Кристаллическое строение комплексов An(VI) с анионами янтарной кислоты, $[PuO_2(C_4H_4O_4)(H_2O)]$ и Cs₂[(AnO₂)₂(C₄H₄O₄)₃]·H₂O (An = U, Np, Pu)

© И. А. Чарушникова*, А. М. Федосеев, А. А. Бессонов

Институт физической химии и электрохимии им. А. Н. Фрумкина РАН, 119071, Москва, Ленинский пр., д. 31, корп. 4; * e-mail: charushnikovai@ipc.rssi.ru

Получена 11.04.2018, после доработки 15.05.2018, принята к публикации 16.05.2018

УДК 539.26:(546.791.6+546.798.21+546.798.22)

Синтезированы и исследованы методом рентгеноструктурного анализа комплексы An(VI) с анионами янтарной кислоты [PuO₂(succ)(H₂O)] и Cs₂[(AnO₂)₂(succ)₃]·H₂O (An = U, Np, Pu), где succ = $[C_4H_4O_4]^{2^-}$. Соединение [PuO₂(succ)(H₂O)] изоструктурного с [UO₂(succ)(H₂O)] [1], его кристаллическая упаковка – трехмерный электронейтральный каркас. Экваториальную плоскость пентагональной бипирамиды Pu(VI) формируют атомы O четырех анионов [C₄H₄O₄]²⁻ и одной молекулы воды. Анионы $[C_4H_4O_4]^{2^-}$ являются мостиковыми, каждый анион связывается монодентатно с четырьмя атомами Pu. В комплексах Cs₂[(AnO₂)₂(succ)₃]·H₂O основу структуры составляет анионный каркас. Экваториальную плоскость гексагональной бипирамиды An(VI) формируют атомы O трех анионов [C₄H₄O₄]²⁻, каждый анион выполняет хелатно-мостиковую функцию и связывает два атома An(VI). Измерены электронные спектры поглощения [PuO₂(succ)(H₂O)] и Cs₂[(PuO₂)₂(succ)₃]·H₂O.

Ключевые слова: уран(VI), нептуний(VI), плутоний(VI), сукцинат, кристаллическая структура, электронные спектры поглощения.

DOI: 10.1134/S0033831119020023

Комплексы уранила с анионами янтарной кислоты (НООС)С2Н4(СООН) изучены довольно подробно, в литературе имеются данные о строении моноклинной [1] и ромбической [2] модификаций моногидрата $[UO_2(succ)(H_2O)]$ (succ = $[C_4H_4O_4]^{2-}$). Изучены также комплексы сукцината уранила с нейтральными органическими лигандами, входящими в координационное окружение уранила [3–5] и хлоридный комплекс [(UO₂)₂Cl₆(succ)]·4(C₂H₈N) [6]. Исследование комплексообразования U(VI) и Pu(VI) с янтарной кислотой в водных растворах [7, 8] показало, что в растворе существуют комплексы с соотношением актинид : сукцинат 1 : 1 и 1 : 2. В недавней работе [9] были синтезированы и структурно охарактеризованы анионные сукцинатные комплексы уранила 1 : 1.5 с калием и $[Mg(H_2O)_6]^{2+}$ в качестве внешнесферных катионов. Однако в литературе отсутствуют данные о строении сукцинатов трансурановых элементов в степени окисления +6. В настоящей работе синтезированы новые сукцинатные соединения U(VI), Np(VI) и Pu(VI), определено их строение.

Экспериментальная часть

Исходными реагентами служили янтарная, азотная, щавелевая кислоты, карбонат цезия марки х.ч., использованные без дополнительной очистки. Триоксид урана UO₃ получали термическим разложением $(NH_4)_4[UO_2(CO_3)_3]$ при 330°C в течение 12 ч.

[PuO₂(succ)(H₂O)] (I) синтезировали растворением PuO₂(OH)₂·xH₂O, полученного по методике работы [10], в водном растворе ~0.1 моль/л янтарной кислоты при нагреве до температуры не более 40°C. В течение нескольких часов в реакционной смеси формируются друзы розоватых кристаллов наряду с мелкокристаллическими продуктами. Попытки получения сукцината нептунила не приводят к получению искомых комплексов Np(VI) вследствие довольно быстрого восстановления нептунила даже при пониженной температуре (6– 8°C) до Np(V) при различной концентрации янтарной кислоты в реакционной смеси.

