УДК 621.039.59

ВОЛОКСИДАЦИЯ СМЕШАННОГО НИТРИДНОГО УРАН-ПЛУТОНИЕВОГО ОТРАБОТАВШЕГО ЯДЕРНОГО ТОПЛИВА

© 2023 г. В. Н. Момотов^{*a*, *, А. О. Макаров^{*a*}, А. Ю. Волков^{*a*}, П. В. Лакеев^{*a*}, Д. Е. Тихонова^{*a*}, К. Н. Двоеглазов^{*ó*, **}}

^а Научно-исследовательский институт атомных реакторов, 433510, Димитровград Ульяновской обл., Западное шоссе, д. 9 ⁶AO «Прорыв», 107140, Москва, ул. Малая Красносельская, д. 2/8 e-mail: * momotov(@niiar.ru, ** dkn(@proryv2020.ru

Поступила в редакцию 26.12.2022, после доработки 26.01.2023, принята к публикации 27.01.2023

Проведена оценка эффективности волоксидации смешанного нитридного уран-плутониевого отработавшего ядерного топлива (СНУП ОЯТ) для отделения топливной композиции от оболочек твэлов и удаления ³H и ¹⁴C. Показано, что полнота отделения ОЯТ от оболочек твэлов в оптимальных условиях находится на уровне 98–99%. Остаточное содержание трития в волоксидированном топливе не превышает 0.2% от его содержания в исходном образце ОЯТ, радиоуглерод удаляется на 98%.

Ключевые слова: волоксидация ОЯТ, смешанное нитридное уран-плутониевое топливо, продукты деления, радиохимический анализ, тритий, радиоуглерод.

DOI: 10.31857/S0033831123020041, EDN: XDJFOW

ВВЕДЕНИЕ

Одним из перспективных вариантов переработки СНУП ОЯТ реактора БРЕСТ-ОД-300 на модуле переработки опытно-демонстрационного энергетического комплекса (МП ОДЭК) является комбинированная технологическая схема, включающая на первой стадии пирохимическую переработку для удаления основных продуктов деления и снижения удельной активности ОЯТ, на второй стадии предусмотрена гидрометаллургическая переработка ОЯТ [1–4].

В качестве одной из головных операций переработки СНУП ОЯТ на МП ОДЭК рассматривается объемное окисление (волоксидация) отработавшего ядерного топлива [5, 6]. Операция предназначена для отделения топливной композиции от оболочек твэлов и удаления из топлива части летучих продуктов деления.

В результате окисления нитридов урана и плутония происходит перестройка кристаллической решетки основных компонентов ОЯТ, что приводит к рассыпанию топливных таблеток и отделению топливной композиции от оболочек твэлов. Дополнительно волоксидация позволит отделить от топливной композиции тритий и радиоуглерод для их локализации на начальной стадии переработки ОЯТ [7–9].

Процесс отделения топлива от оболочки в результате окисления топливной композиции известен и апробирован на модельных системах и на реальных образцах оксидного ОЯТ [7, 10–18]. Получены данные по закономерностям окисления и растворения волоксидированного модельного СНУП топлива [9, 19].

Целью данной работы является оценка эффективности волоксидации СНУП ОЯТ для отделения топливной композиции от оболочек и удаления летучих продуктов деления.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исследования проводили со СНУП топливом, отработавшим в реакторе БН-600 в составе комби-

№ эксперимента	Образец СНУП ОЯТ	Величина выгорания, % т.а.	Наружный диаметр и толщина стенки оболочки, мм	Длина фрагментов твэлов, мм	Масса, фрагментов твэлов, г
1	КЭТВС-1	5.45 [20]	6.9×0.4 [21]	15–38	66.2
2					27.0
3				5–20	45.1
4					59.0
5					55.7
6					57.6
7	КЭТВС-7	6.84 [20]	6.9×0.4 [22]	10–20	180.3
8	ЭТВС-10	6.0 [23]	9.3×0.5 [22]		135.9

Таблица 1. Характеристики сформированных партий фрагментов твэлов

нированных экспериментальных ТВС (КЭТВС-1, 7) и экспериментальной тепловыделяющей сборки ЭТВС-10.

