## Термодинамическое моделирование термических процессов с участием радионуклидов хлора, кальция, бериллия, никеля, цезия при нагреве радиоактивного графита в парах воды

© Н. М. Барбин\*<sup>*a-в*</sup>, А. М. Кобелев<sup>*a*</sup>, Д. И. Терентьев<sup>*a*</sup>, С. Г. Алексеев<sup>*a,z*</sup>

<sup>а</sup> Уральский институт Государственной противопожарной службы МЧС России, 620062, Екатеринбург, ул. Мира, д. 22; \* e-mail: NMBarbin@mail.ru

<sup>6</sup> Уральский государственный аграрный университет, 620075, г. Екатеринбург, ул. Карла Либкнехта, д. 42

<sup>в</sup> Уральский федеральный университет им. Б. Н. Ельцина, 620002, Екатеринбург, ул. Мира, д. 19

<sup>г</sup> Научный-инженерный центр «Надежность и ресурс больших систем и машин» УрО РАН, 620049, Екатеринбург, ул. Студенческая, д. 54a

Получена 27.02.2018, после доработки 13.06.2018, принята к публикации 20.06.2018 УДК 541.13+11

Методом термодинамического моделирования исследовано поведение радионуклидов Cl, Ca, Be, Ni, Cs при нагревании радиоактивного графита в парах воды. При помощи программы TERRA проведен полный термодинамический анализ в интервалах температур от 373 до 3273 К с целью установления возможного состава газовой фазы. Установлено, что хлор в интервале температур от 873 до 1973 К находится в виде газообразного HCl, при температуре от 1973 до 3273 К – в виде газообразных HCl, Cl. Кальций в диапазоне температур от 1973 до 3273 К находится в виде газообразных Ca(OH)<sub>2</sub>, Ca, CaOH и ионизированных CaOH<sup>+</sup>, Ca<sup>+</sup>. Бериллий в интервале температур от 1873 до 3273 К находится в виде газообразных Be(OH)<sub>2</sub>, BeOH, Be, BeOH. Никель при температуре от 1673 до 3273 К находится в виде газообразных NiH, Ni(OH)<sub>2</sub>, NiOH, Ni, в интервале температур от 2173 до 3273 К – в виде газообразных CsCl, CsOH, ионизированного Cs<sup>+</sup>, при температур от 973 до 3273 К находится в виде газообразных CsCl, CsOH, ионизированного Cs<sup>+</sup>, при температуре от 1473 до 3273 К – в виде газообразных CsCl, CsOH, ионизированного Cs<sup>+</sup>, при температуре от 1473 до 3273 К – в виде газообразных CsCl, CsOH, ионизированного Cs<sup>+</sup>, установлены фаз и между конденсированными и газовой фазами. Рассчитаны их константы равновесия.

Ключевые слова: термодинамическое моделирование, радионуклиды, пары воды, константы равновесия, радиоактивный графит.

DOI: 10.1134/S0033831119020096

В России и странах мирового сообщества существует проблема обращения с облученным графитом активных зон уран-графитовых реакторов после выведения их из эксплуатации. Всего в России накоплено около 60 тысяч тонн облученного графита [1].

В настоящий момент в мире не существует окончательного принятого решения по проблеме утилизации отработанного графита [2]. Одним из решений данной проблемы является его сжигание [1].

Предлагаются разные способы сжигания графита: традиционный, в кипящем слое, газификация графита с помощью водяного пара (пиролиз). По оценке специалистов, сжигание отработанного графита даст в итоге твердые радиоактивные отходы, готовые для длительного захоронения, объемом 1–2% от первоначального объема графита. При сжигании образуется газообразный радиоактивный продукт –  $^{14}CO_2$ .  $^{14}CO_2$  можно превратить в инертные соединения на основе карбонатов кальция и магния [3].

Ранее было изучено поведение U, Am, Pu при нагреве радиоактивного графита в парах воды ме-

тодом термодинамического моделирования [4].

Целью работы является определение равновесного состава газовой фазы при взаимодействии радиоактивного графита с парами воды в широком температурном диапазоне. Задача работы состоит в проведении термодинамического моделирования рассматриваемой системы и определении констант равновесия основных реакций, протекающих при нагреве радиоактивного графита, содержащего радионуклиды Cl, Ca, Be, Ni и Cs.