Анионные сукцинатные комплексы состава $Cs_2[(AnO_2)_2(succ)_3] \cdot H_2O$ (An = U, Np, Pu) (II) получали путем добавления водного раствора ~0.2 моль/л сукцината цезия, приготовленного взаимодействием эквимолярных количеств янтарной кислоты и карбоната цезия в виде водных растворов (0.5 моль/л), к водным растворам 0.05 моль/л AnO₂(NO₃)₂. В течение нескольких часов формируются друзы слабоокрашенных кристаллов. В случае Np(VI) за это время цвет маточного раствора из желтовато-зеленоватого меняется на зеленый, характерный для гидратированного NpO₂⁺. Использо-

Таблица 1. Кристаллогра	рические данные и ха	рактеристики	рентгеноструктурного	эксперимента
-------------------------	----------------------	--------------	----------------------	--------------

Параметр	Ι	IIa	IIb	IIc
Эмпирическая формула	C ₄ H ₆ O ₇ Pu	$C_{12}H_{14}O_{17}Cs_2U_2$	$C_{12}H_{14}O_{17}Cs_2Np_2$	$C_{12}H_{14}O_{17}Cs_2Pu_2$
Молекулярная масса	408.09	1172.11	1170.05	1174.05
Сингония	Моноклинная	Кубическая	Кубическая	Кубическая
Пространственная группа	$P2_1/n$	<i>I</i> 2 ₁ 3	<i>I</i> 2 ₁ 3	<i>I</i> 2 ₁ 3
a, Å	7.5755(7)	13.4729(1)	13.4688(1)	13.4688(4)
b, Å	10.6380(8)	13.4729(1)	13.4688(1)	13.4688(4)
<i>c</i> , Å	9.4212(8)	13.4729(1)	13.4688(1)	13.4688(4)
β, град	90.459(5)			
Объем ячейки, $Å^3$; <i>Z</i>	759.21(11); 4	2445.59(3); 4	2443.36(3); 4	2443.36(13); 4
$\rho_{\rm выч}$, г/см ³	3.570	3.183	3.181	3.208
$\mu(MoK_{\alpha}), \mathrm{Mm}^{-1}$	9.268	16.517	7.155	7.448
Число измеренных/независимых отражений	18381/4444	11966/1209	14268/1217	14456/1183
Число независимых отражений с $I > 2\sigma(I)$	3981	1028	1017	914
Число уточняемых/фиксированных параметров	117/3	52/2	52/2	51/2
BASF	0.221(2)			
$R(F)$; $wR(F^2)$ [$I > 2\sigma(I)$]	0.0586; 0.1582	0.0302; 0.0705	0.0330; 0.0730	0.0358; 0.0680
$R(F); wR(F^2)$ [весь массив]	0.0652; 0.1651	0.0413; 0.0757	0.0454; 0.0789	0.0569; 0.0759
GOOF	1.146	1.056	1.065	1.066
$\Delta \rho_{\text{max}}$ и $\Delta \rho_{\text{min}}$, e·Å ⁻³	14.204; -8.030	1.356; -0.880	1.317; -0.958	1.055; -1.543

вание сукцинатов щелочных металлов, отличных от цезия, как правило, приводило к формированию либо стеклообразных, либо мелкокристаллических продуктов в изученных условиях при различных отношения An : C₄H₄O₄.

Электронные спектры поглощения кристаллических $PuO_2(succ)(H_2O)$ и $Cs_2[(PuO_2)_2(succ)_3] \cdot H_2O$ регистрировали по методике работы [11].

Рентгеноструктурный эксперимент проводили на автоматическом четырехкружном дифрактометре с двумерным детектором Bruker Kappa Apex II (излучение Мо K_a , графитовый монохроматор) при 100 К. Параметры элементарных ячеек уточняли по всему массиву данных. В экспериментальные интенсивности вводили поправки на поглощение с помощью программы SADABS [12]. Структуры расшифровывали прямым методом (SHELXS97 [13]) и уточняли полноматричным методом наименьших квадратов (SHELXS-2014 [14]) по F^2 по всем данным в анизотропном приближении для всех неводородных атомов. Результаты уточнения и основные кристаллографические данные приведены в табл. 1.

В структуре I конечное уточнение координат атомов и температурных параметров в анизотропном приближении привело к R-фактору ~12%. Введение поправки на мероэдрическое двойникование позволило снизить R-фактор в два раза, значение коэффициента двойникования *BASF* приведено в табл. 1.

В кристаллах соединений состава II катионы Cs и молекулы воды размещаются в одних и тех же позициях. Уточнение их позиционных и температурных параметров проводили с кратностями 2/3 для атомов Сs и 1/3 для атомов О молекул воды.

