УДК 546.831+546.832

ПЛАВКОСТЬ СИСТЕМЫ K2ZrF6-K2NbF7-KF-КСІ

© 2022 г. К. И. Трифонов^{*a*}, В. Е. Кротов^{*b*}, *, А. Ф. Никифоров^{*c*}, А. М. Кокорин^{*a*}

^аКовровская государственная технологическая академия им. В.А. Дегтярёва, Ковров, Россия ^bИнститут высокотемпературной электрохимии УрО РАН, Екатеринбург, Россия ^cУральский федеральный университет, Екатеринбург, Россия *e-mail: vekro@ihte.uran.ru

> Поступила в редакцию 27.12.2021 г. После доработки 28.01.2022 г. Принята к публикации 31.01.2022 г.

Изучена плавкость, и определены температуры ликвидуса 10 составов четверной системы $K_2ZrF_6-K_2NbF_7-KF-KCl$ в интервалах концентраций компонентов (мол. %): $K_2ZrF_6 - (1.73 - 4.03), K_2NbF_7 - (2.33 - 4.55), KF - (48.62 - 65.37), KC1 - (30.57 - 42.83).$ Исследования проводили методом дифференциально-термического анализа в режиме охлаждения. Выявлена зависимость температуры от мольных отношений фторидных компонентов расплавленной фазы. Наиболее легкоплавкими являются составы, которые характеризуются низкими значениями мольного отношения фтороцирконата к фторониобату калия и одновременно повышенными значениями мольного отношения фторида калия к сумме молей солей циркония и ниобия. Их значения составляли 0.52-0.56 и 10.5-13.7 соответственно. Температуры ликвидуса этих составов находятся в интервале значений 854-873 К. Высокие температуры плавления имеют расплавы, которые характеризуются наиболее высокими значениями мольного отношения фтороцирконата к фторониобату калия при низких величинах мольного отношения фторида калия к сумме молей солей циркония и ниобия. Они были равны 5.4-7.9 и 0.8-1.1 соответственно. Температура ликвидуса этих составов находится в интервале значений 920-974 К.

Ключевые слова: расплав, плавкость, четырехкомпонентная система, гексафтороцирконат калия, гептафторониобат калия, фторид и хлорид калия **DOI:** 10.31857/S0235010622030100

введение

В металлургии активных металлов (Ca, Al, Zr, Nb и др.) и их сплавов одним из современных методов является электролиз расплавов многокомпонентных солевых систем, содержащих галогенидные соединения, что позволяет получить металлы высокой степени чистоты и их гомогенные сплавы. Особо жесткие требования к механическим, термофизическим свойствам и коррозионной устойчивости предъявляются к конструкционным материалам атомной промышленности, к числу которых относятся цирконий и его сплавы с ниобием [1–3]. Информация об электролитическом получении их в солевых расплавах, в том числе о физико-химических свойствах электролитов, используемых для получения Zr, Nb и их сплавов, приведена в работах [4–28].

Одним из наиболее важных базовых параметров является температура процесса электролиза, которая определяется температурой кристаллизации используемой солевой расплавленной смеси. Было показано [23], что при электроосаждении ряда редких металлов из фторидно-хлоридных расплавов снижение температуры процесса приводит к увеличению выхода по току. При этом уменьшается содержание фреонов в со-

ставе анодных газов [23, 29], наносящих экологический вред окружающей среде (связанный с разрушающим действием последних на озоновый слой атмосферы).

В данной работе излагаются результаты плавкости ряда составов солевой системы $K_2 ZrF_6 - K_2 NbF_7 - KF - KCl$, предлагаемой для получения гомогенных цирконий-ниобиевых сплавов, а также приводятся области составов с минимальными значениями температур кристаллизации и факторы, которые влияют на температуру плавления.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Плавкость изучали методом дифференциально-термического анализа в режиме охлаждения, используя хромель-алюмелевые термопары в чехлах из кварцевого стекла и установку на базе усилителя Ф116/1 и потенциометра КСП-4. Градуировку термопар проводили по реперным веществам, которыми служили хлориды калия и натрия, би-хромат калия, сульфат натрия, эвтектика в системе NaCl–Na₂SO₄. Все измерения проводили в атмосфере инертного газа.