## Методика расчета

При исследовании сложных по химическому составу многофазных систем в условиях высоких температур применяют модель термодинамического моделирования. Проведение натурных экспериментов при высоких температурах не всегда позволяет получить достоверные сведения в связи с их сложностью и ошибками измерений [5]. Метод термодинамического моделирования успешно применяли в химии и металлургии [4, 6–11].

| Фаза                      | Фазовый состав   | Содержание, мас%     |  |  |
|---------------------------|------------------|----------------------|--|--|
| Газовая (75%)             | H <sub>2</sub> O | 100                  |  |  |
|                           | С                | 99.98                |  |  |
| Конденсированная<br>(25%) | U                | $1.15 \cdot 10^{-2}$ |  |  |
|                           | Cl               | $1.88 \cdot 10^{-3}$ |  |  |
|                           | Ca               | $2.69 \cdot 10^{-4}$ |  |  |
|                           | Be               | $1.19 \cdot 10^{-5}$ |  |  |
|                           | Ni               | $7.99 \cdot 10^{-6}$ |  |  |
|                           | Cs               | $3.99 \cdot 10^{-6}$ |  |  |

Таблица 1. Состав исходной системы

Расчет реализован с помощью программы TERRA [5, 12]. Данная программа предназначена для расчета состава фаз, термодинамических и транспортных свойств произвольных систем с химическими и фазовыми превращениями. Теоретические основы, заложенные в программный комплекс, приведены в работах [5, 12]. Расчет равновесного состава фаз и параметров равновесия проводили с использованием справочной базы данных свойств индивидуальных веществ (ИВТАНТЕРМО, НSC и др.). Информация об исходном составе радиоактивного графита взята из работ [13, 14] и приведена в табл. 1. Предполагаемые формы существования радионуклидов в данной системе приведены в табл. 2.

## Результаты и обсуждение

Распределение углерода по фазам представлено на рис. 1. В диапазоне температур от 373 до 573 К содержание конденсированного С уменьшается до ~20 мол% и содержание газа CH<sub>4</sub> увеличивается до ~38 мол% по реакции (1) (табл. 3). В области температур от 573 до 873 К содержание конденсированного углерода уменьшается до нуля с образованием газа CO (~32 мол%) в соответствии с реакцией (2). При температуре от 373 до 773 К содержание газа CO<sub>2</sub> увеличивается до ~54 мол% согласно реакции (3). В интервале температур от 573 до



**Рис. 1.** Распределение С по фазам:  $1 - CO_{2(r)}$ ;  $2 - CH_{4(r)}$ ,  $3 - C_{(k)}$ ,  $4 - CO_{(r)}$ .

773 К содержание газа CH<sub>4</sub> уменьшается до ~30 мол% по реакции (4). В диапазоне температур от 573 до 973 К содержание газа CH<sub>4</sub> уменьшается до ~2 мол%, а газа CO – увеличивается до ~57 мол% в соответствии с реакцией (5). Конденсированный C при температуре ~873 К переходит в газовую фазу в виде CH<sub>4</sub> (~16 мол%), CO (~32 мол%) и CO<sub>2</sub> (~52 мол%). При повышении температуры до ~1073 К содержание газообразного CH<sub>4</sub> уменьшается до нуля. В диапазоне температур от 773 до 3273 К содержание газа CO<sub>2</sub> уменьшается до ~8 мол%, а газа CO – увеличивается до ~92 мол% по реакциям (6)–(8).

Распределение хлора по фазам показано на рис. 2. До температуры 573 К хлор находится в виде конденсированного UO<sub>2</sub>Cl<sub>2</sub>. При температуре от 573 до 873 К хлор из конденсированного UO<sub>2</sub>Cl<sub>2</sub> переходит в газообразный HCl. Конденсированный UO<sub>2</sub>Cl<sub>2</sub> разлагается при температуре ~873 К. В интервале температур от 873 до 1973 К хлор находится в виде газообразного HCl. В области температур от 1973 до 3273 К содержание газообразного HCl уменьшается до ~70 мол%, а газообразного Cl – увеличивается до ~30 мол% в соответствии с реакцией (9).

