УДК 544.162.7541.123.3+543.572.3

## ИЗОТЕРМИЧЕСКИЕ И ПОЛИТЕРМИЧЕСКИЕ СЕЧЕНИЯ СИСТЕМЫ К $^{+}$ ||F $^{-}$ , Br $^{-}$ , MoO $_{4}^{2-}$

© 2022 г. З. Н. Вердиева<sup>*a*</sup>, А. В. Бурчаков<sup>*b*</sup>, \*, А. Б. Алхасов<sup>*a*</sup>, Н. Н. Вердиев<sup>*a*</sup>, *c*<sup>\*</sup>, \*\*, И. М. Кондратюк<sup>*b*</sup>

<sup>а</sup> Институт проблем геотермии и возобновляемой энергетики филиал Объединенного института высоких температур РАН, Махачкала, Россия <sup>b</sup>Самарский государственный технический университет, Самара, Россия <sup>c</sup>Дагестанский государственный университет, Махачкала, Россия \*e-mail: turnik27@yandex.ru \*\*e-mail: verdiev55@mail.ru

> Поступила в редакцию 13.12.2021 г. После доработки 23.01.2022 г. Принята к публикации 25.01.2022 г.

На основе данных о составах и температурах плавления двух- и трехкомпонентных эвтектик, сформирована пространственная модель фазового комплекса трехкомпо-

нентной системы K<sup>+</sup>||F<sup>-</sup>, Br<sup>-</sup>, MoO<sub>4</sub><sup>2-</sup> в программе КОМПАС 3D. Модель построена в координатах "состав-температура", в основании которого лежит треугольник составов системы, по оси аппликата отложена температура в диапазоне 500-800°С. Структура модели предполагает использование понятия "базовый геометрический элемент фазовой области" для понимания геометрического строения пространственной диаграммы, где каждая фазовая область является локальным объемом с ограниченными поверхностями. На основе модели получены изотермы поверхности ликвидуса, изотермические и политермические сечения, рассчитан материальный баланс равновесных фаз для произвольно выбранных фигуративных точек системы. Показана возможность расчета материального баланса произвольно выбранной фигуративной точки равновесно сосуществующих фаз при заданной температуре и в интервале температур, основываясь на геометрии построенной 3D модели исследуемой системы. Соотношения равновесных фаз рассчитаны с использованием уравнений математических матриц. 3D модели многокомпонентных систем (MKC), построенные на основе информации об элементах меньшей мерности, позволяют определить принадлежность нонвариантного состава к соответствующему симплексу без проведения эксперимента. При исследовании поверхности ликвидуса многокомпонентной системы, ограничиваются выявлением нонвариантных составов, кристаллизующиеся при более низких температурах, чем исходные ингредиенты. Однако, для многих технологических процессов необходим интервал температур. Наличие 3D модели и *T*-*x*-*y* диаграммы состояния МКС позволяет с помощью изотермических и политермических сечений выбрать заданный интервал температур. Предлагаемый подход в отличие от традиционных методов проще и нагляднее, что делает возможным его широкое применение в физико-химическом анализе МКС.

*Ключевые слова:* эвтектика, изотермические и политермические сечения, фазовые равновесия, расплав

DOI: 10.31857/S0235010622030112

#### **ВВЕДЕНИЕ**

Одним из направлений современного материаловедения является исследование фазовых равновесий многокомпонентных систем (МКС), с целью дальнейшей разра-



**Рис. 1.** Проекция 3D модели фазового комплекса системы  $K^+ ||F^-, Br^-, MoO_4^{2-}$ .

ботки материалов с регламентируемыми свойствами. Энергоемкие солевые эвтектические смеси востребованы в возобновляемой энергетике, их используют в качестве теплонакопителей и теплоносителей в устройствах, аккумулирующих тепловую энергию, в ядерной энергетике, для поддержания температурного режима химических процессов [1–7]. Основой подбора солевых смесей для химико-технологических процессов являются диаграммы состояния. При исследовании МКС наряду с экспериментальными методами применяются расчетные методы, пакеты программ, позволяющие ограничить область проведения эксперимента [8–11]. В последние годы используют компьютерное моделирование, позволяющее оптимизировать планирование эксперимента, формировать изотермические, политермические сечения, выполнять виртуальный эксперимент с прогнозом температур фазовых переходов и фазового состава произвольно выбранной фигуративной точки системы [12–19].

Целью настоящей работы является моделирование фазового комплекса трехкомпонентной системы  $K^+ \| F^-, Br^-, MoO_4^{2-}$  в программе КОМПАС 3D в координатах "состав– температура" на базе данных о составах и температурах кристаллизации двух- и трехкомпонентных эвтектик.



**Рис. 2.** Локальные объемы пространственных областей фазового комплекса системы  $K^+ \|F^-, Br^-, MoO_4^{2-}$ .

### РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Данные о нонвариантных составах двух- и трехкомпонентной систем послужили основой для построения 3D компьютерной модели трехкомпонентной системы  $K^+ ||F^-, Br^-, MoO_4^{2-}$  в программе КОМПАС 3D [15]:

К<sup>+</sup>∥F<sup>−</sup>, Вг<sup>−</sup> [20]. Эвтектика при 580°С и 40 мол. % фторида калия;

 $K^+ \|F^-$ , MoO<sub>4</sub><sup>2-</sup> [21]. В системе образуется конгруэнтное соединение  $K_3FMoO_4$  с температурой плавления 754°C, эвтектическим точкам отвечают составы 29 и 57 мол. % молибдата калия, плавящиеся при 722 и 745°C, соответственно;

К<sup>+</sup>||Br<sup>-</sup>, МоО<sub>4</sub><sup>2-</sup> [22]. Эвтектика при 625°С и 35 мол. % молибдата калия.

