочках $[AnO_2(phac)_2]$ в результате поворота вокруг связи С–С бензольные циклы соседних фенилацетат-ионов практически взаимно перпендикулярны (в стукрурах I–III такие углы равны соответственно ≈81, 83 и 82°, рис. 2). Разная взаимная ориентация соседних бензольных циклов в структурах I–III и IV отражается на особенностях невалентных взаимодействий, реализующихся в структурах их кристаллов, для анализа которых был использован метод молекулярных полиэдров Вороного–Дирихле (ПВД) [20, 21].

Согласно полученным данным, в структурах кристаллов I-III реализуется только 5 из 10 теоретически возможных типов межмолекулярных контактов (табл. 3). Основной вклад в связывание цепочек [AnO₂(phac)₂] вносят дисперсионные взаимодействия Н/Н, на которые приходится ≈46–48% общей площади граней молекулярного ПВД (⁰S), отвечающих межмолекулярным взаимодействиям. Второй по значимости вклад вносят водородные связи С-Н…О (контакты Н/О в табл. 3, детальные характеристики некоторых из них указаны в табл. 2), которым отвечает парциальный вклад $\Delta_{\rm HO} \approx 29\%$. Одновременно значительную роль (≈21–22%) играют и С-Н.... взаимодействия, которым в табл. 3 отвечают контакты Н/С. Вклад в связывание ураниланионных цепочек двух оставшихся типов межмолекулярных контактов – С/О и С/С соответственно с $\Delta \approx 2$ и 0.1% – близок к нулю.

По сравнению с I–III в кристаллах IV реализуется один дополнительный тип дисперсионных взаимодействий (контакты O/O с $\Delta \approx 1\%$, табл. 3). Основной же вклад в связывание цепочек [UO₂ (box)₂] вносят водородные связи С–H···O, для которых $\Delta_{\rm HO} \approx 48\%$, тогда как вклад дисперсионных взаимодействий H/H снижен до $\approx 24\%$. В отличие от I–III в структуре IV значительную роль играет

π-стекинг (контакты C/C с $\Delta_{CC} \approx 16\%$), в то время как вклад C–H···π-взаимодействий понижен до ≈8% (табл. 3). Межмолекулярные взаимодействия C/O с $\Delta_{CO} \approx 3\%$ в структурах как IV, как и I–III являются малозначимыми.

Отметим, что в структурах **I–III** кратчайшее расстояние между центрами бензольных циклов (d_{Cg}) составляет ≈ 5.1 Å, тогда как в **IV** оно равно 4.06 Å. Поэтому заключение о наличии π -стекинга в структуре **IV** и его отсутствие в **I–III**, опирающееся на результаты анализа по методу молекулярных ПВД, полностью согласуется с критерием $\Delta_{\pi\pi}$ [22], согласно которому π -стекинг играет значимую роль в организации супрамолекулярной архитектуры кристаллов лишь при условии, что $\Delta_{\pi\pi} = \Delta_{CC} + \Delta_{CN}$ составляет не менее 2% величины ⁰S, а d_{Cg} не превышает 4.1 Å.

С ростом порядкового номера An в I–III наблюдается актинидное сжатие, сопровождающееся тремя эффектами, которые, как правило, наблюдаются в изоструктурных соединениях An(VI) [23]. Так, в ряду U–Np–Pu закономерно уменьшается длина связей An=O в диоксокатионе AnO₂²⁺ (соответственно 1.748, 1.737 и 1.735 Å), уменьшается объем полиэдра Вороного–Дирихле атома An (9.43, 9.28 и 9.25 Å³) и увеличивается безразмерный второй момент инерции этого полиэдра (G_3), который равен 0.083936, 0.083977 и 0.083984 соответственно. Рост G_3 показывает, что увеличение числа 5*f*-электронов в ряду U–Np–Pu сопровождается закономерным уменьшением степени сферичности ПВД атома актинида.