Таблица 2. Предполагаемые формы существования радионуклидов

| Радионуклид<br>в графите                                | Тип соединения в равновесной системе                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| <sup>12</sup> C, <sup>14</sup> C                        | $\begin{array}{l} C_{(k)}, C_{(r)}, CO_{(r)}, CO_{2(r)}, C_{2}O_{(r)}, C_{3}O_{2(r)}, CH_{(r)}, CH_{2(r)}, CH_{3(r)}, CH_{4(r)}, C_{2}H_{(r)}, C_{2}H_{4(r)}, C_{2}H_{5(r)}, C_{2}H_{6(r)}, \\ C_{3}H_{8(r)}, CHO_{(r)}, CHO_{2(r)}, CH_{2}O_{(r)}, CH_{2}O_{2(r)}, CH_{3}O_{(r)}, C_{2}H_{4}O_{2(r)}, C_{3}H_{6}O_{(r)}, Ni_{3}C_{(k)}, NiCO_{3(k)}, ClCO_{(r)}, CH_{3}Cl_{(r)}, \\ HClCO_{(r)}, BeCO_{3(k)}, CaCO_{3(k)}, Cs_{2}CO_{3(k)}, CO^{+}, CO^{+}_{2}, CHO^{+} \end{array}$ |  |  |  |  |  |
| <sup>238</sup> U, <sup>236</sup> U,<br><sup>235</sup> U | $\begin{array}{c} U_{(r)}, UO_{(r)}, UO_{2(\kappa)}, UO_{2(r)}, UO_{3(\kappa)}, UO_{3(r)}, U_{3}O_{8(\kappa)}, U_{4}O_{9(\kappa)}, UOCl_{(\kappa)}, UO_{2}Cl_{2(\kappa)}, CaUO_{4(\kappa)}, U^{+}, UO^{+}, UO^{+}_{2}, UO^{-}_{2}, UO^{-}_{3}, UO^{-}_{3} \end{array}$                                                                                                                                                                                                                |  |  |  |  |  |
| <sup>36</sup> Cl                                        | $\begin{array}{l} Cl_{(r)}, ClO_{(r)}, HCl_{(r)}, HOCl_{(r)}, UO_2Cl_{2(\kappa)}, ClCO_{(r)}, CH_3Cl_{(r)}, HClCO_{(r)}, NiCl_{(r)}, UOCl_{(\kappa)}, UO_2Cl_{2(\kappa)}, BeCl_{(r)}, BeOHCl_{(r)}, CaCl_{(r)}, CaCl_{2(\kappa)}, CaCl_{2(\kappa)}, CaCl_{2(\kappa)}, CsCl_{2(\kappa)}, CsCl_{(r)}, Cl^-, CaCl^+ \end{array}$                                                                                                                                                         |  |  |  |  |  |
| <sup>41</sup> Ca                                        | $Ca_{(r)}, CaO_{(\kappa)}, CaO_{(r)}, CaH_{(r)}, CaOH_{(r)}, Ca(OH)_{2(\kappa)}, Ca(OH)_{2(r)}, CaCl_{(r)}, CaCl_{2(\kappa)}, CaCl_{2(r)}, CaUO_{4(\kappa)}, CaOHCl_{(r)}, CaCO_{3(\kappa)}, Ca^{+}, CaO^{+}, CaOH^{+}, CaCl^{+}$                                                                                                                                                                                                                                                     |  |  |  |  |  |
| <sup>10</sup> Be                                        | $Be_{(r)}, BeO_{(\kappa)}, BeO_{(r)}, BeH_{(r)}, BeH_{2(r)}, Be(OH)_{(r)}, Be(OH)_{2(\kappa)}, Be(OH)_{2(r)}, BeCl_{(r)}, BeOHCl_{(r)}, BeCO_{3(\kappa)}, Be^+$                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| <sup>59</sup> Ni                                        | $Ni_{3}C_{(\kappa)}, NiCO_{3(\kappa)}, Ni_{(r)}, NiO_{(\kappa)}, NiO_{(r)}, NiH_{(r)}, NiOH_{(r)}, Ni(OH)_{2(\kappa)}, Ni(OH)_{2(r)}, NiCl_{(r)}, Ni^{+}$                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| <sup>137</sup> Cs, <sup>134</sup> Cs                    | $Cs_{(\Gamma)}, CsO_{(\Gamma)}, CsH_{(\Gamma)}, CsOH_{(\Gamma)}, CsCl_{2(\kappa)}, CsCl_{(\Gamma)}, Cs_2CO_{3(\kappa)}, Cs^+$                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |

| Номер<br>реакции | Реакция                                                                              | Δ <i>Τ</i> , Κ | а       | Ь                   | $\Delta a$        | $\Delta b$ |
|------------------|--------------------------------------------------------------------------------------|----------------|---------|---------------------|-------------------|------------|
| 1                | $2C_{(K)} + 2H_2O = CH_4 + CO_2$                                                     | 373-573        | 0.7     | $-1.6 \cdot 10^{3}$ | 0.06              | 27.1       |
| 2                | $C_{(K)} + H_2O = CO + H_2$                                                          | 573-873        | 14.04   | $-1.4 \cdot 10^4$   | 0.5               | 403.3      |
| 3                | $C_{(k)} + 2H_2O = CO_2 + 2H_2$                                                      | 373-873        | 12.366  | -11338.7            | 0.129386          | 67.11184   |
| 4                | $CH_4 + 2H_2O = CO_2 + 4H_2$                                                         | 573-773        | 25.1    | $-2.1 \cdot 10^4$   | 0.1               | 118.3      |
| 5                | $CH_4 + H_2O = CO + 3H_2$                                                            | 573-973        | 29.7    | $-2.6 \cdot 10^4$   | 0.1               | 82.7       |
| 6                | $CO_2 + CH_4 = 2CO + 2H_2$                                                           | 773–973        | 34.09   | $-3.1 \cdot 10^4$   | 0.01              | 16.4       |
| 7                | $CO_2 + H_2 = CO + H_2O$                                                             | 873–2573       | 2.3362  | -4161.41            | 0.044432          | 65.33821   |
| 8                | $CO_2 + H_2O = CO + 2OH$                                                             | 2573-3273      | -2.9526 | 27095.62            | 0.42412           | 1228.228   |
| 9                | $HCl + CO_2 = Cl + CO + OH$                                                          | 1973-3273      | 18.2    | $-6.4 \cdot 10^4$   | 0.01              | 28.2       |
| 10               | $CaCO_{3(\kappa)} + C_{(\kappa)} = CaO_{(\kappa)} + 2CO$                             | 873-1273       | 22.079  | -26287.5            | 0.972157          | 1015.665   |
| 11               | $CaUO_{4(\kappa)} + H_2 = CaO_{(\kappa)} + UO_{2(\kappa)} + H_2O$                    | 1173–1473      | 1.2     | $-2.4 \cdot 10^{3}$ | 0.03              | 46.9       |
| 12               | $CaO_{(\kappa)} + H_2 + CO_2 = Ca(OH)_2 + CO$                                        | 1473–1873      | 10.8    | $-3.5 \cdot 10^4$   | 0.03              | 54.4       |
| 13               | $Ca(OH)_2 = CaOH^+ + OH^-$                                                           | 1973-3073      | 12.5    | $-9.5 \cdot 10^4$   | 0.01              | 42.4       |
| 14               | $Ca(OH)_2 = CaOH + OH$                                                               | 1973-3073      | 14.2    | $-5.4 \cdot 10^4$   | 0.01              | 38.5       |
| 15               | $Ca(OH)_2 = Ca + 2OH$                                                                | 1973-3273      | 25.7    | $-10^{5}$           | 0.01              | 48.8       |
| 16               | $Ca(OH)_2 = Ca^+ + HO_2^- + H$                                                       | 1973-3273      | 24      | $-1.7 \cdot 10^5$   | 0.01              | 25.36      |
| 17               | $CaOH^+ = Ca^+ + OH$                                                                 | 3073-3273      | 12.551  | -55465.9            | 0.000842          | 2.670339   |
| 18               | $CaOH = Ca^+ + OH^-$                                                                 | 3073-3273      | 10.8    | $-9.6 \cdot 10^4$   | $6 \cdot 10^{-5}$ | 0.193      |
| 19               | CaOH = Ca + OH                                                                       | 3073-3273      | 11.5    | $-4.6 \cdot 10^4$   | 0.001             | 5.4        |
| 20               | $BeO_{(\kappa)} + CO_2 + H_2 = Be(OH)_2 + CO$                                        | 973–1873       | 10.508  | -30154.6            | 0.028792          | 38.39083   |