КВг-К<sub>3</sub>FMoO<sub>4</sub> [23]. Эвтектика при 574°С и 50 мол. % бромида калия.

 $K^+ \| F^-, Br^-, MoO_4^{2-}$  [23]. Эвтектика  $E_1$  при 556°С и 35 мол. % фторида калия, 53 мол. % бромида калия, 12 мол. % молибдата калия. Эвтектика  $E_2$  при 568°С и 23 мол. % фторида калия, 50 мол. % бромида калия, 27 мол. % молибдата калия.

Диаграмма построена в координатах "состав–температура", в основании лежит треугольник составов системы, по оси аппликата откладывается температура в диапазоне 500–800°С (рис. 1). Модель представляет собой совокупность точек, линий и поверхностей, которые предопределяются исходя из базовых геометрических элементов фазовых областей (табл. 1). Эти области выявлены из проекции поверхности ликвидуса системы K<sup>+</sup>||F<sup>-</sup>, Br<sup>-</sup>, MoO<sub>4</sub><sup>2-</sup>, в соответствии с методикой предложенной [16, 24, 25].

| Фазовая<br>область                                    | Число<br>равновесных<br>фаз, Ф | Степень<br>свободы, С:<br>С = K-Ф + 1 =<br>= 4-Ф | Базовые<br>геометрические<br>элементы<br>фазовой области                                                                                                        | Дополнительные<br>геометрические<br>элементы<br>фазовой области |  |
|-------------------------------------------------------|--------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--|
| 1                                                     | 2                              | 3                                                | 4                                                                                                                                                               | 5                                                               |  |
| ж + K <sub>2</sub> MoO <sub>4</sub>                   | 2                              | 2                                                | Две поверхности:<br>(K <sub>2</sub> MoO <sub>4</sub> -е 625-Е<br>568-е 745-<br>K <sub>2</sub> MoO <sub>4</sub> ),<br>вторая вырождена<br>в отрезок              | Две линейчатые<br>поверхности,<br>две плоские<br>боковые грани  |  |
| ж + КF                                                | 2                              | 2                                                | Две поверхности:<br>(KF-е 722-Е 556-е<br>580-КF),<br>вторая вырождена<br>в отрезок                                                                              | Две линейчатые<br>поверхности,<br>две плоские<br>боковые грани  |  |
| ж + KBr<br>(две области)                              | 2                              | 2                                                | Две поверхности:<br>(KBr-е 625-Е 568-е<br>574-Е 556-е<br>580-КВг),<br>вторая вырождена<br>в отрезок                                                             | Две линейчатые<br>поверхности,<br>две плоские<br>боковые грани  |  |
| ж + К <sub>3</sub> FMoO <sub>4</sub><br>(две области) | 2                              | 2                                                | Две поверхности:<br>(K <sub>3</sub> FMoO <sub>4</sub> -е 745-Е<br>568-е 574-Е 556-е<br>722-K <sub>3</sub> FMoO <sub>4</sub> ),<br>вторая вырождена<br>в отрезок | Две линейчатые<br>поверхности,<br>две плоские<br>боковые грани  |  |
| ж + KF + KBr                                          | 3                              | 1                                                | Три линии:<br>одна линия<br>е 580-Е 556,<br>две вырождены<br>в отрезки                                                                                          | Три линейчатые<br>поверхности,<br>нижняя плоская грань          |  |
|                                                       | 3                              | 1                                                | Три линии:<br>одна линия<br>е 574—Е 556,<br>две вырождены<br>в отрезки                                                                                          | Три линейчатые<br>поверхности,<br>нижняя плоская грань          |  |
|                                                       | 3                              | 1                                                | Три линии:<br>одна линия<br>е 574—Е 568,<br>две вырождены<br>в отрезки                                                                                          | Три линейчатые<br>поверхности,<br>нижняя плоская грань          |  |
|                                                       | 3                              | 1                                                | Три линии:<br>одна линия<br>е 625–Е 568,<br>две вырождены<br>в отрезки                                                                                          | Три линейчатые<br>поверхности,<br>нижняя плоская грань          |  |
|                                                       | 3                              | 1                                                | Три линии:<br>одна линия<br>е 745–Е 568,<br>две вырождены<br>в отрезки                                                                                          | Три линейчатые<br>поверхности,<br>нижняя плоская грань          |  |