Атомы H у атомов C анионов $[C_4H_4O_4]^{2-}$ в структурах I и II размещали в геометрически вычисленных позициях и уточняли с $U_H = 1.2U_{3\kappa B}(C)$. Атомы H у молекулы координационно связанной воды в структура I и кристаллизационной воды в структурах II локализовали на разностных синтезах Фурье и уточняли с $U_H = 1.5U_{3\kappa B}(O)$ и ограниченными значениями межатомных расстояний O–H и валентного угла H–O–H.

Длины связей и валентные углы в структурах I и II приведены в табл. 2 и 3. Координаты атомов депонированы в Кембриджский центр кристаллографических данных, депоненты ССDС 1539108, 1539124, 1539125, 1539127.

Таблица 2. Длины связей (d, Å) и валентные углы $(\omega, град)$ в структуре **I**^a

Связь	d	Угол	ω
Pu(1)=O(11)	1.743(8)	O(11)=Pu(1)=O(12)	179.0(4)
Pu(1)=O(12)	1.725(8)	O(1)-Pu(1)-O(3b)	74.0(3)
Pu(1)–O(1)	2.381(7)	O(1)-Pu(1)-O(4c)	71.2(3)
Pu(1)-O(2a)	2.370(8)	O(2a) - Pu(1) - O(3b)	71.1(3)
Pu(1)-O(3b)	2.385(7)	$O(2a) - Pu(1) - O_w(1)$	73.2(3)
Pu(1)-O(4c)	2.364(8)	$O(4c) - Pu(1) - O_w(1)$	70.6(3)
$Pu(1)-O_w(1)$	2.434(7)	O(1)-C(1)-O(2)	122.6(9)
C(1)–O(1)	1.269(11)	O(3)-C(4)-O(4)	123.1(9)
C(1)–O(2)	1.246(11)	O(1)-C(1)-C(2)	118.9(8)
C(4) - O(3)	1.260(11)	O(2)-C(1)-C(2)	118.4(8)
C(4) - O(4)	1.260(11)	O(3)-C(4)-C(3)	118.6(8)
C(1)-C(2)	1.513(13)	O(4) - C(4) - C(3)	118.3(8)
C(2) - C(3)	1.513(12)	C(1)-C(2)-C(3)	114.7(8)
C(3) - C(4)	1.512(13)	C(2)-C(3)-C(4)	113.1(8)

^а Операции симметрии: a - (1/2 + x, 1/2 - y, -1/2 + z), b - (3/2 - x, -1/2 + y, 5/2 - z), c - (1 - x, 1 - y, 2 - z).

Результаты и обсуждение

Кристаллы изоструктурного с [UO₂(succ)(H₂O)] [1] плутониевого соединения I состоят из катионов $PuO_2^{2^+}$, анионов $[C_4H_4O_4]^{2^-}$ и молекул координационно связанной воды. Кристаллографически независимый атом Pu(1) в структуре находится в общем положении, его координационное окружение в виде пентагональной бипирамиды формируют в экваторе атомы O четырех анионов $[C_4H_4O_4]^{2-}$ и одной молекулы воды (рис. 1). Атомы О группы PuO₂ находятся в апикальных позициях бипирамиды. Средние длины связей внутри координационного полиэдра Ри изменяются следующим образом: Pu=O 1.734(8) Å, Pu-O_{suce} 2.375(8) Å, длина связи Ри-О_w равна 2.434 Å (табл. 2). Для сравнения отметим, что в уранильном комплексе [1], который также кристаллизуется в моноклинной ячейке, средние длины связей равны: U=O 1.741(11) Å, U-O_{succ} 2.39(1) Å, длина связи U–O_w равна 2.451(9) Å. Налицо тенденция к уменьшению длин связей внутри координационного полиэдра при переходе от U к Ри.

Кристаллографически независимый анион $[C_4H_4O_4]^{2-}$ в структуре I является мостиковым лигандом. Он связывает монодентатным способом через каждый атом О по четыре атома Pu, в результате чего в кристалле образуется трехмерный электронейтральный каркас (рис. 2).

Кристаллы соединений общего состава Cs_2 [(AnO₂)₂(succ)₃]·H₂O (II) состоят из катионов Cs^+ и

Таблица 3. Длины связей (d, Å) и валентные углы $(\omega, град)$ в структурах **П**^а