Для проведения экспериментальных исследований твэлы фрагментировали механическим способом, из полученных фрагментов сформированы 8 партий, каждую из которых взвешивали. При резке фрагментов твэлов локального возгорания СНУП ОЯТ или искрообразования не зафиксировано.

Основные характеристики отработавшего топлива и сформированных партий фрагментов твэлов представлены в табл. 1.

Волоксидацию подготовленных партий ОЯТ проводили с применением экспериментального аппарата, схема которого представлена на рис. 1. В основе аппарата печь сопротивления с диапазоном рабочих температур до 900°С. В печи размещен реактор из жаропрочной нержавеющей стали, снабженный входным и выходным патрубками для подачи газов и отвода летучих продуктов деления (ЛПД). Для обеспечения окисления ОЯТ в токе влажного воздуха входной патрубок реактора соединен с емкостью из нержавеющей стали, заполненной дистиллированной водой, нагретой до температуры 40–50°С. Подаваемый в зону окисления ОЯТ воздух вначале проходит через слой подогретой воды, затем поступает в зону окисления ОЯТ.

Для контроля температуры процесса в корпусе реактора размещена термопара хромель–алюмель. Внутри корпуса реактора на подвесе находится ке-

Рис. 1. Экспериментальный аппарат волоксидации СНУП ОЯТ

151

РАДИОХИМИЯ том 65 № 2 2023

	1 /1	F1 1	
№ эксперимента (см. табл. 1)	<i>T</i> , °C	Расход воздуха, мл/мин	Время выдержки в изотермическом режиме, ч
1	350	150	4
2	350	150	8
3	350	300	8
4	450	300	8
5	450	150	8
6	550	150	8
7	450	150	8
8	450	150	8

Таблица 2. Экспериментальные условия проведения волоксидации

рамический тигель из оксида алюминия для размещения фрагментов твэлов. В нижней трети керамического тигля расположена сетка из жаропрочной нержавеющей стали с размером ячейки 1 мм, предназначенная для отделения волоксидированного ОЯТ от оболочек твэла.

В корпусе реактора расположена газоотводящая трубка, соединенная с входным патрубком аппарата волоксидации. Нижний конец газоподводящей трубки расположен ниже уровня тигля. Подаваемый в реактор воздух вначале поступает в нижнюю часть реактора, а затем поднимается вверх. Такое решение позволяет избежать застойных зон в области протекания реакции и повысить эффективность окисления ОЯТ.

Сверху реактор герметично закрыт крышкой из нержавеющей жаропрочной стали. Выходной патрубок аппарата волоксидации соединен с барботерами для улавливания ЛПД.

Волоксидацию СНУП ОЯТ проводили в соответствии со следующим алгоритмом. Предварительно взвешенную партию фрагментов твэлов со СНУП ОЯТ в керамическом тигле помещали в реакционную камеру аппарата волоксидации. Герметично соединяли все детали экспериментальной установки. Нагрев аппарата волоксидации осуществляли со скоростью 10°С/мин при непрерывной подаче аргона со скоростью 150 мл/мин. После выхода на заданный температурный режим отключали подачу инертного газа и с заданной скоростью подавали воздух. Выдерживали изотермический режим в течение заданного промежутка времени, после чего отключали нагрев, прекращали подачу воздуха и подавали во внутренний объем аппарата волоксидации аргон со скоростью 150 мл/мин в течение 1 ч. После этого отсоединяли барботеры с растворами азотной кислоты и гидроксида натрия, выключали продувку аргоном и охлаждали аппарат волоксидации при температуре окружающей среды. Основные экспериментальные условия проведения волоксидации представлены в табл. 2.