**Таблица 1.** Базовые и дополнительные геометрические элементы модели фазового комплекса системы  $K^+ \|F^-, Br^-, MoO_4^{2-}$ 

| Фазовая<br>область                                                                               | Число<br>равновесных<br>фаз, Ф | Степень<br>свободы, С:<br>С = K-Ф + 1 =<br>= 4-Ф | Базовые<br>геометрические<br>элементы<br>фазовой области                | Дополнительные<br>геометрические<br>элементы<br>фазовой области  |  |
|--------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------|--|
| 1                                                                                                | 2                              | 3                                                | 4                                                                       | 5                                                                |  |
| ж + КF +<br>+ К <sub>3</sub> FMoO <sub>4</sub>                                                   | 3                              | 1                                                | Три линии:<br>одна линия<br>е 722–Е 556,<br>две вырождены<br>в отрезки  | Три линейчатые<br>поверхности,<br>нижняя плоская грань           |  |
| $\begin{array}{l} \mathrm{KF} + \mathrm{KBr} + \\ \mathrm{+} \mathrm{K_{3}FMoO_{4}} \end{array}$ | 3                              | 1                                                | Три линии,<br>вырожденные<br>в отрезки                                  | Три линейчатые<br>поверхности, нижняя<br>и верхняя плоские грани |  |
| $\frac{K_2MoO_4 + KBr +}{+ K_3FMoO_4}$                                                           | 3                              | 1                                                | Три линии,<br>вырожденные<br>в отрезки                                  | Три линейчатые<br>поверхности, нижняя<br>и верхняя плоские грани |  |
|                                                                                                  | 4                              | 0                                                | Четыре точки:<br>одна Е 556,<br>три образуют<br>вершины<br>треугольника | Плоскость<br>треугольника                                        |  |
|                                                                                                  | 4                              | 0                                                | Четыре точки:<br>одна Е 568,<br>три образуют<br>вершины<br>треугольника | Плоскость<br>треугольника                                        |  |

Каждая фазовая область является, по сути, локальным объемом, ограниченным поверхностями (рис. 2). Фазовая область характеризуется своим фазовым состоянием. Модель предоставляет наглядную информацию о фазовом комплексе системы в объеме. Сечением элементов модели горизонтальной плоскостью с заданной координатой аппликаты получают изотермический разрез. Совокупность изотермических линий поверхности ликвидуса, спроецированных на треугольник составов (рис. 3), дает представление о крутизне поверхности и градиенте температур начала кристаллизации в системе.

Анализируя изотермические сечения системы, выявленные с помощью 3D модели (рис. 4), можно заключить, что при понижении температуры уменьшается область жидкости, и увеличиваются двухфазные, а затем и трехфазные области. Конноды-отрезки характеризуют своими вершинами составы равновесных сосуществующих фаз в двухфазных областях, трехфазные области с фазами постоянного состава представляют собой треугольники.

Сечением модели вертикальными плоскостями выявлены политермические разрезы, фиксирующие направления на трехкомпонентные эвтектики  $\overline{E}$  556 и  $\overline{E}$  568 (рис. 5).

Осуществлен расчет материального баланса равновесных фаз для смеси  $\delta$  в диапазоне температур 500–800°С с использованием 3D модели геометрическим методом. Состав смеси  $\delta$ , мол. %: KF – 21, K<sub>2</sub>MoO<sub>4</sub> – 49, KBr – 30. Результаты расчета сведены в табл. 2.

Температуры фазовых переходов определены геометрическим способом при пересечении вертикального луча имеющем (x, y) координаты, отвечающие составу смеси  $\delta$ с границами пространственных фазовых областей 3D модели фазовой диаграммы



**Рис. 3.** Изотермы поверхности ликвидуса системы  $K^+ \| F^-, Br^-, MoO_4^{2-}$ .

(рис. 1). Каждый температурный отрезок внутри фазовой области разбит на два участ-ка (табл. 2).

Используя принцип треугольника Розебома, выявлены геометрически координаты вершин коннодной фигуры. Для двухфазной области это коннода-отрезок, например, отрезок  $\delta_{2a} - \delta_2$  на рис. 6 для смеси  $\delta$ , а для трехфазной области — это коннода-треугольник  $\delta_{4a} - \delta_{4b} - \delta_{4c}$  на рис. 7. Координаты этих точек соответствуют составу равновесных сосуществующих фаз, области которых примыкают к точкам. Таким образом, определены соотношения компонентов в фазе (табл. 2). Соотношения равновесных фаз рассчитаны, используя уравнение математических матриц:

$$\left( \{ \mathbf{X} \}_{\delta i} \ \{ \mathbf{K}_{2} \mathbf{MoO}_{4} \}_{\delta i} \ \{ D \}_{\delta i} \right) = \left( \alpha'_{\delta i} \ \beta'_{\delta i} \ \gamma'_{\delta i} \right) \times \left( \begin{matrix} \alpha_{\delta ia} & \beta_{\delta ia} & \gamma_{\delta ia} \\ \alpha_{\delta ib} & \beta_{\delta ib} & \gamma_{\delta ib} \\ \alpha_{\delta ic} & \beta_{\delta ic} & \gamma_{\delta ic} \end{matrix} \right)^{-1},$$
(1)

где:

 $({\mathbb{X}}_{\delta i} {\mathbb{K}}_2 MoO_4 _{\delta i} {D}_{\delta i})$  — матрица соотношения равновесных фаз жидкости, твердых фаз молибдата калия и соединения фторида-молибдата калия для смеси  $\delta$  в фигуративной точке  $\delta_i$ , где *i* характеризует температуру (табл. 2, первый столбец);

 $(\alpha'_{\delta i} \ \beta'_{\delta i} \ \gamma'_{\delta i})$  – мольное процентное содержание компонентов KF ( $\alpha$ ), K<sub>2</sub>MoO<sub>4</sub> ( $\beta$ ) и KBr ( $\gamma$ ) в фигуративной точке  $\delta_i$ ;