Charles smort	An = U	An = Np	An = Pu				
Связь, угол	(IIa)	(IIb)	(IIc)				
Длины связей							
An(1)=O(11)	1.758(9)	1.754(9)	1.759(11)				
An(1)=O(12)	1.759(9)	1.752(9)	1.739(11)				
An(1)-O(1)	2.463(5)	2.458(5)	2.461(6)				
An(1)–O(2)	2.445(5)	2.444(6)	2.445(7)				
C(1)–O(1)	1.258(9)	1.256(9)	1.257(11)				
C(1)–O(2)	1.262(8)	1.255(9)	1.270(10)				
C(1)-C(2)	1.511(10)	1.502(11)	1.479(14)				
C(2)-C(2a)	1.484(17)	1.481(18)	1.582(19)				
Углы							
O(11)=An(1)=O(12)	180.0(2)	180.00(19)	180.0(2)				
O(1)-An(1)-O(2)	52.86(17)	52.74(18)	52.8(2)				
O(1)-An(1)-O(2b)	67.71(17)	67.89(18)	68.0(2)				
O(1)-C(1)-O(2)	120.3(6)	120.3(7)	119.3(8)				
O(1)-C(1)-C(2)	119.8(6)	119.8(7)	117.6(8)				
O(2)-C(1)-C(2)	120.0(7)	119.9(7)	123.1(8)				
C(1)-C(2)-C(2a)	114.5(5)	114.6(6)	111.8(6)				

^а Операции симметрии: a - Ha: (1/2 - x, y, 1 - z); **Hb**: (2 - x, 3/2 - y, z); **Hc**: (1/2 - x, y, 2 - z); b - Ha: (z, x, y); **Hb**: (3/2 - y, 1 - z, -1/2 + x); **Hc**: (y - 1/2, 3/2 - z, 1 - x).

Рис. 1. Фрагмент структуры I, *пунктирными линиями* показаны водородные связи. Эллипсоиды тепловых колебаний даны с 30%-ной вероятностью, операции симметрии соответствуют приведенным в табл. 2.

Рис. 2. Упаковка молекул в структуре I (проекция в направлении [100]). *Пунктирными линиями* показаны водородные связи с молекулами воды. Операции симметрии соответствуют приведенным в табл. 2.

 $AnO_2^{2^+}$, анионов $[C_4H_4O_4]^{2^-}$ и молекул кристаллизационной воды.

Кристаллографически независимый атом An(VI) находится в частном положении на оси третьего порядка, координационное окружение атома An(VI) показано на примере нептуниевого соединения **IIb** (рис. 3). Экваториальную плоскость гексагональной бипирамиды An(VI) формируют ато-

Рис. 3. Фрагмент структуры **IIb**. Эллипсоиды тепловых колебаний даны с 30%-ной вероятностью, операции симметрии: a - (2 - x; 3/2 - y, z), b - (3/2 - y, 1 - z, -1/2 + x), c - (1/2 + z, 3/2 - x, 1 - y), d - (1 - y, 1/2 + z, 1 - x).

Рис. 4. Координационное окружение атома Cs(1) в структуре IIa (без атомов H). Эллипсоиды температурных колебаний даны с 30%-ной вероятностью. Операции симметрии: a - (3/2 - x, +y, 1 - z), b - (z, x, y), c - (1/2 - z, x, 1 - y), d - (-1/2 + y, 1/2 - z, 1 - x), e - (1 - y, 1/2 - z, x), f - (-1/2 + z, 1/2 - x, 1 - y), g - (1 - z, 1/2 - x, y).

мы О трех анионов $[C_4H_4O_4]^{2-}$. Средние длины связей (Å) в полиэдрах An(VI) меняются следующим образом: An=O 1.758 (**IIa**), 1.753 (**IIb**) и 1.749 (**IIc**); An-O_{succ} 2.454 (**IIa**), 2.451 (**IIb**) и 2.453 (**IIc**).

Кристаллографически независимый катион Cs⁺ в структуре II находится в частном положении на оси второго порядка и имеет координационное окружение в виде 8-вершинника, которое формируют

Рис. 5. Упаковка молекул в структуре **Пb** (проекция в направлении [001]). Операция симметрии: a - (2 - x, 3/2 - y, z).

атомы О двух катионов AnO_2^{2+} и четырех анионов $[C_4H_4O_4]^{2-}$. На рис. 4 на примере соединения **Па** представлено окружение атома Cs(1). Длины связей внутри координационной сферы катионов Cs⁺ (Å) изменяются следующим образом: 3.022(5)–3.491(7) (среднее 3.302) для **Па**, 3.017(6)–3.452(6) (среднее 3.299) для **Пb**, 2.995(6)–3.483(10) (среднее 3.289) для **Пс**.