Солевые смеси системы $K_2ZrF_6-K_2NbF_7-KF-KCl$ готовили с использованием в качестве основы отработанного штатного электролита циркониевого производства [30] состава (мол. %): $K_2ZrF_6 - 1.86$, KF - 81.42, KCl - 16.72. Фторониобат калия синтезировали в системе непосредственно перед измерениями по реакции взаимодействия пентахлорида ниобия с фторидом калия, входящим в состав отработанного электролита циркониевого производства

$$NbCl_5 + 7KF \rightarrow K_2NbF_7 + 5KCl.$$

В результате получали четырехкомпонентную систему, содержащую фторониобат калия, фтороцирконат калия и галогениды калия. Ее состав изменяли за счет количества вводимого пентахлорида ниобия. Проведенный в процессе приготовления сплавов системы гравиметрический анализ показал незначительную убыль массы, которая не превышала 0.1%.

Используемый в работе пентахлорид ниобия двукратной дистилляции, предварительно переплавляли в кварцевых запаянных ампулах, заполненных инертным газом гелием, при температурах 483—493 К с целью получения более плотного и менее гигроскопичного продукта.

Навески пентахлорида ниобия и отработанного электролита циркониевого производства измельчали и тщательно перемешивали в сухом боксе в атмосфере осушенного инертного газа. Затем переносили в тигель из стеклоуглерода, который помещали в заполненную инертным газом пробирку из кварцевого стекла. Исходные солевые смеси постепенно нагревали до 453–493 К, выдерживали при этой температуре около 0.5 ч и затем постепенно повышали температуру до 1073–1083 К с последующей выдержкой в течение 0.5–1.0 ч.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Проведено измерение плавкости 10 составов четверной системы $K_2ZrF_6-K_2NbF_7-KF-KC1$ в интервалах концентраций компонентов (мол. %): $K_2ZrF_6 - (1.73-4.03)$, $K_2NbF_7 - (2.33-4.55)$, KF - (48.62-65.37), KC1 - (30.57-42.83).

Состав исследованных расплавов и температуры ликвидуса представлены в табл. 1. В ней приведены также мольные отношения фторидных компонентов электролита: фторида калия к сумме фтороцирконата и фторониобата калия, а также фтороцирконата калия к фторониобату калия.

Наиболее легкоплавкими являются электролиты, которые характеризуются низкими значениями мольного отношения фтороцирконата к фторониобату калия и повышенными величинами мольного отношения фторида калия к сумме солей циркония и

№ п/п	Состав электролита, мол. %				тк	$KE/(K_{a}7rE_{c} + K_{a}NbE_{a})$	K ₂ 7rF ₂ /K ₂ NbF ₂
	K ₂ ZrF ₆	K_2NbF_7	KF	KC1	1, K	$(K_2 Z_{116} + K_2 (017))$	K2211 6/ K21101 7
1	1.82	3.28	56.28	38.62	854	13.72	0.555
2	1.93	3.71	58.97	35.86	863	10.45	0.520
3	1.92	3.65	58.86	35.97	873	10.56	0.520
4	1.73	2.33	65.37	30.57	876	16.10	0.742
5	1.76	2.38	58.45	37.32	888	14.42	0.739
6	1.74	2.36	61.99	34.10	899	15.10	0.737
7	1.85	4.17	61.26	37.32	904	10.17	0.441
8	3.95	4.45	56.62	34.97	920	6.74	0.808
9	3.84	3.47	55.26	37.43	967	7.87	1.107
10	4.03	4.55	48.62	42.83	974	5.41	0.886

Таблица 1. Состав электролита, температура ликвидуса и мольное отношение его фторидных компонентов

ниобия. Они равны 0.52–0.56 и 10.5–13.7 соответственно. Высокие температуры плавления характерны для образцов исследуемой системы, имеющих высокие значения мольного отношения фтороцирконата к фторониобату калия и наименьшие величины мольного отношения фторида калия к сумме солей циркония и ниобия. Они составляют 0.8–1.1 и 5.4–7.9 соответственно.