**Рис. 4.** Изотермические сечения системы  $K^+ \| F^-, Br^-, MoO_4^{2-}$ .

 $\begin{pmatrix} \alpha_{\delta ia} & \beta_{\delta ia} & \gamma_{\delta ia} \\ \alpha_{\delta ib} & \beta_{\delta ib} & \gamma_{\delta ib} \\ \alpha_{\delta ic} & \beta_{\delta ic} & \gamma_{\delta ic} \end{pmatrix}^{-1}$  – обратная матрица преобразования, содержащая эквивалентные

доли компонентов KF, K<sub>2</sub>MoO<sub>4</sub> и KBr в точках  $\delta_{ia}$ ,  $\delta_{ib}$  и  $\delta_{ic}$  – точечных базисах равновесных фаз жидкости, твердых фаз молибдата калия и соединения фторида-молибдата калия.

Далее выявлен абсолютный состав равновесных фаз в пересчете на всю смесь как произведение относительного состава на содержание фазы в смеси (табл. 2, последние 3 столбца).

На основании абсолютного состава фаз построена диаграмма материального баланса сосуществующих фаз в диапазоне температур 500-800°С (рис. 8). Она построена, опираясь на принцип непрерывного изменения свойств внутри фазовой области, т.е. реализовано плавное соединение составов равновесных фаз сплайн-линией.

#### ЗАКЛЮЧЕНИЕ

Планирование эксперимента при определении фазовых равновесных состояний в МКС связано с построением древ фаз и древ кристаллизаций. Древа фаз формиру-



**Рис. 5.** Политермические сечения системы  $K^+ \|F^-, Br^-, MoO_4^{2-}$ .

ются теоретическими расчетами по выявлению стабильного секущего комплекса системы и экспериментальному подтверждению рентгенофазовым анализом их правомерности. Для построения древа кристаллизаций в каждом симплексе комплексным дифференциальным термическим анализом исследуют по одному равномассовому составу, и сравнением температур исчезновения жидкой фазы определяю принадлежность нонвариантного состава к соответствующему симплексу. Наличие компьютер-

| <b>№</b> <i>t</i> , ° | t, °C | Равновесная<br>фаза | Точка<br>на диаграмме  | ание фазы<br>це, мол. % | Соотношение<br>компонентов в фазе,<br>мол. % |                                        | Абсолютное состав фазы<br>относительно смеси, мол. % |           |                                        |            |
|-----------------------|-------|---------------------|------------------------|-------------------------|----------------------------------------------|----------------------------------------|------------------------------------------------------|-----------|----------------------------------------|------------|
|                       |       |                     |                        | Содерж:<br>в образи     | KF<br>(α)                                    | K <sub>2</sub> MoO <sub>4</sub><br>(β) | KBr<br>(γ)                                           | KF<br>(α) | K <sub>2</sub> MoO <sub>4</sub><br>(β) | KBr<br>(γ) |
| 0                     | 800   | ж                   | $\delta_0$             | 100                     | 21                                           | 49                                     | 30                                                   | 21        | 49                                     | 30         |
| 1 717                 | 717 5 | Ж (а)               | $\delta_1$             | 100                     | 21                                           | 49                                     | 30                                                   | 21        | 49                                     | 30         |
|                       | /1/.5 | $K_2MoO_4$ (b)      | $\delta_{1b}$          | 0                       | 0                                            | 100                                    | 0                                                    | 0         | 0                                      | 0          |
| 2 660                 | 660   | Ж (а)               | $\delta_{2a}$          | 84.3                    | 24.92                                        | 39.48                                  | 35.6                                                 | 21.00756  | 33.28164                               | 30.0108    |
|                       | 000   | $K_2MoO_4$ (b)      | $\delta_{2b}$          | 15.7                    | 0                                            | 100                                    | 0                                                    | 0         | 15.7                                   | 0          |
| 3 609                 |       | Ж (а)               | $\delta_{3a}$          | 76.6                    | 27.29                                        | 33.56                                  | 39.15                                                | 20.90414  | 25.70696                               | 29.9889    |
|                       | 609.7 | $K_2MoO_4$ (b)      | $\delta_{3b}$          | 23.4                    | 0                                            | 100                                    | 0                                                    | 0         | 23.4                                   | 0          |
|                       |       | D (c)               | $\delta_{3c}$          | 0                       | 50                                           | 50                                     | 0                                                    | 0         | 0                                      | 0          |
| 4                     |       | Ж (а)               | $\delta_{4a}$          | 67.7                    | 25.19                                        | 30.51                                  | 44.3                                                 | 17.05363  | 20.65527                               | 29.9911    |
|                       | 590   | $K_2MoO_4$ (b)      | $\delta_{4b}$          | 24.4                    | 0                                            | 100                                    | 0                                                    | 0         | 24.4                                   | 0          |
|                       |       | D (c)               | $\delta_{4c}$          | 7.9                     | 50                                           | 50                                     | 0                                                    | 3.95      | 3.95                                   | 0          |
| 5                     |       | Ж (а)               | $\delta_{5a}$          | 60                      | 23                                           | 27                                     | 50                                                   | 13.8      | 16.2                                   | 30         |
|                       | 568   | $K_2MoO_4$ (b)      | $\delta_{5b}$          | 25.6                    | 0                                            | 100                                    | 0                                                    | 0         | 25.6                                   | 0          |
|                       |       | D (c)               | $\delta_{5c}$          | 14.4                    | 50                                           | 50                                     | 0                                                    | 7.2       | 7.2                                    | 0          |
| 5'                    | 568   | $K_2MoO_4$ (b)      | $\delta_{5^{\prime}b}$ | 28                      | 0                                            | 100                                    | 0                                                    | 0         | 28                                     | 0          |
|                       |       | D (c)               | $\delta_{5^{\prime}c}$ | 42                      | 50                                           | 50                                     | 0                                                    | 21        | 21                                     | 0          |
|                       |       | KBr (d)             | $\delta_{5'd}$         | 30                      | 0                                            | 0                                      | 100                                                  | 0         | 0                                      | 30         |
| 6                     | 530   | $K_2MoO_4$ (b)      | $\delta_{6b}$          | 28                      | 0                                            | 100                                    | 0                                                    | 0         | 28                                     | 0          |
|                       |       | D (c)               | $\delta_{6c}$          | 42                      | 50                                           | 50                                     | 0                                                    | 21        | 21                                     | 0          |
|                       |       | KBr (d)             | $\delta_{6d}$          | 30                      | 0                                            | 0                                      | 100                                                  | 0         | 0                                      | 30         |