Кристаллографически независимый анион $[C_4H_4O_4]^{2-}$ в структуре II находится на оси второго порядка и является хелатно-мостиковым лигандом для катионов AnO₂²⁺. Он связывается с двумя катионами обеими карбоксилатными группами СОО с образованием 4-членного металлоцикла, как видно на рис. 3. Катионы $AnO_2^{2^+}$ и анионы $[C_4H_4O_4]^{2^-}$ связываются в анионный каркас, как показано на рис. 5 на примере нептуниевого соединения IIb. В больших полостях анионного каркаса располагаются катионы Cs⁺ и молекулы воды. Каждый анион $[C_4H_4O_4]^{2-}$ связывается также с четырьмя катионами Cs⁺: с двумя катионами хелатным способом с образованием 7-членного металлоцикла (рис. 4), с двумя другими катионами Cs⁺ – монодентатным способом.

В обеих структурах I и II присутствуют молекулы воды. В структуре I вода включена в координационное окружение Pu и участвует в сравнительно прочном водородном связывании (рис. 1, табл. 4). В структуре II молекула воды расположена на оси второго порядка в больших полостях анионного

D–H····A	D–H, Å	H…A, Å	D…A, Å	D–Н···А, град	Операция симметрии
$[PuO_2(succ)(H_2O)]$ (I)					
$O_w(1) - H(1) - O(3)$	0.85(2)	2.08(15)	2.706(12)	129(16)	1-x, 1-y, 2-z
$O_w(1) - H(2) - O(1)$	0.85(2)	1.87(8)	2.657(12)	154(18)	1/2 + x, $1/2 - y$, $-1/2 + z$
$C(2)-H(4)\cdots O(12)$	0.99	2.55	3.371(13)	140.7	1/2 + x, $1/2 - y$, $1/2 + z$
		Cs ₂ [($UO_2)_2(succ)_3]$ ·H	$H_2O(\mathbf{IIa})$	
$O_w(1) - H(1) - O(2)$	0.86	2.35	3.022(5)	135.8	-1/2 + y, $1/2 - z$, $1 - x$
C(2)–H(2)····O(12)	0.99	2.49	3.425(10)	156.7	1-x, 3/2-y, -1+z
		$Cs_2[(N$	$NpO_2)_2(succ)_3]$	$H_2O(\mathbf{IIb})$	
$O_w(1) - H(1) - O(2)$	0.86	2.54	3.017(6)	116.2	1/2 + y, $1/2 + z$, $-1/2 + x$
C(2)–H(3)····O(12)	0.99	2.51	3.443(10)	156.5	3/2 - x, y, -z
$Cs_2[(PuO_2)_2(succ)_3]$ ·H ₂ O (IIc)					
$O_w(1) - H(1) - O(2)$	0.85	2.53	2.995(6)	115.3	-x, 1/2 + y, 3/2 - z
C(2)–H(3)···O(12)	0.99	2.51	3.445(11)	156.7	-x, 1/2 - y, z

Таблица 4. Водородные связи в структурах

Таблица 5. Геометрические характеристики анионов $[C_4H_4O_4]^{2-}$ в плутониевых соединениях **I** и **IIc**: отклонения атомов C от среднеквадратичной плоскости (Δ , Å), углы поворота карбоксилатных групп (ϕ_1 , ϕ_2 , град), угол между карбоксилатными группами ($\phi_{1,2}$, град)^а

[PuO ₂ (succ)(H	$[_2O)](\mathbf{I})$	$Cs_2[(PuO_2)_2(succ)_3]$ ·H ₂ O (IIc)			
$\Delta[C(1)]$	+0.139(4)	$\Delta[C(1)]$	+0.142(6)		
$\Delta[C(2)]$	-0.311(6)	$\Delta[C(2)]$	-0.290(12)		
$\Delta[C(3)]$	+0.306(6)	$\Delta[C(2a)]$	+0.290(12)		
$\Delta[C(4)]$	-0.134(4)	$\Delta[C(1a)]$	-0.142(6)		
$\varphi_1[O(1)C(1)O(2)]$	56.4(7)	$\varphi_1[O(1)C(1)O(2)]$	49.0(7)		
$\varphi_2[O(3)C(4)O(4)]$	39.4(8)	$\varphi_2[O(1a)C(1a)O(2a)]$	49.0(7)		
<u></u>	76(1)	φ _{1,2}	70(1)		

^а Операция симметрии: a - (1/2 - x, y, 2 - z).

каркаса, статистически чередуясь с катионами Cs⁺. Контакты O_w···O, соответствующие наиболее вероятным водородным связям, возникают с атомами O (2g) и O(2f) (рис. 4), так как именно эти атомы образуют самые короткие межатомные расстояния с молекулами воды (табл. 4). Другие контакты заметно слабее, например, с атомами O(11) и O(11*a*) они равны 3.232(5), 3.242(5) и 3.250(6) Å для U, Np и Pu соответственно. Остальные контакты превышают 3.4 Å. Отметим также, что в структурах I и II имеют место слабые водородные связи типа C– H···O, акцепторами водорода в которых являются атомы O катионов AnO₂²⁺ (табл. 4). Эти связи возникают внутри каркасных структур, дополнительно стабилизируя упаковку.