ЗАКЛЮЧЕНИЕ

Определены температуры плавления 10 составов четырехкомпонентной системы $K_2 ZrF_6 - K_2 NbF_7 - KF - KCl$, предполагаемой к использованию для электролитического получения гомогенных цирконий-ниобиевых сплавов. Выявлены зависимости температур плавления солевых композиций на основе отработанного штатного электролита циркониевого производства от величины мольных отношений фторидных компонентов расплава.

СПИСОК ЛИТЕРАТУРЫ

- 1. Нехамкин Л.Г. Металлургия циркония и гафния. М.: Металлургия, 1979.
- Полякова Л.П., Стангрит П.Т. Исследование гомогенности цирконий-ниобиевых сплавов различного генезиса // Сб. Химия, химическая технология и металлургия редких элементов. Апатиты. 1982. С. 135.
- 3. Константинов В.И. Электролитическое получение тантала, ниобия и их сплавов. М.: Металлургия, 1977.
- Mellors G.W., Senderoff S. Electrodeposition of coherent deposits of refractory metals: I. Niobium // J. Electrochem. Soc. 1965. 112. P. 266–272.
- 5. Ивановский Л.Е., Красильников М.Т. Электродные процессы и влияние кислорода при электролитическом осаждении ниобия из фторниобата калия // Тр. института электрохимии УФАН СССР. 1960. № 1. С. 49–54.
- Ивановский Л.Е., Петенев О.С. Некоторые процессы при катодном осаждении циркония из хлоридно-фторидных расплавов // Тр. института электрохимии УФАН СССР. 1961. № 2. С. 71–78.