Таблица 2. Составы равновесных фаз для смеси  $\delta$  системы  $K^+ \|F^-, Br^-, MoO_4^{2-}$ 



Рис. 6. Изотермические сечения системы KF-KBr-K<sub>2</sub>MoO<sub>4</sub> при температуре 660°С.



Рис. 7. Изотермические сечения системы KF-KBr-K<sub>2</sub>MoO<sub>4</sub> при температуре 590°С.

ной 3D модели фазового комплекса MKC с соединениями позволяет на основе анализа информации о системах меньшей мерности оптимизировать эксперимент, т.е. позволяет прогнозировать характер, наличие, принадлежность нонвариантного состава к соответствующему симплексу, моделировать политермические и изотермические раз-



**Рис. 8.** Диаграмма материального баланса сосуществующих фаз для состава δ системы K<sup>+</sup>||F<sup>-</sup>, Br<sup>-</sup>, MoO<sub>4</sub><sup>2-</sup>, полученная на основании 3D модели.

резы, а диаграмма материального баланса позволяет выявить составы равновесных фаз в заданном температурном диапазоне.

## СПИСОК ЛИТЕРАТУРЫ

- 1. Манякова А.А., Егорова Е.М., Гаркушин И.К. Исследование стабильного треугольника четырехкомпонентной взаимной систем Li, Na, Cs∥F, I // Расплавы. 2018. № 2. С. 188–193.
- Shashkov M.O., Garkushin I.K. Experimental determination of eutectic compositions in the quinary reciprocal system Li, K∥F, Br, VO<sub>3</sub>, MoO<sub>4</sub> // Russian J. Inorganic Chemistry. 2019. 64. № 2. P. 251–256.