После завершения процесса проводили взвешивание порошка волоксидированного ОЯТ и фрагментов твэлов. Порошки окисленного топлива, отработавшего в составе КЭТВС-1, фракционировали при встряхивании на контрольных лабораторных ситах из нержавеющей стали с плетеной проволочной сеткой с размером ячеек 400, 200, 100 и 50 мкм. Массу фракции определяли по разнице масс лабораторных сит до и после фракционирования. Взвешивание проводили на лабораторных весах с точностью ± 0.1 г.

Навеску усредненного порошка волоксидированного ОЯТ передавали для проведения радиохимического анализа. Полученные данные сравнивали с содержанием ЛПД в образце СНУП ОЯТ до волоксидации. Исходное содержание ЛПД в СНУП ОЯТ определяли по результатам разрушающего радиохимического анализа топлива, отработавшего в составе КЭТВС-1 и КЭТВС-7. Процедура проведения и результаты разрушающего радиохимического анализа подробно описаны в работах [20, 24–26].

Полноту отделения ОЯТ от оболочек определяли расчетным и экспериментальным методами. Если после завершения волоксидации во фрагментах твэлов наблюдали остатки ОЯТ по отсутствию просвета в твэльных трубках, степень отделения то-

№ эксперимента (см. табл. 1, 2)	Остаточная масса ОЯТ на оболочках (<i>m</i> ₄), г	Масса отделенного порошка ОЯТ (<i>m</i> ₃), г	Полнота отделения ОЯТ, %
1	34.4	22.8	39.9
2	9.7	13.6	58.4
3	9.1	30.1	76.8
4	0.7	50.2	98.6
5	0.5	47.8	99.0
6	0.5	49.3	99.0

Таблица 3. Полнота отделения СНУП топлива, отработавшего в составе КЭТВС-1, от оболочек твэла в зависимости от экспериментальных условий

плива от оболочки оценивали расчетным методом, определяя следующие величины:

 массу фрагментов твэлов с остатками ОЯТ после завершения волоксидации, г (*m*₁);

– линейную массу необлученной твэльной трубки, изготовленной из сплава ЧС 68-ИД, того же, что и в твэлах со СНУП топливом, отработавших в составе КЭТВС-1 и КЭТВС-7, г/мм (m_2);

 – длину фрагментов твэлов, взятых для проведения исследований, мм (*L*);

– массу отделенного порошка ОЯТ, г (m_3).

Массу ОЯТ, оставшуюся на оболочках фрагментов твэлов (m_4), рассчитывали в соответствии с выражением (1):

$$m_4 = m_1 - m_2 L. (1)$$

Полноту отделения ОЯТ от оболочки рассчитывали как массовую долю отделенного порошка ОЯТ в соответствии с выражением (2):

$$\omega = \frac{m_3}{m_3 + m_4} \times 100$$
(2)

Применение расчетного метода связано с рядом допущений по изменению линейной массы твэльной трубки в процессе облучения и окисления СНУП ОЯТ. Полученные расчетным методом значения следует рассматривать как оценку.

В том случае, когда фрагменты твэлов визуально не содержали остатков ОЯТ, определение ядерных материалов проводили экспериментальным методом. Фрагменты твэлов подвергали двухстадийной отмывке: на первой стадии в азотной кислоте с концентрацией 10 моль·л⁻¹, на второй – в растворе 10 моль·л⁻¹ HNO₃, содержащем 0.02 моль·л⁻¹ NaF.

РАДИОХИМИЯ том 65 № 2 2023

Температура растворителя составляла $95 \pm 5^{\circ}$ С, время растворения – 6 ч на каждой стадии процесса.

Для подтверждения полноты перевода в раствор волоксидированного топлива после завершения двустадийного растворения проводили контрольную отмывку оболочек в растворе азотной кислоты с концентрацией 10 моль·л⁻¹, содержащем 0.1 моль·л⁻¹ HF, при температуре $95 \pm 5^{\circ}$ C в течение 6 ч.