- Лебедева К.П., Барабошкин А.Н. Влияние условий электролиза на структуру осадков циркония. І. Электролиз хлоридных расплавов, содержащих четырехвалентный цирконий // Тр. института электрохимии УФАН СССР. 1965. № 6. С. 93–99.
- Лебедева К.П., Барабошкин А.Н. Влияние условий электролиза на структуру осадков циркония. II. Влияние ионов фтора на структуру осадков циркония // Тр. института электрохимии УФАН СССР. 1965. № 6. С. 101–106.
- 9. Барабошкин А.Н., Лебедева К.П. Влияние условий электролиза на структуру осадков циркония // Тр. института электрохимии УФАН СССР. 1965. № 7. С. 59–67.
- Котелевский В.А., Ковалев Ф.В., Ивановский Л.Е., Самсон Ю.У., Козлов Ф.Н., Баранов И.А. Получение ниобиевых покрытий электролизом расплавленных сред // Тр. института электрохимии УФАН СССР. 1974. № 21. С. 56–60.
- Трифонов К.И., Медведев В.И. Плавкость солевых смесей, содержащих тетрахлориды циркония, гафния и тетрахлоралюминат калия // Расплавы. 2006. № 6. С. 87–89.
- Салюлев А.Б., Вовкотруб Э.Г., Стрекаловский В.Н. Взаимодействие тетрахлоридов циркония и гафния с хлоридами цезия, рубидия и калия и спектры КРС продуктов реакции // Расплавы. 2008. № 3. С. 45–49.
- 13. Трифонов К.И., Ларионов А.С., Кротов В.Е., Никифоров А.Ф. Вязкость солевых расплавов системы KAlCl₄–ZrCl₄–HfCl₄ // Расплавы. 2012. № 2. С. 113–117.
- Barhoun A., Berghoute Y., Lantelme F. Electrodeposition of niobium from fluoroniobate K₂NbF₇ in fused NaCl-KCl // J. All. Comp. 1992. P. 241–252.
- Decroly C., Winand R. Électrodéposition en bain de sels fondus de poudres d'alliages zirconiumniobium // J. Less Comm. Metals. 1964. 6. P. 132–151.
- Sheikh A., Winand R., Fontana A. Production of zirconium metal by electrolysis in molten fluorides baths, the cell being fed by tablets of zirconium oxide and carbon // J. Nucl. Mater. 1971. 39. P. 84–92.
- Konstantinov V.I., Polyakov E.G., Stangrit P.T. Cathodic processes at electrolysis of chloride-fluoride and oxyfluoride melts of niobium // Electrochim. Acta. 1981. 26. P. 445–448.
- Polyakova L.P., Stangrit P.T. Cathodic processes at electrolysis of chlorine and chloride-fluoride melts of zirconium // Electrochim. Acta. 1992. 11. P. 1641–1645.
- Alimova Z., Polyacov E., Kremenetskiy V. The role of fluoride ions in reduction-oxidation equilibrium in CsCl-KCl-NaCl-K₂NbF₇ melts // J. Fluorine Chem. 1992. 2. P. 203–209.
- Van V., Silny A., Danek V. Electrochemical study of niobium fluoride and oxyfluoride complexes in molten LiF-KF-K₂NbF₇ bath // Electrochem. Communication. 1999. 1. P. 295–300.
- Quaranta D., Massot L., Gibilaro M., Mendes E., Serp J., Chamelot P. Zirconium(IV) electrochemical behavior in molten LiF-NaF // Electrochim. Acta. 2018. 265. P. 586-593.
- Li Ch., Li Sh., Che Y., et al. Electrochemical behavior of niobium ions in molten KCl–NaCl // J. Mater. Research and Technology. 2020. 9. P. 9341–9347.
- Катышев С.Ф., Десятник В.Н., Теслюк Л.М. Физико-химические свойства фторидных расплавов щелочных металлов и циркония // Цветные металлы. 2006. № 8. С. 103–105.
- 24. Катышев С.Ф., Теслюк Л.М., Курбатов Н.Н., Семейкина Л.В., Щепин А.В. Свойства возможных электролитов для получения металлического циркония // Вестник УГТУ-УПИ. Теория и практика электрохимических процессов. 2004. № 14. С. 98–103.
- Chrenkova M., Danielik V., Kubikova B., Daněk V. CALPHAD: Phase diagram jf the system LiF– NaF–K₂NbF₇ // Calphad. 2003. 27. № 1. P. 19–23.
- 26. Mlynarikova J., Boča M., Kipsova L. The role of the alkaline cations in the density and volume properties of the melts MF-K₂NbF₇ (MF = LiF-NaF, LiF-KF and NaF-KF) // J. Molecular Liquids. 2008. 140. № 1-3. P. 101-107.
- Трифонов К.И., Афанасьев С.В. Свойства продуктов хлорирования отходов ферро-ниобиевого производства. // Тр. конгресса "Фундаментальные исследования и прикладные разработки процессов переработки и утилизации техногенных образований". Екатеринбург. 2017. С. 348–349.
- Трифонов К.И., Титов Г.Н. Влияние хлорида натрия на температуру кристаллизации и электропроводность электролита для электролиза циркония // VII Кольский семинар по электрохимии редких и цветных металлов. Апатиты. 1992. С. 116.
- Титов Г.Н., Редькин А.А., Москаленко П.И. Влияние режима электролиза хлоридно-фторидных расплавов на состав газовой фазы при получении циркония в промышленных гарнисажных электролизерах // VIII Кольский семинар по электрохимии редких металлов. Апатиты. 1995. С. 71–72.
- 30. Трифонов К.И., Катышев С.Ф., Никифоров А.Ф. Отработанный электролит циркониевого производства как сырье для получения цирконий-ниобиевых сплавов // Тр. конгресса "Фундаментальные исследования и прикладные разработки процессов переработки и утилизации техногенных образований". Екатеринбург. 2017. С. 347–348.