- 3. Trifonov K.I., Zabotin I.F., Krotov V.E., Nikiforov A.F. Density and molar volume of molten GdCl<sub>3</sub>-NaCl and GdCl<sub>3</sub>-KCl binary mixtures // Russian metallurgy. 2019. № 8. P. 838-841.
- Maltsev D.S., Volkovich V.A., Vasin B.D. Diffusion coefficients of the uranium(III) and (IV) ions in the LICl-KCl-CsCl eutectic melt // Russian metallurgy. 2016. № 8. P. 722–728.
- 5. Benes O., Konings R.J.M. Actinide burner fuel: Potential compositions based on the thermodynamic evaluation of MF-PuF<sub>3</sub> (M = Li, Na, K, Rb, Cs) and LaF<sub>3</sub>-PuF<sub>3</sub> systems // J. Nuclear Materials. 2008. **377**. № 3. C. 449-457.
- 6. Никитина Е.В., Карфидов Э.А., Зайков Ю.П. Коррозия перспективных металлических материалов во фторидных расплавах для жидкосолевых реакторов // Расплавы. 2021. № 1. С. 21–45.
- Ламуева М.В., Зеленая А.Э., Луцык В.И. Тройные и четверные галогенидные системы для ядерного реактора 4-го поколения // Сб. статей. Бурятский госуниверситет. Улан-Удэ. 2020. С. 137–146.
- Моргунова О.Е. Методология автоматизированного комплексного исследования многокомпонентных систем с применением моделирования и специализированного программного обеспечения // Сб. трудов X Межд. Курнаковского совещания по физико-химическому анализу. В 2-х т. Самара: Сам. ГТУ. 2013. 1. С. 154–156.
- 9. Lutsyk V.I., Zelenaya A.E. *T*−*x*−*y* diagram of the MgO−SiO<sub>2</sub>−Al<sub>2</sub>O<sub>3</sub> system: computer model assembly // Russian J. Inorganic Chemistry. 2018. **63**. № 7. C. 966–973.
- Афанасьева О.С., Егорова Г.Ф, Моргунова О.Е., Трунин А.С. Методика расчета тройных эвтектик по данным об элементах огранения систем низшей мерности // Вестник Самарского гос. техн. ун-та. Сер. Физ.-мат. науки. 2007. № 1. С. 182–183.
- Афиногенов Ю.П., Гончаров Е.Г., Семенова Г.В. Физико-химический анализ многокомпонентных систем: учеб. пособие для студентов вузов, обучающихся по направлению и специальности "Химия". М.: МФТИ; Воронеж: Воронежский гос. ун-т. 2006.
- Лупейко Т.Г., Тарасов Н.И., Зяблин В.Н. Моделирование фазовых систем: монография. Ростов н/Д: ЮФУ. 2010.
- 13. Mazunin S.A., Noskov M.N., Elsukov A.V. Efficient methods to study phase equilibria in multinary aqueous systems // Russian J. Inorganic Chemistry. 2017. 62. № 5. P. 539–544.
- 14. Черкасов Д.Г., Ильин К.К. Аппроксимация данных для построения бинодальной кривой фазовых диаграмм некоторых тройных систем соль-вода-изопропиловый (н. пропиловый) спирт // Изв. Саратовского университета. Серия: Химия. Биология. Экология. 2019. 19. № 3. С. 274–283.
- 15. Зиновьев Д. Основы проектирования в КОМПАС-3D. V16 1-е изд. Студия Vertex. 2017.
- 16. Nipan G.D., Aronov A.N. Splitting of the chalcopyrite polyhedron in an isothermal Zn–Cd–Ge– As tetrahedron // Inorganic Materials. 2020. 56. № 2. P. 111–115.
- Verdiev N.N., Garkushin I.K., Burchakov A.V., Verdieva Z.N., Alkhasov A.B., Musaeva P.A., Kondratyuk I.M., Egorova E.M. Phase Equilibria in the NaF–NaCl–NaBr–Na<sub>2</sub>CrO<sub>4</sub> System // Inorganic Materials. 2020. 56. № 11. P. 1179–1187.
- 18. Vorob'eva V.P., Zelenaya A.E., Lutsyk V.I., Lamueva M.V. 3D computer models of the *T*-*x*-*y* diagrams, forming the LiF-NaF-CaF<sub>2</sub>-LaF<sub>3</sub> *T*-*x*-*y*-*z* diagram // Nanosystems: Physics, Chemistry, Mathematics. 2020. **11**. № 3. P. 345–354.
- 19. Ламуева М.В., Зеленая А.Э., Луцык В.И. Компьютерная модель фазовой диаграммы системы LiF—PuF<sub>3</sub>—KF // Новые материалы и перспективные технологии. VI междисциплинарный научный форум с межд. участием. Москва. 2020. С. 128–133.
- 20. Справочник по плавкости систем из безводных неорганических солей // Под ред. Воскресенской Н.К. Двойные системы. М.–Л.: Изд-во АН СССР. 1961.
- 21. Посыпайко В.И., Алексеева Е.А., Васина Н.А. Диаграммы плавкости солевых систем: Справочник. Двойные системы с общим катионом. М.: Металлургия. 1977. III.
- 22. Вердиев Н.Н., Искендеров Э.Г., Арбуханова П.А., Амадзиев А.М. Фазовые равновесия в системе KBr-K<sub>2</sub>MoO<sub>4</sub> // Изв. ВУЗов. Химия и химическая технология. 2006. **49**. № 9. С. 26–28.
- 23. Вердиев Н.Н., Арбуханова П.А., Искендеров Э.Г., Зейналов М.Ш. Трехкомпонентная система KF-KBr-K<sub>2</sub>MoO<sub>4</sub> // Изв. вузов. Химия и химическая технология. 2007. **50**. № 12. С. 15–18.
- 24. Бурчаков А.В., Гаркушин И.К., Милов С.Н., Сухаренко М.А. Прогнозирование фазовых равновесий в системе NaCl-Na<sub>2</sub>MoO<sub>4</sub>-Na<sub>2</sub>WO<sub>4</sub> на границе "жидкость-твердое тело" // Бутлеровские сообщения. 2019. **60**. № 10. С. 124-139.
- 25. Вердиева З.Н., Бурчаков А.В., Вердиев Н.Н., Алхасов А.Б., Магомедбеков У.Г. Моделирование фазовых реакций в многокомпонентных системах // Вестник Тверского госуниверситета. 2019. № 3. С. 31–45.

# ISOTHERMAL AND POLYTHERMAL SECTIONS OF THE SYSTEM $K^+ ||F^-, Br^-, M_0O_4^{2-}$

Z. N. Verdieva<sup>1</sup>, A. V. Burlakov<sup>2</sup>, A. B. Alkhasov<sup>1</sup>, N. N. Verdiev<sup>1, 3</sup>, I. M. Kondratyuk<sup>2</sup>

<sup>1</sup>Institute of Problems of Geothermy and Renewable Energy – branch of the Joint Institute of High Temperatures of the RAS, Makhachkala, Russia <sup>2</sup>Samara State Technical University, Samara, Russia <sup>3</sup>Dagestan State University, Makhachkala, Russia