| 21               | $Be(OH)_2 = BeOH + OH$                                                               | 2173-3273      | 15.9    | $-6.6 \cdot 10^4$   | 0.02              | 65.2       |
| 22               | $Be(OH)_2 = Be + 2OH$                                                                | 2873-3273      | 28.157  | -121399             | 0.017407          | 53.32269   |
| 23               | $Be(OH)_2 = BeO + 2H + O$                                                            | 3073-3273      | 42.945  | -177785             | 0.015332          | 48.60161   |
| 24               | $2Ni(OH)_{2(\kappa)} + 2C_{(\kappa)} = 2NiO_{(\kappa)} + CH_4 + CO_2$                | 373-573        | 35.7    | $-1.3 \cdot 10^4$   | 0.04              | 21.8       |
| 25               | $NiCO_{3(\kappa)} = NiO_{(\kappa)} + CO_2$                                           | 373-573        | 19.7    | $-7.3 \cdot 10^3$   | 0.01              | 6.4        |
| 26               | $3NiO_{(\kappa)} + 4CH_4 = Ni_3C_{(\kappa)} + 8H_2 + 3CO$                            | 673–973        | 117.1   | $-9.5 \cdot 10^4$   | 0.1               | 129.3      |
| 27               | $Ni_3C_{(\kappa)} + 4CO_2 = 3NiO_{(\kappa)} + 5CO$                                   | 973-1173       | 19      | $-2.9 \cdot 10^4$   | 0.03              | 40.8       |
| 28               | $2Ni_{3}C_{(\kappa)} + 3H_{2} + 2CO_{2} = 6NiH + 4CO$                                | 1173-1373      | 104.8   | $-2.6 \cdot 10^{5}$ | 0.02              | 27.5       |
| 29               | $2\mathrm{NiO}_{(\kappa)} + \mathrm{H}_2 = \mathrm{Ni}(\mathrm{OH})_2 + \mathrm{Ni}$ | 1173-1473      | 27.914  | -77484.8            | 0.056078          | 73.39391   |
| 30               | $2\mathrm{NiO}_{(\kappa)} + 3\mathrm{H}_2 = 2\mathrm{NiH} + 2\mathrm{H}_2\mathrm{O}$ | 1273-1473      | 28.7    | $-7.5 \cdot 10^4$   | 0.07              | 108.8      |
| 31               | $2NiO_{(\kappa)} + H_2 = 2NiOH$                                                      | 1273-1473      | 28.6    | $-8.10^{4}$         | 0.05              | 81.2       |
| 32               | $NiO_{(\kappa)} + H_2 = Ni + H_2O$                                                   | 1273-1673      | 20.1    | $-4.8 \cdot 10^4$   | 0.05              | 84.05      |
| 33               | $2NiH + CO_2 = 2Ni + H_2O + CO$                                                      | 1473–2573      | 14.5    | $-2.3 \cdot 10^4$   | 0.06              | 123.6      |
| 34               | $Ni(OH)_2 + H_2 = Ni + 2H_2O$                                                        | 1473-2173      | 12.2    | $-1.8 \cdot 10^4$   | 0.04              | 81.17      |
| 35               | $2NiOH + H_2 = 2Ni + 2H_2O$                                                          | 1573-2573      | 11.1    | $-1.5 \cdot 10^4$   | 0.05              | 107.6      |
| 36               | NiH = Ni + H                                                                         | 2573-3273      | 12.6    | $-3.6 \cdot 10^4$   | 0.01              | 36.1       |
| 37               | NiOH = Ni + OH                                                                       | 2573-3273      | 13.7    | $-4.1 \cdot 10^4$   | 0.02              | 60.5       |
| 38               | $CsCl_{(\kappa)} = CsCl$                                                             | 573–973        | 16.1    | $-2.2 \cdot 10^4$   | 0.3               | 234.7      |
| 39               | $CsCl + CO_2 + H_2 = CsOH + CO + HCl$                                                | 973-1273       | 4.6     | $-2.10^{4}$         | 0.009             | 11.03      |
| 40               | $CsCl = Cs^{+} + Cl^{-}$                                                             | 973–1573       | 8.7     | $-5.6 \cdot 10^4$   | 0.01              | 13.8       |
| 41               | $CsOH = Cs^+ + OH^-$                                                                 | 1273-1573      | 10.03   | $-6.9 \cdot 10^4$   | 0.009             | 13.1       |