FUSIBILITY OF THE K₂ZrF₆-K₂NbF₇-KF-KCI SYSTEM

K. I. Trifonov¹, V. E. Krotov², A. F. Nikiforov³, A. M. Kokorin¹

¹Kovrov State Technological Academy V.A. Degtyareva, Kovrov, Russia ²Institute of High-Temperature Electrochemistry, Ural Branch of the RAS, Yekaterinburg, Russia ³Ural Federal University, Yekaterinburg, Russia

The fusibility and liquidus temperatures of 10 compositions of the quaternary system $K_2ZrF_6-K_2NbF_7-KF-KCl$ were studied in the ranges of component concentrations (mol %): $K_2ZrF_6 - (1.73-4.03)$, $K_2NbF_7 - (2.33-4.55)$, KF - (48.62-65.37), KCl - (30.57-42.83). The studies were carried out by the method of differential thermal analysis in the cooling mode. The temperature dependence on the molar ratios of the fluoride components of the melted phase is revealed. The most low-melting compositions are characterized by low values of the molar ratio of fluorozirconate to potassium fluoroniobate and, at the same time, increased values of the molar ratio of potassium fluoride to the sum of moles of zirconium and niobium salts. Their values were 0.52-0.56 and 10.5-13.7, respectively. The liquidus temperatures are characteristic of melts that are characterized by the highest values of the molar ratio of potassium fluoroniobate at low values of the molar ratio of potassium fluoroniobate at low values of the molar ratio of potassium fluoroniobate at low values of the molar ratio of potassium fluoroniobate at low values of the molar ratio of potassium fluorozirconate to potassium fluoroniobate at low values of the molar ratio of potassium fluorozirconate to potassium fluoroniobate at low values of the molar ratio of potassium fluorozirconate to potassium fluoroniobate at low values of the molar ratio of potassium fluoride to the sum of moles of zirconium and niobium salts. They were 5.4-7.9 and 0.8-1.1, respectively. The liquidus temperature of these compositions is in the range of 920-974 K.

Keywords: melt, fusibility, four-component system, potassium hexafluorozirconate, potassium heptafluoroniobate, potassium fluoride and chloride

REFERENCES

- Nekhamkin L.G. Metallurgiya tsirkoniya i gafniya [Metallurgy of zirconium and hafnium]. M.: Metallurgy, 1979. [In Russian].
- Polyakova L.P., Stangrit P.T. Issledovaniye gomogennosti tsirkoniy-niobiyevykh splavov razlichnogo genezisa [Investigation of the homogeneity of zirconium-niobium alloys of various genesis] // Sb. Khimiya, khimicheskaya tekhnologiya i metallurgiya redkikh elementov. Apatity. 1982. P. 135. [In Russian].
- 3. Konstantinov V.I. Elektroliticheskoye polucheniye tantala, niobiya i ikh splavov [Electrolytic production of tantalum, niobium and their alloys]. M.: Metallurgy, 1977. [In Russian].
- Mellors G.W., Senderoff S. Electrodeposition of coherent deposits of refractory metals: I. Niobium // J. Electrochem. Soc. 1965. 112. P. 266–272
- 5. Ivanovsky L.E., Krasilnikov M.T. Elektrodnyye protsessy i vliyaniye kisloroda pri elektroliticheskom osazhdenii niobiya iz ftorniobata kaliya [Electrode processes and the effect of oxygen during the electrolytic deposition of niobium from potassium fluoroniobate] // Tr. instituta elektrokhimii UFAN SSSR. 1960. № 1. P. 49–54. [In Russian].
- 6. Ivanovsky L.E., Petenev O.S. Nekotoryye protsessy pri katodnom osazhdenii tsirkoniya iz khloridno-ftoridnykh rasplavov [Some processes during the cathodic deposition of zirconium from chloride-fluoride melts] // Tr. instituta elektrokhimii UFAN SSSR. 1961. № 2. P. 71–78. [In Russian].
- Lebedeva K.P., Baraboshkin A.N. Vliyaniye usloviy elektroliza na strukturu osadkov tsirkoniya. I. Elektroliz khloridnykh rasplavov, soderzhashchikh chetyrekhvalentnyy tsirkoniy [Influence of electrolysis conditions on the structure of zirconium deposits. I. Electrolysis of chloride melts containing tetravalent zirconium] // Tr. instituta elektrokhimii UFAN SSSR. 1965. № 6. P. 93–99. [In Russian].
- Lebedeva K.P., Baraboshkin A.N. Vliyaniye usloviy elektroliza na strukturu osadkov tsirkoniya. II. Vliyaniye ionov ftora na strukturu osadkov tsirkoniya [Influence of electrolysis conditions on the structure of zirconium deposits. II. Influence of fluorine ions on the structure of zirconium deposits] // Tr. instituta elektrokhimii UFAN SSSR. 1965. № 6. P. 101–106. [In Russian].
- Baraboshkin A.N., Lebedeva K.P. Vliyaniye usloviy elektroliza na strukturu osadkov tsirkoniya [Influence of electrolysis conditions on the structure of zirconium deposits] // Tr. instituta elektrokhimii UFAN SSSR. 1965. № 7. P. 59–67. [In Russian].
- Kotelevsky V.A., Kovalev F.V., Ivanovsky L.E., Samson Yu.U., Kozlov F.N., Baranov I.A. Polucheniye niobiyevykh pokrytiy elektrolizom rasplavlennykh sred [Obtaining niobium coatings by electrolysis of molten media] // Tr. instituta elektrokhimii UFAN SSSR. 1974. № 21. P. 56–60. [In Russian].