ИК спектры соединений **I–III** близки, что отвечает сходству их кристаллического строения. Большое число узких хорошо разрешенных полос поглощения различной интенсивности в спектрах соответствует колебаниям различных функциональных групп в составе соединений. Различия в положениях максимумов полос при переходе от

одного соединения к другому не превышают нескольких обратных сантиметров. На рис. 3 представлен ИК спектр [UO₂(C₆H₅CH₂COO)₂]. В табл. 4 приведены волновые числа максимумов основных полос поглощения и их предполагаемое отнесение, сделанное с учетом известного спектра свободного лиганда и литературных данных [24-27]. Слабая широкая полоса в высокочастотном диапазоне обусловлена колебаниями молекулярной воды, окклюдированной в ходе приготовления образца. Отмечено, что значения колебательных частот ароматического кольца мало изменяются относительно некоординированной Hphac. Это, видимо, объясняется наличием метиленовой группы, экранирующей ароматический фрагмент от влияния карбоксильной группы и атома U. Как следствие координации аниона фенилуксусной кислоты уранил-ионом, в спектре исчезает полоса, отвечающая неионизированной Hphac (1765 см⁻¹ для свободного лиганда), и проявляются полосы валентных колебаний карбоксилат-иона. К валентным колебаниям $v_{as}(UO_2^{2+})$ отнесена сильная полоса при 966 см⁻¹. Это значение не выходит за диапазон частот, характерных для комплексов уранила, в которых экваториальное окружение состоит из атомов О. Можно отметить, что $v_{as}(AnO_2^{2+})$ мало меняется для соединений Np(VI) и Pu(VI). Это коррелирует со структурными данными, в соответствии с которыми межатомные расстояния An-O в кристаллической решетке комплексов **I–III** различаются мало.

Рис. 4. Фрагмент оптического спектра $[PuO_2(C_6H_5CH_2COO)_2]$ (III).

Влияние координации лиганда на состояние актинильной группы отмечено и изменениями в электронных спектрах (ближний ИК и видимый диапазоны) изученных соединений, наиболее ярко проявляющимися в спектре комплекса Pu(VI) (электронная конфигурация $5f^2$). На рис. 4 дан фрагмент оптического спектра [PuO₂(C₆H₅CH₂COO)₂], в котором наблюдается узкая интенсивная полоса *f-f*электронного перехода ${}^{3}H_{4} - {}^{3}H_{6}$ с максимумом при 841.7 нм и несколько длинноволновых сателлитов. Максимум основной полосы смещен в длинноволновую часть спектра по сравнению со спектром гидратированного плутонил-иона [28]. В коротковолновой части спектра присутствуют малоинтенсивные слабо разрешенные полосы "уранилоподобных" переходов. Рассчитанный коэффициент экстинкции в максимуме основной полосы поглощения равен 230 л·моль⁻¹·см⁻¹. Спектр [NpO₂(C₆H₅· CH₂COO)₂] менее выразителен, в нем присутствуют диффузные полосы f-f-электронных переходов из основного состояния ${}^{2}F_{5}$, характерные для растворов и твердых комплексов NpO₂²⁺-иона (электронная конфигурация $5f^{A}$). Основная полоса имеет малую интенсивность ($\varepsilon = 40$ л·моль⁻¹·см⁻¹), ее максимум при 1228 нм, как и в случае комплекса Pu(VI), несколько смещен в длинноволновую часть спектра по сравнению со спектром гидратированного NpO₂²⁺-иона [29].

Работа выполнена в рамках государственного задания Минобрнауки России по проекту

Таблица 4. Положение максимумов основных полос поглощения в ИК спектре [UO₂(C₆H₅CH₂COO)₂] и их возможное отнесение

Волновое число, см ⁻¹	Отнесение	Волновое число, см ⁻¹	Отнесение
3070 сл, 3036 сл	v(CH) _{arom}	966 cp	$v_{as}(UO_2)$
2896 сл	v(CH) _{aliph}	944 сл	v(C–COO)
1548 c, 1540 c	$v (COO) + v(CC)_{arom}$	914 ср, 842 сл	$\gamma(CH)_{ip}$
1460 c, 1422 cp	$v (COO) + \delta(CH)$	720 c	$\gamma(CH)_{oop}$
1396 c	v(COO)	698 cp, 668 cp	δ(COO)
1336 c	$\omega(CH_2)$	564 cp	$\delta(CCC)_{arom}$
1286 с, 1254 ср	$v(CC)_{arom} + \gamma(CH)_{ip}$	480 сл	p(COO)
1160 сл, 1080 сл, 1036 сл	δ(CCC)		

4.5037.2017/8.9. Рентгенодифракционные эксперименты проведены в ЦКП ФМИ ИФХЭ РАН при частичном финансировании Министерством науки и высшего образования РФ (тема N AAAA-A18-118040590105-4).