Таблица 3. Основные реакции и соответствующие им константы равновесия

Распределение кальция по фазам представлено на рис. 3. Кальций до температуры 673 К находится в виде конденсированного CaCO<sub>3</sub>. В диапазоне температур от 673 до 1173 К содержание конденсированного CaCO<sub>3</sub> уменьшается до ~4 мол%, а конденсированного CaUO<sub>4</sub> – увеличивается до ~50 мол%. При температуре от 873 до 1273 К содержание конденсированного CaCO<sub>3</sub> уменьшается до ~1 мол%, а конденсированного CaO – увеличивается до ~49 мол% по реакции (10). В диапазоне температур от 1173 до 1473 К содержание конденсированного CaUO<sub>4</sub> уменьшается до ~45 мол%, а конденсированного CaO – увеличивается до ~ 51 мол% в соответствии с реакцией (11). В области температур от 1473 до 1873 К содержание конденсированного CaO уменьшается до ~6 мол%, а газо-



Рис. 2. Распределение Cl по фазам:  $1 - UO_2Cl_{2(\kappa)}$ ,  $2 - HCl_{(r)}$ ,  $3 - Cl_{(r)}$ .



Рис. 3. Распределение Са по фазам:  $1 - CaCO_{3(\kappa)}$ ,  $2 - CaUO_{4(\kappa)}$ ,  $3 - CaO_{(\kappa)}$ ,  $4 - Ca(OH)_{2(r)}$ ,  $5 - CaOH^+$ ,  $6 - CaOH_{(r)}$ ,  $7 - Ca_{(r)}$ ,  $8 - Ca^+$ .



Рис. 4. Распределение Ве по фазам:  $1 - \text{BeO}_{(\kappa)}$ ,  $2 - \text{Be}(\text{OH})_{2(\kappa)}$ ,  $3 - \text{Be}(\text{OH})_{2(r)}$ ,  $4 - \text{BeOH}_{(r)}$ ,  $5 - \text{Be}_{(r)}$ ,  $6 - \text{BeO}_{(r)}$ .

образного Ca(OH)<sub>2</sub> – увеличивается до ~80 мол% по реакции (12). Конденсированные CaO, CaUO<sub>4</sub> исчезают при температуре ~1973 К. В интервале температур от 1973 до 3073 К содержание газообразного Ca(OH)<sub>2</sub> уменьшается до ~12 мол% и увеличивается содержание ионизированного CaOH<sup>+</sup> до ~57, газообразного CaOH – до ~12 мол% в соответствии с реакциями (13), (14). В области температур от 1973 до 3273 К содержание газообразного Са(OH)<sub>2</sub> уменьшается до ~6 мол% и увеличивается содержание газообразного Са до ~13, ионизированного Са<sup>+</sup> – до ~14 мол% согласно реакциям (15), (16). При температуре от 3073 до 3273 К содержание ионизированного СаOH<sup>+</sup> уменьшается до ~56, газообразного СаOH – до ~10 мол% в соответствии с реакциями (17)–(19).

Распределение бериллия по фазам показано на рис. 4. При температуре 473 К содержание конденсированного Be(OH)<sub>2</sub> уменьшается до нуля, а кон-BeO ленсированного увеличивается ЛО ~100 мол%. Состав данной фазы не меняется до температуры 973 К. В интервале температур от 973 до 1873 К содержание конденсированного ВеО уменьшается до нуля, а газообразного Be(OH)<sub>2</sub> – увеличивается до ~100 мол% по реакции (20). В области температур от 1873 до 2373 К в газовой фазе присутствует Ве(ОН)<sub>2</sub> (~100 мол%).При увеличении температуры от 2373 до 3273 К содержание газообразного Be(OH)<sub>2</sub> уменьшается до ~76 мол% и увеличивается содержание газообразных ВеОН до ~19. Ве до ~4, ВеО до ~1 мол% в соответствии с реакциями (21)-(23).