Растворы, полученные на каждой стадии растворения, анализировали на содержание ядерных материалов и продуктов деления. Количество ОЯТ, обнаруженное в растворах после завершения растворения, приравнивали к количеству топлива, не отделенного в результате волоксидации.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На первом этапе исследований проведена серия из шести экспериментов для установления оптимальных условий проведения волоксидации СНУП ОЯТ. Данные по эффективности отделения топливной композиции от оболочек твэлов в зависимости от экспериментальных условий представлены в табл. 3.

Масса ОЯТ на оболочках твэлов в экспериментах 1–3 оценена расчетным методом, в экспериментах 4–6 – определена экспериментальным методом.

Видно, что полнота отделения топливной композиции от оболочек твэла увеличивается с ростом температуры процесса до 450°С. При дальнейшем увеличении температуры доля отделенного порошка ОЯТ остается практически неизменной. В экспериментах 3 и 4 при увеличении температуры с 350 до 450°С полнота отделения ОЯТ от оболочек

No property (a) , $\tau_0 \delta_{\mu}$, (a)	Фракционный состав, мас%					
№ эксперимента (см. таол. т, 2)	<50 мкм	+50 мкм	+100 мкм	+200 мкм	+400 мкм	
1	18.6	30.0	34.0	13.9	3.5	
2	24.6	30.7	27.5	7.7	9.5	
3	13.1	28.7	29.3	20.7	8.2	
4	21.4	55.2	7.6	6.8	9.0	
6	18.5	23.3	40.1	15.6	2.5	

Таблица 4. Фракционный состав окисленного СНУП ОЯТ

Габлица 5. Содержание ³ H, ¹⁴ C, ¹⁰⁶ Ru в образцах волоксидированного СНУП ОЯТ							
		№ эксперимента (см. табл. 1, 2)					
Нуклид Вход	Входной анализ, Бк/г	1	2	3	4	5	6
		Доля от найденного при входном анализе, %					
³ H	$(2.6\pm0.4)\times10^6$	0.9	0.5	< 0.2	<0.2	< 0.20	< 0.20
¹⁴ C	$(1.2 \pm 0.3) \times 10^7$	5.7	4.0	2.4	2.0	2.0	2.0
¹⁰⁶ Ru	$(4.\ 0\pm 0.4) imes 10^9$	95.2	95.3	94.7	84.2	85.9	76.3

возросла с 76.8 до 98.6%. В экспериментах 5 и 6 с повышением температуры с 450 до 550°С эффективность отделения ОЯТ от оболочки остается неизменной.

Низкая полнота отделения при температуре 350°С подтверждает наблюдения, сделанные в работе [9], где было обнаружено, что нитрид урана начинает интенсивно окисляться при температуре выше 300°С.

Повышение скорости продувки воздуха через объем аппарата также приводит к росту доли отделенного от оболочек ОЯТ только в определенном диапазоне температур. В экспериментах 2 и 3, проведенных при температуре 350°С, с увеличением скорости подачи воздуха в реакционное пространство полнота отделения ОЯТ от оболочек увеличилась с 58.4 до 76.8%. В экспериментах 4 и 5, проведенных при температуре 450°С, двукратное изменение скорости подачи воздуха в объем аппарата волоксидации практически не сказывается на доле отделенного порошка ОЯТ. Наблюдаемые закономерности процесса окисления СНУП ОЯТ, вероятно, обусловлены изменением лимитирующей стадии гетерогенной реакции из кинетической области в интервале температур 350-450°С к диффузионной при температурах 450-550°С. Отсутствие значимого влияния скорости подачи воздуха в зону окисления СНУП ОЯТ свидетельствует о внутридиффузионном лимитировании процесса. Вместе с тем, полученные в работе экспериментальные ре-

зультаты недостаточны для однозначного формулирования кинетических закономерностей волоксидации СНУП ОЯТ.