Рис. 6. Разная функция анионов $[C_4H_4O_4]^{2-}$ в структурах I и II. Операция симметрии: 3/2 - x, 1/2 + y, 5/2 - z для I и 1/2 - x, y, 2 - z для IIс.

На примере плутониевых соединений I и IIс сравним особенности строения исследованных комплексов. На рис. 6 схематично изображены анионы [С₄H₄O₄]²⁻ связанные с диоксокатионами PuO_2^{2+} в структурах. Диоксокатионы PuO_2^{2+} образуют друг с другом углы ~7° (I) и ~80° (IIc). В табл. 5 представлены геометрические характеристики сукцинат-ионов: отклонения атомов С от среднеквадратичной плоскости (Δ), углы поворота карбоксилатных групп относительно этой плоскости (ф1 и ф2) и двугранный угол между обеими группами $(\phi_{1,2})$. Как видно из данных табл. 5, заметные различия наблюдаются только в угловых характеристиках, что обусловлено разной функцией анионов $[C_4H_4O_4]^{2-}$. В табл. 6 представлены торсионные углы в сукцинат-ионах, показывающие, что лиганды соединениях имеют заслоненную В гошконформацию - торсионные углы в углеродных цепочках I и II близки к 60°. Внутри координационных полиэдров Ри наблюдается различие в длинах связей Ри-О_{ѕисс}: в соединении I средняя длина связей равна 2.375 Å (табл. 2), в соединении IIc -2.453 Å (табл. 3). Такое различие всегда наблюдается в комплексах с анионами монокарбоновых кислот, если анионы связываются с центральным атомом монодентатным или хелатным способом, например, в комплексах U(VI) с ацетат-ионом [15,

Ι		II				
Угол	τ	Угол		τ(IIa)	τ(IIb)	τ(IIc)
[O(1)C(1)C(2)C(3)]	164.8	[O(1)C(1)C(2)C(2a)]		-13.5	12.8	-14.6
[O(2)C(1)C(2)C(3)]	-17.1	[O(2)C(1)C(2)C(2a)]		167.4	-166.4	166.8
[C(1)C(2)C(3)C(4)]	-66.8	[C(1a)C(2a)C(2)C(1)]		-59.7	60.8	-59.5
[C(2)C(3)C(4)O(3)]	-179.4					
[C(2)C(3)C(4)O(4)]	0.2					

Таблица 6. Торсионные углы (т, град) в соединениях I и II^a

^а Операции симметрии: *a* – **Ha**: (1/2 – *x*, *y*, 1 – *z*); **Hb**: (2 – *x*, 3/2 – *y*, *z*); **Hc**: (1/2 – *x*, *y*, 2 – *z*).

16], в комплексах U(VI) и Np(VI) с бензоат-ионом [17]. Такая же картина наблюдается и в соединениях An(VI) с анионами бензолдикарбоновых кислот, например, в димерном комплексе с кислым изофталатом [AnO₂(C₈H₅O₄)₂(H₂O)]₂ (An = U, Np) [18], в изофталате состава [PuO₂(C₈H₄O₄)] [19] или терефталате UO₂(C₈H₅O₄Br)₂ [20].

Сравним строение уранильного комплекса **Па** с полуторными сукцинатами $K_2[(UO_2)_2(succ)_3]$ и $[Mg(H_2O)_6][(UO_2)_2(succ)_3] \cdot 2H_2O$ [9].

В калиевом соединении геометрические характеристики анионного комплекса $[(UO_2)_2(succ)_3]^{2-1}$ близки к найденным в структуре Па. Средние длины связей в полиэдре атома U(1) равны: U=O 1.771(3), U–O_{succ} 2.469(3) Å. Два независимых аниона $[C_4H_4O_4]^{2-}$ имеют *гош*-конформацию, они связывают уранил в анионные слои, параллельные плоскости (001). В структуре присутствуют два независимых катиона калия. Катионы с атомом К(1) располагаются в полостях внутри слоя, катионы с атомом К(2) связывают два соседних слоя. В соединении $[Mg(H_2O)_6][(UO_2)_2(succ)_3] \cdot 2H_2O$ геометрические характеристики координационного окружения двух независимых атомов U(1) и U(2)характеризуются средними длинами связей: U=O 1.770(6), U-O_{succ} 2.474(6) Å. Два из трех независимых сукцинат-анионов имеют гош-конформацию, они связывают катионы UO2²⁺ в цепочки вдоль направления [010] в кристалле. Третий независимый анион стягивает по две цепочки в ленты, у него заторможенная конформация, обусловливающая зигзагообразное строение углеродной цепочки C-C-C-C аниона. Гидратированные катионы Mg^{2+} располагаются между лентами. В кристалле присутствует трехмерная сеть водородных связей.