Список литературы

- [1] Loiseau T., Mihalcea I., Henry N., Volkringer C. // Coord. Chem. Rev. 2014. Vol. 266–267. P. 69–109.
- [2] Cousson A., Proust J., Pages M. et al. // Acta Crystallogr., Sect. C. 1990. Vol. 46, N 6. P. 2316–2318.
- [3] Gao X., Wang C., Shi Z.-F. et al. // Dalton Trans. 2015. Vol. 44, N 25. P. 11562–11571.
- [4] Сережкин В. Н., Медведков Я. А., Сережкина Л. Б., Пушкин Д. В. // ЖФХ. 2015. Т. 89, N 6. С. 978–988.
- [5] Serezhkin V. N., Vologzhanina A. V., Serezhkina L. B. et al. // Acta Crystallogr., Sect. B. 2009. Vol. 65, N 1. P. 45–53.
- [6] Nierlich M., Iroulart G., Vigner D. et al. // Acta Crystallogr., Sect. C. 1990. Vol. 46, N 6. P. 2459–2460.
- [7] Navaza A., Iroulart M. G., Nierlich M. et al. // Acta Crystallogr., Sect. C. 1993. Vol. 49, N 10. P. 1767–1770.
- [8] Wang J.-L., Deng Z.-Y., Duan S.-B., Xing Y.-H. // J. Coord. Chem. 2012. Vol. 65, N 20. P. 3546–3555.
- [9] Bismondo A., Casellato U., Graziani R. // Inorg. Chim. Acta. 1994. Vol. 223, N 1–2. P. 151–153.
- [10] Щелоков Р. Н., Михайлов Ю. Н., Орлова И. М. и др. // Координац. химия. 1985. Т. 11, N 6. С. 706–709.
- [11] Bismondo A., Casellato U., Rizzo L., Graziani R. // Inorg. Chim. Acta. 1992. Vol. 191, N 1. P. 69–73.
- [12] Cambridge Structural Database System. Cambridge: Cambridge Crystallographic Data Centre, 2017.
- [13] Федосеев А. М., Гоголев А. В., Шилов В. П. и др. // Радио-

химия. 2017. Т. 59, N 6. С. 502-509.

- [14] SAINT-Plus (Version 7.68). Madison, Wisconsin (USA): Bruker AXS, 2007.
- [15] Sheldrick G. M. SADABS. Madison, Wisconsin (USA): Bruker AXS, 2008.
- [16] Sheldrick G. M. // Acta Crystallogr., Sect. A. 2008. Vol. 64, N 1. P. 112–122.
- [17] Sheldrick G. M. // Acta Crystallogr., Sect. C. 2015. Vol. 71, N 1. P. 3–8.
- [18] Сережкин В. Н., Михайлов Ю. Н., Буслаев Ю. А. // ЖНХ. 1997. Т. 42, N 12. С. 2036–2077.
- [19] Serezhkin V. N. // Structural Chemistry of Inorganic Actinide Compounds. Eds S. V. Krivovichev, P. C. Burns, I. G. Tananaev. Amsterdam: Elsevier, 2007. P. 31–65.
- [20] Сережкин В. Н., Сережкина Л. Б. // Кристаллография. 2012. Т. 57, N 1. С. 39–49.
- [21] Serezhkin V. N., Savchenkov A. V. // Cryst. Growth Des. 2015. Vol. 15, N 6. P. 2878–2882.
- [22] Новиков С. А., Пересыпкина Е. В., Сережкина Л. Б. и др. // ЖНХ. 2014. Т. 59, N 2. С. 190–199.
- [23] Serezhkin V. N., Grigoriev M. S., Abdulmyanov A. R. et al. // Inorg. Chem. 2017. Vol. 56. P. 7151–7160.
- [24] Nyquist R. A., Settioneri S. E. // Appl. Spectrosc. 1990. Vol. 44, N 10. P. 1629–1632.
- [25] Castro J. L., Lopez Ramirez M. R., Lopez Tocon I., Otero J. C. // J. Mol. Struct. 2003. Vol. 651–653. P. 602–606.
- [26] Krishnamurthy M. V., Nagar M. S., Hon N. S. // J. Radioanal. Nucl. Chem. 1987. Vol. 117, N 2. P. 91–98.
- [27] Lee H., Wilmshurst J. K. // Aust. J. Chem. 1969. Vol. 22, N 4. P. 691–670.
- [28] Gruen D. M. // J. Chem. Phys. 1952. Vol. 20, N 11. P. 1818– 1821.
- [29] McGlynn S. P., Smith J. K. // J. Mol. Spectrosc. 1961. Vol. 6, N 2. P. 164–187.