Распределение никеля по фазам представлено на рис. 5. При температуре от 373 до 573 К содержание конденсированных Ni(OH)2, NiCO3 уменьшается до нуля, а конденсированного NiO - увеличивается до ~100 мол% по реакциям (24), (25). В области температур от 673 до 973 К содержание конденсированного NiO уменьшается до ~73 мол%, а конденсированного Ni<sub>3</sub>C – увеличивается до ~27 мол% в соответствии с реакцией (26). В интервале температур от 973 до 1173 К содержание конденсированного Ni<sub>3</sub>C уменьшается до ~5 мол%, а конденсированного NiO – увеличивается до ~95 мол% согласно реакции (27). При температуре от 1173 до 1373 К уменьшается содержание конденсированного Ni<sub>3</sub>C до нуля и увеличивается содержание газообразного NiH до ~36 мол% по реакции (28). В интервале температур от 1173 до 1473 К уменьшается содержание конденсированного NiO до ~10 мол% и увеличивается содержание газообразного Ni(OH)<sub>2</sub> до  $\sim$ 7 мол% согласно реакции (29). В диапазоне температур от 1273 до 1473 К увеличивается содержание газообразных NiH до ~52 мол%, NiOH до ~7 мол% в соответствии с реакциями (30), (31). В области температур от 1273 до 1673 К уменьшается содержание конденсированного NiO до нуля и увеличивается содержание газообразного Ni до ~47 мол% по реакции (32). При температуре от 1473 до 2173 К в газовой фазе содержание газообразного Ni(OH)2 уменьшается до нуля, NiOH – до ~5, NiH – до ~17 мол%, а газообразного Ni – увеличивается до ~78 мол% соглас-



Рис. 5. Распределение Ni по фазам:  $1 - \text{NiO}_{(\kappa)}$ ,  $2 - \text{Ni}(\text{OH})_{2(\kappa)}$ ,  $3 - \text{NiCO}_{3(\kappa)}$ ,  $4 - \text{Ni}_{3}C_{(\kappa)}$ ,  $5 - \text{NiH}_{(r)}$ ,  $6 - \text{Ni}(\text{OH})_{2(r)}$ ,  $7 - \text{Ni}(\text{OH})_{(r)}$ ,  $8 - \text{Ni}_{(r)}$ .



**Рис. 6.** Распределение Cs по фазам:  $1 - CsCl_{(\kappa)}$ ,  $2 - CsCl_{(r)}$ ,  $3 - Cs^+$ ,  $4 - Cs_2CO_{3(\kappa)}$ ,  $5 - CsOH_{(r)}$ .

но реакции (34). В интервале температур от 1473 до 2573 К уменьшается содержание газообразного NiH до ~9 мол% и увеличивается содержание газообразного Ni до ~87 мол% в соответствии с реакцией (33). В области температур от 1573 до 2573 К содержание газообразного NiOH уменьшается до ~3 мол%, а газообразного Ni – увеличивается до ~87 мол% в соответствии с реакцией (35). В интервале температур от 2573 до 3273 К содержание газообразных NiH и NiOH уменьшается до ~4 и ~2 мол% соответственно, а газообразного Ni – увеличивается до ~94 мол% по реакциям (36), (37).

Распределение Cs по фазам показано на рис. 6. В области температур от 373 до 473 К содержание конденсированного  $Cs_2CO_3$  уменьшается до нуля, а конденсированного CsCl – увеличивается до ~100 мол%. В интервале температур от 473 до 573 К цезий находится в виде конденсированного CsCl. При температуре от 573 до 973 К содержание конденсированного CsCl уменьшается до нуля, а газообразного CsCl – увеличивается до ~100 мол% по реакции (38). В интервале температур от 973 до 1273 К содержание газообразного CsCl уменьшает-

ся до ~37 мол%, а газообразного CsOH – увеличивается до ~35 мол% в соответствии с реакцией (39). Содержание Cs<sup>+</sup> увеличивается до ~28 мол%. В интервале температур от 973 до 1573 К содержание газообразного CsCl уменьшается до нуля, а ионизированного Cs<sup>+</sup> – увеличивается до ~100 мол% согласно реакции (40). В диапазоне температур от 1273 до 1573 К содержание газообразного CsOH уменьшается до нуля в соответствии с реакцией (41). При температуре от 1573 до 3273 К состав газовой фазы не изменяется.