Установленные экспериментальные факты согласуются с данными работы [27], авторами которой показано, что скорость окисления брикетов мононитридного уран-плутониевого топлива возрастает с ростом температуры и достигает максимального значения, равного 160 мг/мин, при темпеpaтуpe 400°C.

Полученные экспериментальные результаты свидетельствуют о том, что оптимальными для отлеления СНУП ОЯТ от оболочек твэла являются условия экспериментов 4-6, в которых полнота отделения топлива находится на уровне 99%.

Результаты определения фракционного состава волоксидированного СНУП ОЯТ представлены в табл. 4.

Во всех исследованных режимах окисления более 40% частиц имеют размер, не превышающий 100 мкм, а доля частиц с размером более 400 мкм не превышает 10%. Установлено, что в изученном диапазоне экспериментальных условий фракционный состав окисленного ОЯТ не зависит от температуры и скорости подачи воздуха в зону окисления.

Представленные результаты являются косвенным доказательством отсутствия значимого спекания топлива в процессе волоксидации. Возможность локального спекания топливной композиции

№ эксперимента (см. табл. 1, 2)	Масса ОЯТ на оболочках (<i>m</i> ₄), г	Масса отделенного порошка ОЯТ (<i>m</i> ₃), г	Полнота отделения ОЯТ, %
7	3.2	141.4	97.8
8	1.1	112.5	99.0

Таблица 6. Полнота отделения СНУП ОЯТ от оболочек твэла

в процессе волоксидации установлена авторами работы [14] при изучении закономерностей окисления уранового оксидного топлива. В частности, показано, что с понижением температуры волоксидации ниже 480°С степень измельчения топливной композиции возрастает. В изученном нами диапазоне температур волоксидации СНУП ОЯТ указанной закономерности не выявлено.

Данные по остаточному содержанию некоторых летучих компонентов ОЯТ в образцах волоксидированного топлива представлены в табл. 5.

Данные, представленные в табл. 5, свидетельствуют о том, что во всем исследованном диапазоне экспериментальных условий наблюдается высокая эффективность удаления из топливной композиции ³Н. В экспериментах 3-6 содержание трития в волоксидированном образце ОЯТ ниже пределов обнаружения применяемой методики анализа и составляет менее 0.2% от его содержания в образце ОЯТ до волоксидации. Аналогичный показатель для ¹⁴С при проведении волоксидации в диапазоне температур 450-550°С составляет 2%. Количество рутения в образцах волоксидированного ОЯТ уменьшается с ростом температуры процесса волоксидации. Данный экспериментальный факт, вероятно, обусловлен летучестью оксида рутения(VIII). Подчеркнем, что в экспериментах 1-3 после завершения волоксидации удельную активность ³H, ¹⁴C и ¹⁰⁶Ru определяли только в отделенном порошке СНУП ОЯТ. Содержание ³H, ¹⁴С и ¹⁰⁶Ru в топливе, оставшемся после волоксидации на оболочках твэла, не оценивали. Поэтому удельная активность перечисленных радионуклидов в неотделенной части топливной композиции может превышать полученные значения.

Представленные данные по полноте удаления трития согласуются с результатами, полученными при волоксидации уранового и уран-плутониевого оксидного топлива, опубликованными в работах [28–31]. Авторы отмечают, что при проведении волоксидации в диапазоне температур 420–500°С

РАДИОХИМИЯ том 65 № 2 2023

в течение 6–8 ч степень извлечения трития из топливной композиции составляет от 99.4 до 99.9%. Большинство авторов отмечают, что при температуре процесса, превышающей 650–700°С, выход газообразных продуктов деления снижается из-за спекания топливной композиции.

На основании данных по отделению топливной композиции от оболочек и удаления летучих продуктов оптимальными для проведения волоксидации СНУП ОЯТ являются условия эксперимента 5, обеспечивающие эффективность процесса при минимально необходимых температуре и скорости подачи воздуха.