Очевидно, что два основных фактора влияют на строение соединений с катионами K^+ , Cs^+ и $[Mg(H_2O)_6]^{2+}$ во внешней сфере. С одной стороны, влияют размеры и природа внешнесферного катиона. С другой стороны, важным фактором является способность сукцинат-иона иметь различные конформации. Это, например, является причиной полиморфизма соединения $[UO_2(succ)(H_2O)]$ [5]. Мо-

ногидрат сукцината уранила существует в моноклинной модификации [1] с заслоненной конформацией аниона и в ромбической [2] – с заторможенной конформацией аниона.

В соединении $K_2[(UO_2)_2(succ)_3]$, которое кристаллизуется в тетрагональной ячейке, оба независимых катиона K^+ имеют кислородное окружение в виде нерегулярных 8-вершинников с межатомными расстояниями К–О в пределах 2.620(3)–3.004(3) Å для внутрислоевого катиона и 2.650(3)–3.378(3) Å для межслоевого катиона. Наименьшие межатомные расстояния U···K и K···K равны 4.145 и 5.029 Å соответственно. Отметим, что согласно анализу координационного окружения обоих независимых катионов K⁺ с использованием программы TOPOS [21] вклад атомов О во взаимодействие с катионами составляет ~94%.

При переходе к цезиевому соединению Па наблюдается упорядочение структуры и сингония кристаллической решетки повышается до кубической. При этом у катионов Cs⁺ сохраняется кислородное окружение в виде 8-вершинника. В изоструктурных соединениях II каждый атом An связан с тремя атомами Cs, образуя тетраэдр с межатомными расстояниями An…Cs 4.482 (IIa), 4.488 (IIb) и 4.496 Å (IIc). Тетраэдры связываются через общие вершины - атомы Cs, следовательно, каждый атом Cs связан с двумя атомами An и четырьмя атомами Cs, как показано на рис. 7 на примере соединения IIa. Расстояния Сѕ…Сѕ равны 4.577 (IIa), 4.585 (IIb) и 4.608 Å (IIc). В результате формируется кубическая трехмерная катионная сетка, построенная из тетраэдров, объединенных через три общие вершины. Сетка строится из спиралей с винтовыми осями четвертого порядка.

В соединении [Mg(H₂O)₆][(UO₂)₂(succ)₃]·2H₂O с ленточной структурой наименьшие межатомные расстояния U····Mg и Mg····Mg равны 5.983 и 6.873 Å соответственно. В этой структуре важную роль играет водородное взаимодействие. У двух независимых анионов с *гош*-конформацией, связывающих катионы UO₂²⁺ в цепочки вдоль направления [010], один атом О не участвует в водородном связыва-

Рис. 7. Катионная сетка в структуре **Па**. Операции симметрии: a - (z, x, y), b - (y, z, x), c - (1/2 - x, y, 1 - z), d - (-1/2 + z, 1/2 - x, 1 - y), e - (1/2 - y, z, 1 - x).

Рис. 8. ЭСП кристаллического [PuO₂(succ)(H₂O)] (I) [~2 мас%, NaCl (плавл.) 87 мг].

нии. У аниона, стягивающего цепочки в ленты, все четыре атома О задействованы в водородном связывании как акцепторы протонов.

В электронном спектре поглощения (ЭСП) кристаллического соединения I максимум поглощения найден при 841 нм (рис. 8). Можно предположить, что образованию моносукцинатного комплекса плутонила в растворе, PuO₂(succ), соответствует положение максимума полосы поглощения 836 нм, при переходе в кристаллическое состояние сдвиг в длинноволновую область увеличивается на 5 нм за счет влияния кристаллического поля. Однако такого комплекса в растворе идентифицировать не удалось [8], лучшая деконволюция экспериментальных ЭСП Pu(VI) в растворах янтарной кислоты позволила предположить существование следующих форм плутонила в растворе: PuO₂(Hsucc)₂, PuO_2Hsucc_2 и $PuO_2(succ)_2^{2-}$ с максимумами поглошения при 836, 843 и 846 нм соответственно. Поэтому, видимо, кристаллизация моносукцинатного комплекса из раствора сопровождается депротонированием нейтрального бисукцинатного комплекса с частичным его разрушением для сохранения баланса электронейтальности. В ЭСП кристаллического соединения Пс интенсивность полосы поглощения f-f-электронного перехода ${}^{3}H_{4}-{}^{3}H_{6}$ очень низкая, что объясняется правилом Лапорта, и экспериментально не определяется.