На рис. 1–6 не приведены соединения, присутствующие в равновесной системе в концентрациях менее  $10^{-2}$  мол%.

По результатам термодинамического моделирования были определены основные реакции и их константы равновесия (табл. 3). Константы равновесия представлены аналитическими уравнениями вида

$$\ln K_i = a_i + b_i/T.$$

В работе [4] рассчитанные с использованием метода термодинамического моделирования константы реакций испарения UO<sub>2</sub> и PuO<sub>2</sub> сопоставлены с экспериментальными данными, приведенными в справочниках. Результаты расчета близки к экспериментальным данным. Это позволяет предположить, что термодинамическое моделирование приемлемо для изучения поведения радионуклидов в системе радиоактивный графит–пары воды.

Окисление графита происходит с образованием  $CH_4$  до температуры ~573 K, CO и  $CO_2$  до температуры ~873 K. При температуре >873 K конденсированный графит в системе отсутствует. Обогащенная радионуклидами оксидно-солевая конденсированная фаза исчезает при температуре ~1973 K. Определено, что содержащиеся в радиоактивном графите в виде примесей Cl и Cs начинают переходить в газовую фазу при температуре ~573 K, Be – при ~973 K, Ni – при ~1173 K, Ca – при ~1373 K.

## Список литературы

- Скачек М. А. Радиоактивные компоненты АЭС: обращение, переработка, локализация: учеб. пособие для вузов. М.: МЭИ, 2014.
- [2] Кондиционирование реакторного графита выводимых из эксплуатации уран-графитовых реакторов для целей захоронения: Электронные данные. http://www.atomic-energy.ru/ articles/2016/06/08/66585 (дата обращения 14.05.2018).
- [3] Цыганов А. А., Хвостов В. И., Комаров Е. А. и др. // Изв. Томского политех. ун-та. 2007. Т. 310, N 2. С. 94–98.
- [4] Барбин Н. М., Кобелев А. М., Терентьев Д. И., Алексеев С. Г. //Радиохимия. 2017. Т. 59, N 5. С. 445–448.
- [5] Белов Г. В., Трусов Б. Г. Термодинамическое моделирование химически реагирующих систем. М.: МГТУ им. Н. Э. Баумана, 2013.

- [6] Барбин Н. М., Кобелев А. М., Терентьев Д. И., Алексеев С. Г. // Изв. вузов. Химия и хим. технология. 2016. Т. 59, N 9. С. 16–20.
- [7] Barbin N., Kobelev A., Terent'ev D., Alekseev S. MATEC Web of Conf. 2017. Vol. 115. Paper 04005. DOI: 10.1051/ matec-conf/20171150400.
- [8] Кобелев А. М., Барбин Н. М., Терентьев Д. И., Алексеев С. Г. // Всерос. конф. «ХХХІ Сибирский теплофизический семинар». Новосибирск: Ин-т теплофизики СО РАН им. С. С. Кутателадзе, 2014. С. 525–527.
- [9] Барбин Н. М., Кобелев А. М., Терентьев Д. И., Алексеев С. Г. // IX семинар вузов по теплофизике и энергетике. Казань: КГЭУ, 2015. С. 71–78.
- [10] Барбин Н. М., Овчинникова И. В., Терентьев Д. И., Алексеев С. Г. // Прикладная физика. 2014. N 3. C. 8–12.

- [11] Барбин Н. М., Шавалеев М. Р., Терентьев Д. И., Алексеев С. Г. // Прикл. физика. 2015. N 6. С. 42–48.
- [12] Ватолин Н. А., Моисеев Г. К., Трусов Б. Г. Термодинамическое моделирование в высокотемпературных неорганических системах. М.: Металлургия, 1994.
- [13] Роменков А. А., Туктаров М. А., Карлина О. К. и др. Опытная установка для окисления графитовых РАО в расплаве солей: результаты испытаний // Годовой отчет НИКИЭТ. М., 2010. С. 171–173.
- [14] Шидловский В. В., Роменков А. А., Хаттарова Е. А. и др. Анализ радиационной опасности графитовых кладок остановленных промышленных уран-графитовых реакторов ФГУП «ПО «Маяк» // Годовой отчет НИКИЭТ. М., 2010. С. 178–180.