- 11. Trifonov K.I., Medvedev V.I. Plavkost' solevykh smesey, soderzhashchikh tetrakhloridy tsirkoniya, gafniya i tetrakhloralyuminat kaliya [Fusibility of salt mixtures containing zirconium and hafnium tetrachlorides and potassium tetrachloraluminate] // Rasplavy. 2006. № 6. P. 87–89. [In Russian].
- 12. Salyulev A.B., Vovkotrub E.G., Strekalovsky V.N. Vzaimodeystviye tetrakhloridov tsirkoniya i gafniya s khloridami tseziya, rubidiya i kaliya i spektry KRS produktov reaktsii [Interaction of zirconium and hafnium tetrachlorides with cesium, rubidium and potassium chlorides and Raman spectra of reaction products] // Rasplavy. 2008. № 3. P. 45–49. [In Russian].
- Trifonov K.I., Larionov A.S., Krotov V.E., Nikiforov A.F. Vyazkost' solevykh rasplavov sistemy KAlCl₄–ZrCl₄–HfCl₄ [Viscosity of salt melts of the KAlCl₄–ZrCl₄–HfCl₄ system] // Rasplavy. 2012. № 2. P. 113–117. [In Russian].
- Barhoun A., Berghoute Y., Lantelme F. Electrodeposition of niobium from fluoroniobate K₂NbF₇ in fused NaCl–KCl // J. All. Comp. 1992. P. 241–252.
- Decroly C., Winand R. Électrodéposition en bain de sels fondus de poudres d'alliages zirconiumniobium // J. Less Comm. Metals. 1964. 6. P. 132–151.
- Sheikh A., Winand R., Fontana A. Production of zirconium metal by electrolysis in molten fluorides baths, the cell being fed by tablets of zirconium oxide and carbon // J. Nucl. Mater. 1971. 39. P. 84–92.
- Konstantinov V.I., Polyakov E.G., Stangrit P.T. Cathodic processes at electrolysis of chloride-fluoride and oxyfluoride melts of niobium // Electrochim. Acta. 1981. 26. P. 445–448.
- Polyakova L.P., Stangrit P.T. Cathodic processes at electrolysis of chlorine and chloride-fluoride melts of zirconium // Electrochim. Acta. 1992. 11. P. 1641–1645.
- Alimova Z., Polyacov E., Kremenetskiy V. The role of fluoride ions in reduction-oxidation equilibrium in CsCl-KCl-NaCl-K₂NbF₇ melts // J. Fluorine Chem. 1992. 2. P. 203–209.
- Van V., Silny A., Danek V. Electrochemical study of niobium fluoride and oxyfluoride complexes in molten LiF-KF-K₂NbF₇ bath // Electrochem. Communication. 1999. 1. P. 295–300.
- Quaranta D., Massot L., Gibilaro M., Mendes E., Serp J., Chamelot P. Zirconium(IV) electrochemical behavior in molten LiF-NaF // Electrochim. Acta. 2018. 265. P. 586-593.
- Li Ch., Li Sh., Che Y. et al. Electrochemical behavior of niobium ions in molten KCl–NaCl // J. Mater. Research and Technology. 2020. 9. P. 9341–9347.