Based on the data on the compositions and melting temperatures of two- and three-component eutectics, a spatial model of the phase complex of the three-component system  $K^+||F^-, Br^-, MoO_4^{2-}$  was formed in the COMPASS 3D program. The model is constructed in composition-temperature coordinates and represents a set of points, lines and surfaces describing phase transformations in the system. The model makes it possible to distinguish isothermal and polythermal sections, which is especially important for a visual representation of phase transformations. The model is a skeleton of compositions, which is based on a triangle of system compositions, the temperature in the range of 500-800°C is deposited along the axis of the application. The structure of the model assumes the use of the concept of "basic geometric element of the phase domain", which is the basic one when constructing the model. The use of such a basic element makes it possible to better understand the geometric structure of the spatial diagram, where each phase region is a local volume with bounded surfaces. Based on the model, the liquidus surface isotherms, isothermal and polythermal sections are obtained, the material balance of equilibrium phases for arbitrarily selected figurative points of the system is calculated. It is shown that it is possible to calculate the material balance of an arbitrarily selected figurative point of equilibrium coexisting phases at an arbitrarily set temperature, or in a temperature range, based on the geometry of the constructed 3D model of the system under study. The equilibrium phase ratios are calculated using mathematical matrix equations. 3D models of multicomponent systems (ISS), built on the basis of information about elements of smaller dimensionality, allow us to determine whether a non-invariant composition belongs to the corresponding simplex without conducting an experiment. In the experimental study of the liquidus surface of a multicomponent system, it is often limited to identifying the characteristics of non-invariant compositions that crystallize at lower temperatures than the initial ingredients. However, many technological processes require information about the behavior of the system in the temperature range. The presence of a 3D model, a T-x-y diagram of the ISS state allows using isothermal and polythermal sections to select and analyze phase transformations in a given temperature range. It should be noted that the construction of the diagram is a relatively timeconsuming process, however, the advantages of its use are undeniable and, unlike traditional methods, obtaining information with its help is easier and clearer, which makes it possible to widely use it in the physico-chemical analysis of the ISS and the analysis of technological processes.

Keywords: eutectic, isothermal and polythermal sections, phase equilibria, melt

#### REFERENCES

- Manyakova A.A., Egorova E.M., Garkushin I.K. ssledovaniye stabil'nogo treugol'nika chetyrekhkomponentnoy vzaimnoy sistem Li, Na, Cs||F, I [Investigation of the stable triangle of the fourcomponent reciprocal systems Li, Na, Cs||F, I] // Rasplavy. 2018. № 2. P. 188–193. [In Russian].
- Shashkov M.O., Garkushin I.K. Experimental determination of eutectic compositions in the quinary reciprocal system Li, K∥F, Br, VO<sub>3</sub>, MoO<sub>4</sub> // Russian J. Inorganic Chemistry. 2019. 64. № 2. P. 251–256.
- 3. Trifonov K.I., Zabotin I.F., Krotov V.E., Nikiforov A.F. Density and molar volume of molten GdCl<sub>3</sub>−NaCl and GdCl<sub>3</sub>−KCl binary mixtures // Russian metallurgy. 2019. № 8. P. 838–841.
- 4. Maltsev D.S., Volkovich V.A., Vasin B.D. Diffusion coefficients of the uranium(III) and (IV) ions in the LICl-KCl-CsCl eutectic melt // Russian metallurgy. 2016. № 8. P. 722–728.