На втором этапе исследований проведены эксперименты с укрупненными партиями СНУП ОЯТ, отработавшего в составе КЭТВС-7 и ЭТВС-10, для проверки эффективности волоксидации в выбранных оптимальных условиях. Волоксидацию проводили в условиях эксперимента 5. Результаты полноты отделения топливной композиции от оболочек твэла представлены в табл. 6. Данные по эффективности удаления из ОЯТ ³H, ¹⁴C, ¹⁰⁶Ru приведены в табл. 7.

Представленные результаты в целом согласуются с данными, полученными в серии экспериментов по установлению оптимальных условий волоксидации СНУП ОЯТ.

Меньшая доля отделенного ОЯТ в эксперименте 7, вероятно, обусловлена меньшим диаметром твэлов КЭТВС-7 в сравнении с твэлами ЭТВС-10 и большей величиной выгорания ОЯТ, облученного в **Таблица 7.** Содержание ³H, ¹⁴C, ¹⁰⁶Ru в образцах волоксидированного ОЯТ, отработавшего в составе КЭТВС-7, эксперимент 7

Нуклид	Входной анализ, Бк/г ОЯТ	Содержание в ОЯТ после волоксидации, % от найденного при входном анализе
³ H	$(1.8 \pm 0.3) \times 10^{6}$	< 0.20
¹⁴ C	$(1.5 \pm 0.3) \times 10^7$	1.8
¹⁰⁶ Ru	$(6.1 \pm 0.6) \times 10^9$	80.4

составе КЭТВС-7. Полученные в рамках настоящей работы данные по полноте отделения топливной композиции от оболочек твэлов расходятся с результатами экспериментов, полученными ранее при волоксидации СНУП ОЯТ, в которых установлено, что остаточное содержания ядерных материалов на оболочке твэла после завершения волоксидации не превышает 0.1% [32]. Данное расхождение, вероятно, обусловлено снижением эффективности гетерогеннной реакции окисления за счет увеличения массы окисляемого ОЯТ, что приводит к увеличению толщины слоя фрагментов твэлов в тигле аппарата волоксидации и ухудшению подвода воздуха к ОЯТ. Для устранения влияния данного фактора в аппаратах волоксидации необходимо предусмотреть возможность перемешивания подготовленных фрагментов твэлов в процессе их окисления.

Остаточное содержание трития в волоксидированном СНУП ОЯТ составляет менее 0.2% от его исходного содержания в топливной композиции. Доля удаленного в результате волоксидации ¹⁴С превышает 98%, а остаточное содержание ¹⁰⁶Ru в ОЯТ составляет 80.4%.

Таким образом, эксперименты с укрупненными партиями СНУП ОЯТ подтвердили эффективность волоксидации в выбранных оптимальных условиях для отделения ОЯТ от оболочек твэла и удаления трития и радиоуглерода.

ЗАКЛЮЧЕНИЕ

Оптимальными условиями проведения волоксидации СНУП ОЯТ являются температура 450°С и скорость подачи воздуха, равная 150 мл/мин. Полнота отделения топливной композиции от оболочек твэла при проведении волоксидации СНУП ОЯТ в оптимальных условиях составляет 98–99%. Оставшиеся после волоксидации оболочки твэлов содержат на своей поверхности значимое количество ОЯТ. Для уменьшения потери ядерных материалов и вовлечения их в топливный цикл требуется включение в технологическую цепочку переработки СНУП ОЯТ процедуры отмывки оболочек.