- 23. Katyshev S.F., Desyatnik V.N., Teslyuk L.M. Fiziko-khimicheskiye svoystva ftoridnykh rasplavov shchelochnykh metallov i tsirkoniya [Physical and chemical properties of fluoride melts of alkali metals and zirconium] // Tsvetnye metally. 2006. № 8. P. 103–105. [In Russian].
- 24. Katyshev S.F., Teslyuk L.M., Kurbatov N.N., Semeikina L.V., Shchepin A.V. Svoystva vozmozhnykh elektrolitov dlya polucheniya metallicheskogo tsirkoniya [Properties of possible electrolytes for obtaining metallic zirconium] // Vestnik UGTU-UPI. Teoriya i praktika elektrokhimicheskikh protsessov. 2004. № 14. P. 98–103. [In Russian].
- 25. Chrenkova M., Danielik V., Kubikova B., Daněk V. CALPHAD: Phase diagram jf the system LiF– NaF–K₂NbF₇ // Calphad. 2003. 27. № 1. P. 19–23.
- 26. Mlynarikova J., Boča M., Kipsova L. The role of the alkaline cations in the density and volume properties of the melts MF-K₂NbF₇ (MF = LiF-NaF, LiF-KF and NaF-KF) // J. Molecular Liquids. 2008. 140. № 1-3. P. 101-107.
- 27. Trifonov K.I., Afanasiev S.V. Svoystva produktov khlorirovaniya otkhodov ferro-niobiyevogo proizvodstva [Properties of products of chlorination of wastes of ferro-niobium production] // Tr. kongressa "Fundamental'nyye issledovaniya i prikladnyye razrabotki protsessov pererabotki i utilizatsii tekhnogennykh obrazovaniy". Yekaterinburg. 2017. P. 348–349. [In Russian].
- 28. Trifonov K.I., Titov G.N. Vliyaniye khlorida natriya na temperaturu kristallizatsii i elektroprovodnost' elektrolita dlya elektroliza tsirkoniya [Influence of sodium chloride on the crystallization temperature and electrical conductivity of the electrolyte for the electrolysis of zirconium] // VII Kol'skiy seminar po elektrokhimii redkikh i tsvetnykh metallov. Apatity. 1992. P. 116. [In Russian].
- 29. Titov G.N., Redkin A.A., Moskalenko P.I. Vliyaniye rezhima elektroliza khloridno-ftoridnykh rasplavov na sostav gazovoy fazy pri poluchenii tsirkoniya v promyshlennykh garnisazhnykh elektrolizorakh [Influence of the mode of electrolysis of chloride-fluoride melts on the composition of the gas phase in the production of zirconium in industrial skull electrolyzers] // VIII Kol'skiy seminar po elektrokhimii redkikh metallov. Apatity. 1995. P. 71–72. [In Russian].
- 30. Trifonov K.I., Katyshev S.F., Nikiforov A.F. Otrabotannyy elektrolit tsirkoniyevogo proizvodstva kak syr'ye dlya polucheniya tsirkoniy-niobiyevykh splavov [Spent electrolyte of zirconium production as a raw material for obtaining zirconium-niobium alloys] // Tr. kongressa "Fundamental'nyye issledovaniya i prikladnyye razrabotki protsessov pererabotki i utilizatsii tekhnogennykh obrazovaniy". Yekaterinburg. 2017. P. 347–348. [In Russian].