- 5. Benes O., Konings R.J.M. Actinide burner fuel: Potential compositions based on the thermodynamic evaluation of MF–PuF<sub>3</sub> (M = Li, Na, K, Rb, Cs) and LaF<sub>3</sub>–PuF<sub>3</sub> systems // J. Nuclear Materials. 2008. **377**. № 3. P. 449–457.
- 6. Nikitina E.V., Karfidov E.A., Zaikov Yu.P. Korroziya perspektivnykh metallicheskikh materialov vo ftoridnykh rasplavakh dlya zhidkosolevykh reaktorov [Corrosion of advanced metal materials in fluoride melts for liquid salt reactors] // Rasplavy. № 1. 2021. P. 21–45. [In Russian].
- Lamueva M.V., Zelenaya A. E., Lutsyk V.I. Troynyye i chetvernyye galogenidnyye sistemy dlya yadernogo reaktora 4-go pokoleniya [The ternary and quaternary halogenide systems for the moltensalt reactor of the fourth generation] // Sb. statey. Buryatskiy gosuniversitet. Ulan-Ude. 2020. P. 137–146. [In Russian].
- Morgunova O.E. Metodologiya avtomatizirovannogo kompleksnogo issledovaniya mnogokomponentnykh sistem s primeneniyem modelirovaniya i spetsializirovannogo programmnogo obespecheniya [Methodology of automated complex research of multicomponent systems with the use of modeling and specialized software] // Kurnakov Conference on Physical and Chemical Analysis. Samara: Sam. GTU. 2013. 1. P. 154–156. [In Russian].
- 9. Lutsyk V.I., Zelenaya A.E. *T*–*x*–*y* diagram of the MgO–SiO<sub>2</sub>–Al<sub>2</sub>O<sub>3</sub> system: computer model assembly // Russian J. Inorganic Chemistry. 2018. **63**. № 7. C. 966–973.
- 10. Afanasyeva O.S., Egorova G.F., Morgunova O.E., Trunin A.S. Metodika raschota troynykh evtektik po dannym ob elementakh ograneniya sistem nizshey mernosti [Method of calculation of triple eutectics based on data on the elements of the faceting of lower dimensional systems] // Bulletin of the Samara State Technical University. Un-ta. Ser. Fiz.-mat. nauki. 2007. № 1. P. 182–183. [In Russian].
- Afinogenov Yu.P., Goncharov E.G., Semenova G.V. Fiziko-khimicheskiy analiz mnogokomponentnykh sistem [Physical and chemical analysis of multicomponent systems]: textbook. manual for university students studying in the direction and specialty "Chemistry". M.: MIPT; Voronezh: Voronezh State University. 2006. [In Russian].
- 12. Lupeiko T.G. Tarasov N.I., Zyablin V.N. Modelirovaniye fazovykh sistem [Modeling of phase systems]: monograph. Rostov n/D: SFU. 2010. [In Russian].
- 13. Mazunin S.A., Noskov M.N., Elsukov A.V. Efficient methods to study phase equilibria in multinary aqueous systems // Russian J. Inorganic Chemistry. 2017. 62. № 5. P. 539–544.
- 14. Cherkasov D.G., Ilyin K.K. Approksimatsiya dannykh dlya postroyeniya binodal'noy krivoy fazovykh diagramm nekotorykh troynykh sistem sol'-voda-izopropilovyy (n. propilovyy) spirt [Data approximation for constructing a binodal curve of phase diagrams of some triple systems of salt-water-isopropyl (n-propyl) alcohol] // Izvestiya Saratovskogo universiteta. Series: Chemistry. Biology. Ecology. 2019. **19**. № 3. P. 274–283. [In Russian].
- 15. Zinoviev D. Osnovy proyektirovaniya v KOMPAS-3D [Fundamentals of design in KOMPAS-3D]. V16 1st ed. Studio Vertex. 2017. [In Russian].
- 16. Nipan G.D., Aronov A.N. Splitting of the chalcopyrite polyhedron in an isothermal Zn–Cd–Ge– As tetrahedron // Inorganic Materials. 2020. 56. № 2. P. 111–115.
- Verdiev N.N., Garkushin I.K., Burchakov A.V., Verdieva Z.N., Alkhasov A.B., Musaeva P.A., Kondratyuk I.M., Egorova E.M. Phase Equilibria in the NaF–NaCl–NaBr–Na<sub>2</sub>CrO<sub>4</sub> System // Inorganic Materials. 2020. 56. № 11. P. 1179–1187.
- 18. Vorob'eva V.P., Zelenaya A.E., Lutsyk V.I., Lamueva M.V. 3D computer models of the *T*−*x*−*y* diagrams, forming the LiF−NaF−CaF<sub>2</sub>−LaF<sub>3</sub> *T*−*x*−*y*−*z* diagram // Nanosystems: Physics, Chemistry, Mathematics. 2020. **11**. № 3. P. 345–354.
- Lamueva M.V., Zelenaya A.E., Lutsyk V.I. Komp'yuternaya model' fazovoy diagrammy sistemy LiF-PuF<sub>3</sub>-KF [Computer model of the phase diagram of the LiF-PuF<sub>3</sub>-KF system] // Novyye materialy i perspektivnyye tekhnologii. VI interdisciplinary scientific forum with int. participation. Moscow. 2020. P. 128–133. [In Russian].
- 20. Spravochnik po plavkosti sistem iz bezvodnykh neorganicheskikh soley [Handbook on fusibility of systems made of anhydrous inorganic salts] // Edited by N.K. Voskresenskaya. Double systems. M.L.: Publishing House of the USSR Academy of Sciences. 1961. [In Russian].
- Posypaiko V.I., Alekseeva E.A., Vasina N.A. Diagrammy plavkosti solevykh sistem [Diagrams of fusibility of salt systems]: A Handbook. Binary systems with a common cation. M.: Metallurgy. 1977. III. [In Russian].

- 22. Verdiev N.N., Iskenderov E.G., Arbukhanova P.A., Amadziev A.M. Fazovyye ravnovesiya v sisteme KBr-K<sub>2</sub>MoO<sub>4</sub> [Phase equilibria in the KBr-K<sub>2</sub>MoO<sub>4</sub> system] // Izv. Vyssh. Uchebn. Zaved. Khim. Tekhnol. 2006. **49**. № 9. P. 26–28. [In Russian].
- Verdiev N.N., Arbukhanova P.A., Iskenderov E.G., Zeynalov M.Sh. [Three-component sistema KF-KBr-K<sub>2</sub>MoO<sub>4</sub>] // Izv. Vyssh. Uchebn. Zaved. Khim. Tekhnol. 2007. 50. № 12. P. 15–18. [In Russian].
- 24. Burchakov A.V., Garkushin I.K., Milov S.N., Sukharenko M.A. Prognozirovaniye fazovykh ravnovesiy v sisteme NaCl–Na<sub>2</sub>MoO<sub>4</sub>–Na<sub>2</sub>WO<sub>4</sub> na granitse "zhidkost'–tverdoye telo" [Forecasting of phase equilibria in the system NaCl–Na<sub>2</sub>MoO<sub>4</sub>–Na<sub>2</sub>WO<sub>4</sub> at the liquid-solid interface] // Butlerovskiye soobshcheniya. 2019. **60**. № 10. P. 124–139. [In Russian].
- 25. Verdieva Z.N., Burchakov A.V., Verdiev N.N., Alkhasov A.B., Magomedbekov U.G. Modelirovaniye fazovykh reaktsiy v mnogokomponentnykh sistemakh [Modeling phase reactions in multicomponent systems] // Vestnik Tverskogo gosuniversiteta. 2019. № 3. P. 31–45. [In Russian].