Волоксидация СНУП ОЯТ позволяет более чем на 99.8% удалить из топливной композиции тритий, снизить остаточное содержание ¹⁴С в ОЯТ до 2% от его исходного количества и предотвратить распространение данных радионуклидов по всему водно-экстракционному каскаду при переработке ОЯТ.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Шадрин А.Ю., Кащеев В.А., Двоеглазов К.Н., Масленников А.Г., Мочалов Ю.С., Жеребцов А.А., Жданова О.В., Волк В.И., Устинов О.А., Дмитриев С.А. // Вопр. атом. науки и техники. Сер.: Материаловедение и новые материалы. 2016. № 4. С. 48–60.
- Шадрин А.Ю., Двоеглазов К.Н., Масленников А.Г., Кащеев В.А., Третьякова С.Г., Шмидт О.В., Виданов В.Л., Устинов О.А., Волк В.И., Веселов С.Н., Ишунин В.С. // Радиохимия. 2016. Т. 58. № 3. С. 234– 241.
- Волк В.И., Шадрин А.Ю., Веселов С.Н., Двоеглазов К.Н., Жеребцов А.А., Шмидт О.В., Кузнецов А.Ю., Полуэктов П.П. // Вестн. Рос. акад. естеств. наук. 2012. Т. 12, № 4. С. 60–67.
- 4. Мясоедов Б.Ф., Калмыков С.Н., Шадрин А.Ю. // Вестн. РАН. 2021. Т. 9, № 5. С. 459–469.
- Двоеглазов К.Н., Мочалов Ю.С., Суханов Л.П., Шадрин А.Ю., Герасименко М.Н., Зенченко Е.В., Маковский К.В., Селявский В.Ю., Смолкин П.А., Терентьева Н.Г., Терентьев С.Г., Ушаков О.С., Шляжко Д.С., Кащеев В.А., Зайков Ю.П. // Сб. докл. отраслевой научно-технической конф. «Замыкание топливного цикла ядерной энергетики на базе реакторов на быстрых нейтронах». Сочи, 28–29 декабря 2021 г. С. 254–259.
- Жеребцов А.А., Мочалов Ю.С., Шадрин А.Ю. // Сб. докл. отраслевой научно-технической конф. «Замыкание топливного цикла ядерной энергетики на базе реакторов на быстрых нейтронах». Сочи, 28–29 декабря 2021 г. С. 274–277.
- Меркулов И.А., Тихомиров Д.В., Жабин А.Ю., Апальков Г.А., Смирнов С.И., Аксютин П.В., Дьяченко А.С., Малышева В.А. Патент RU 2619583. Заявл. 01.09.2016. Опубл. 17.05.2017.
- Кудрявцев Е.Г., Гаврилов П.М., Ревенко Ю.А., Меркулов И.А., Бондин В.В., Волк В.И., Бычков С.И., Алексеенко В.Н. Патент RU 2459299. Заявл. 20.04.2011. Опубл. 20.08.2012.

- Двоеглазов К.Н., Шадрин А.Ю., Шудегова О.В., Павлюкевич Е.Ю., Богданов А.И., Зверев Д.В. // Вопр. атом. науки и техники. Сер.: Материаловедение и новые материалы. 2016. № 4. С. 81–90.
- Волк В.И., Двоеглазов К.Н., Бычков С.И., Алексеенко С.Н., Панов О.Ю., Лобачев Е.А. // Седьмая Рос. конф. по радиохимии «Радиохимия-2012»: Тез. докл. Димитровград, 15–19 октября 2012 г. С. 116.
- Сеелев И.Н., Мацеля В.И., Васильев А.В., Курский И.А. // IX Рос. конф. с междунар. участием «Радиохимия-2018». СПб., 2018. С. 328.
- Westphal B.R., Bateman K.J., Morgan C.D., Berg J.F., Crane P.J., Cummings D.G., Giglio J.J., Huntley M.W., Lind R.P., Sell D.A. // Nucl. Technol. 2008. Vol. 162, N 2. P. 153–157.
- Breet N.H., Fox A.C. //J. Inorg. Nucl. Chem. 1966. Vol. 28. P. 1191–1203.
- Безносюк В.И., Галкин Б.Я., Колядин А.Б. Криницын А.П., Любцер Р.И., Федоров Ю.С. // Радиохимия. 2007. Т. 49, №4. С. 334–338.
- Поляков А.С., Захаркин Б.С., Смелов В.С., Волк В.И., Мухин И.В., Сафутин В.Д. Завадский М.И., Серов А.В., Бычков А.В., Зильберман Б.Я. // Атом. энергия. 2000. Т. 89. Вып. 4. С. 284–293.
- 16. Агеенков А.Т., Валуев Е.М. // Атом. энергия. 1976. Т. 41, Вып. 2. С. 140–142.
- Агеенков А.Т., Бибиков С.Е., Валуев Е.М., Новоселов Г.П., Савельев В.Ф. // Атом. энергия. 1973. Т. 35, Вып. 5. С. 323–325.
- Thomas L.E., Einziger R.E., Buchanan H.C. // J. Nucl. Mater. 1993. Vol. 201. P. 310–319.
- Двоеглазов К.Н., Филимонова Е.Д., Медведев М.Н. // Вопр. атом. науки и техники. Сер.: Материаловедение и новые материалы. 2021. № 1. С. 58–67.
- Момотов В.Н., Ерин Е.А., Волков А.Ю., Куприянов В.Н., Хамдеев М.И., Тихонова Д.Е., Шадрин А.Ю., Хомяков Ю.С. // Радиохимия. 2022. Т. 64, № 1. С. 53–59.
- Звир Е.А., Крюков Ф.Н., Никитин О.Н, Кузьмин С.В., Мальцева Е.Б., Гильмутдинов И.Ф, Беляева А.В. //