Таким образом, выделены в кристаллическом виде и исследованы комплексы An(VI) с анионами янтарной кислоты с соотношением металл : лиганд 1 : 1 (I) и 1 : 1.5 (II). Комплекс [PuO₂(succ)(H₂O)] (I) изоструктурен $[UO_2(succ)(H_2O)]$ [1], основу его кристаллической упаковки составляет трехмерный электронейтральный каркас. В комплексах общего состава $Cs_2[(AnO_2)_2(succ)_3]$ ·H₂O (II, An = U, Np, Pu) основу структуры составляет анионный каркас. В структуре I анионы $[C_4H_4O_4]^{2-}$ являются мостиковыми и кажлый анион связывается монодентатно с четырьмя атомами Ри, в II каждый анион выполняет хелатно-мостиковую функцию и связывает два атома An(VI). Координационное окружение атомов Pu(VI) в структуре I – пентагональная бипирамида, атомов An(VI) в структуре II – гексагональная бипирамида.

Рентгеноструктурный эксперимент выполнен в ЦКП ФМИ ИФХЭ РАН.

Список литературы

- [1] Kim J.-Y., Norquist A. J., O'Hare D. // Dalton Trans. 2003.
 P. 2813–2814.
- [2] Bombieri G., Benetollo F., Del Pra A., Rojas R. // J. Inorg. Nucl. Chem. 1979. Vol. 41. P. 201–203.
- [3] Щёлоков Р. Н., Михайлов Ю. Н., Орлова И. М. и др. // Координац. химия. 1985. Т. 11, N 7. С. 1010–1014.
- [4] Wang J.-L., Deng Z.-Y., Duan S.-B., Xing Y.-H. // J. Coord. Chem. 2012. Vol. 65, N 20. P. 3546–3555.
- [5] Серёжкин В. Н., Пересыпкина Е. В., Серёжкина Л. Б. и др. // ЖНХ. 2014. Т. 59, N 12. С. 1684–1691.
- [6] Mihalcea I., Falaise C., Volkringer C. et al. // Inorg. Chem. Commun. 2014. Vol. 44, N 1. P. 63–66.
- [7] Lucks C., Rossberg A., Tsushima S. et al. // Inorg. Chem. 2012. Vol. 51. P. 12288–12300.
- [8] Sladkov V., Bessonov A., Roques J. et al. // New J. Chem. 2018. Vol. 42, N 10. P. 7780–7788.
- [9] Novikov S. A., Grigoriev M. S., Serezhkina L. B., Serezhkin V. N. // J. Solid State Chem. 2017. Vol. 248. P. 178–182.

- [10] Федосеев А. М., Гоголев А. В., Шилов В. П. и др. // Радиохимия. 2017. Т. 59, N 6. С. 502–509.
- [11] *Бессонов А. А., Крот Н. Н. //* Радиохимия. 2007. Т. 49, N 6. С. 500–502.
- [12] Sheldrick G. M. SADABS. Madison, Wisconsin (USA): Bruker AXS, 2008.
- [13] Sheldrick G. M. // Acta Crystallogr., Sect. A. 2008. Vol. 64, N 1. P. 112–122.
- [14] Sheldrick G. M. // Acta Crystallogr., Sect. C. 2015. Vol. 71, N 1. P. 3–8.
- [15] Григорьев М. С., Антипин М. Ю., Крот Н. Н. // Радиохимия. 2004. Т. 46, N 3. С. 206–211.

- [16] Чарушникова И. А., Крот Н. Н., Старикова З. А. // Радиохимия. 2008. Т. 50, N 2. С. 102–104.
- [17] Чарушникова И. А., Григорьев М. С., Крот Н. Н. // Радиохимия. 2010. Т. 52, N 2. С. 120–125.
- [18] Григорьев М. С., Чарушникова И. А., Федосеев А. М. // Радиохимия. 2015. Т. 57, N 5. С. 413–416.
- [19] Григорьев М. С., Чарушникова И. А., Федосеев А. М. // Радиохимия. 2016. Т. 58, N 4. С. 302–310.
- [20] Go Y. B., Wang X., Jacobson A. J. // Inorg. Chem. 2007. Vol. 46, N 16. P. 6594–6600.
- [21] Blatov V. A. // IUCr CompComm Newslett. 2006. N 7. P. 4–38.