Научный годовой отчет АО «ГНЦ НИИАР». Димитровград, 2019. С. 110–112.

157

- 22. Звир Е.А., Крюков Ф.Н., Гринь П.И., Никитин О.Н., Кузьмин С.В., Мальцева Е.Б., Гильмутдинов И.Ф., Федосеева А.Е., Бутылин А.С. // Научный годовой отчет АО «ГНЦ НИИАР». Димитровград, 2018. С. 91–93.
- Гринь П.И., Никитин О.Н., Беляева А.В. // Научный годовой отчет АО «ГНЦ НИИАР». Димитровград, 2016. С. 102–105.
- Ерин Е.А., Момотов В.Н., Волков А.Ю., Хамдеев М.И., Куприянов В.Н., Шадрин А.Ю., Двоеглазов К.Н. // Радиохимия. 2017. Т. 59. № 4. С. 325–330.
- Момотов В.Н., Ерин Е.А., Волков А.Ю., Тихонова Д.Е, Куприянов А.С, Шадрин А.Ю. // Радиохимия. 2021. Т. 63, № 3. С. 276–280.
- Момотов В.Н., Ерин Е.А., Волков А.Ю., Тихонова Д.Е., Куприянов А.С. // Радиохимия. 2021. Т. 63, № 1. С. 69–74.
- Новоселов Г.П., Кучников В.В., Баронов В.А., Серебряков В.П., Степеннова Н.М. // Атом. энергия. 1982. Т. 53, Вып. 2. С. 77–80.
- Землянухин В.И., Ильенок Е.И., Кондратьев А.Н. Радиохимическая переработка ядерного топлива АЭС. М.: Энергоатомиздат, 1989. 280 с.
- 29. *Goode J.H., Stacy R.G.* Head-end reprocessing studies with HB Robinson-2 fuel: ORNL/TM-6037. 1978. 89 p.
- Goode J.H., Stacy R.G., Vaughen V.C.A. Headend reprocessing studies of HB Robinson 2 fuel: II. Parametric voloxidation studies: ORNL/TM-6888. 1980. 63 p.
- Cadieux J.R., Stone J.A. Voloxidation and dissolution of irradiated plutonium recycle fuels: DP-MS-80-10. CONF - 800943-12. 1980. 15 p.
- 32. Двоеглазов К.Н., Шадрин А.Ю., Медведев М.Н., Лакеев П.В., Зверев Д.В., Макаров А.О., Шудегова О.В., Павлюкевич Е.Ю., Дмитриева О.С. // IX Рос. конф. с междунар. участием «Радиохимия-2018»: Тез. докл. СПб., 17–21 сентября 2018 г. С. 274.