# ТЕРМОДИНАМИКА АРСЕНАТОВ, СЕЛЕНИТОВ И СУЛЬФАТОВ В ЗОНЕ ОКИСЛЕНИЯ СУЛЬФИДНЫХ РУД. XV. СИНТЕТИЧЕСКИЙ АНАЛОГ АЛЬФРЕДОПЕТРОВИТА – СОСТАВ, СВОЙСТВА, ГРАНИЦЫ УСТОЙЧИВОСТИ

© 2022 г. К. Л. Ушакова<sup>1, \*</sup>, д. чл. М. В. Чарыкова<sup>1</sup>, почетный член В. Г. Кривовичев<sup>1</sup>, Н. М. Ефименко<sup>1</sup>, д. чл. Н. В. Платонова<sup>1</sup>, д. чл. В. Н. Бочаров<sup>1</sup>, А. С. Мазур<sup>1</sup>

> <sup>1</sup>Санкт-Петербургский государственный университет, Университетская наб., 7/9, Санкт-Петербург, 199034 Россия \*e-mail: k.ushakova@spbu.ru

> > Поступила в редакцию 31.03.2022 г. После доработки 04.04.2022 г. Принята к публикации 07.04.2022 г.

Целью данного исследования является синтез шестиводного селенита алюминия  $Al_2(SeO_3)_3$ ; $6H_2O$  (аналог минерала альфредопетровита) и изучение его растворимости в воде.  $Al_2(SeO_3)_3$ ; $6H_2O$  был синтезирован из растворов  $AlCl_3$  и  $Na_2SeO_3$  при комнатной температуре и атмосферном давлении. Полученные образцы анализировались с помощью порошковой дифрактометрии, инфракрасной и рамановской спектроскопии, энергодисперсионного рентгеноспектрального микроанализа, спектроскопии ядерного магнитного резонанса и комплексного термического анализа. Растворимость определяли методом изотермического насыщения в ампулах при 25 °C. Произведения растворимости были рассчитаны с использованием программного пакета Geochemist's Workbench (GMB 9.0, программа SpecE8). В результате расчета получена средняя величина  $lg\Pi P[Al_2(SeO_3)_3 \cdot 6H_2O] = -28.3 \pm 0.5$ . Построена диаграмма в координатах Eh–pH для системы Al–Se–H<sub>2</sub>O, с помощью которой проведен анализ устойчивости альфредопетровита в приповерхностных обстановках.

*Ключевые слова:* минералы селена, селениты, альфредопетровит, селен, алюминий **DOI**: 10.31857/S0869605522030108

#### **ВВЕДЕНИЕ**

В предыдущих статьях серии "Термодинамика арсенатов, селенитов и сульфатов в зоне окисления сульфидных руд" (Кривовичев и др., 2010, 2011; Чарыкова и др., 2012, 2013, 2015) нами были рассмотрены системы Me–Se–H<sub>2</sub>O с типичными для зон окисления селенсодержащих сульфидных руд элементами (Me = Co, Ni, Fe, Cu, Pb, Zn, Cd, Ag, Hg). Для оценки устойчивости природных соединений селена в приповерхностных обстановках был использован метод компьютерного моделирования с построением Eh–pH диаграмм. Позднее, в работах (Charykova, Krivovichev, 2017; Krivovichev et al., 2017) мы расширили круг рассматриваемых систем Me–Se–H<sub>2</sub>O и построили диаграммы Eh–pH также для систем с As, Bi, Sb, Al и Ca.

Все изученные системы Me–Se– $H_2O$  можно разделить на три группы. Первая группа включает элементы (Me = Co, Ni, Fe, Cu, Pb), для которых в природе найдены как селениды (наименее подвижные, практически нерастворимые и биологически недоступные), так и селениты (более подвижные, в основном более растворимые и биоло-

гически усваиваемые). Элементы второй группы систем  $Me-Se-H_2O$  (Me = As, Sb, Bi, Ag, Hg, Zn, Cd) в природе, как правило, встречаются в виде селенидов и, за исключением редких находок в более сложных системах (фавроит PbBiCu<sub>6</sub>O<sub>4</sub>(SeO<sub>3</sub>)<sub>4</sub>(OH)·H<sub>2</sub>O и франсисит  $Cu_3Bi(SeO_3)_2O_2CI)$ , не образуются в зонах окисления сульфидных руд. Открытый сравнительно недавно минерал цинкоменит, ZnSeO<sub>3</sub> (Pekov et al., 2016) относится к другой системе (Zn-Se-O), поскольку условия его нахождения весьма специфичны — он образуется при повышенных температурах и встречается в продуктах фумарольных возгонов в ассоциации с минералами, не содержащими конституционную или кристаллизационную воду. Отметим, что в приповерхностных P-T условиях термодинамически устойчивы водосодержащие селениты цинка (Чарыкова и др., 2013). Что касается селенитов цинка и кадмия с добавочными ионами (софиит Zn<sub>2</sub>(SeO<sub>3</sub>)Cl<sub>2</sub>, прюиттит K<sub>2</sub>Pb<sub>3</sub>Zn<sub>2</sub>Cu<sub>12</sub>O<sub>4</sub>(SeO<sub>3</sub>)<sub>4</sub>Cl<sub>20</sub>, бёрнсит KCdCu<sub>7</sub>(SeO<sub>3</sub>)<sub>2</sub>O<sub>2</sub>Cl<sub>9</sub>), то их находки также относятся к продуктам фумарол. Наконец, для двух систем Me-Se- $H_2O$  (Me = Ca, Al) в природе найдены соединения с селеном только в виде водосодержащих селенитов – это нестолаит (CaSeO<sub>3</sub>·H<sub>2</sub>O) и альфредопетровит (Al<sub>2</sub>(SeO<sub>3</sub>)<sub>3</sub>·6H<sub>2</sub>O). Система Al-Se-H<sub>2</sub>O и синтетический аналог альфредопетровита являются предметом исследования в настоящей работе.

Альфредопетровит, шестиводный селенит алюминия (Al<sub>2</sub>(SeO<sub>3</sub>)<sub>3</sub>·6H<sub>2</sub>O), был найден на месторождении Эль Драгон (El Dragon) Боливия (Kampf et al., 2016). Этот редкий минерал встречается в ассоциации с селенитами меди, свинца и никеля, а также с минералами алюминия — аллофаном (Al<sub>2</sub>O<sub>3</sub>)(SiO<sub>2</sub>)<sub>1.3-2</sub>·2.5–3H<sub>2</sub>O и фельшёбаниитом Al<sub>4</sub>(SO<sub>4</sub>)(OH)<sub>10</sub>·5H<sub>2</sub>O.

Термодинамические данные для шестиводного селенита алюминия крайне немногочисленны. В статье Г. Господинова (Gospodinov, 1991) изучена растворимость твердых фаз, образующихся в системе  $Al_2O_3$ —SeO<sub>2</sub>— $H_2O$  при 100 °C, но не рассчитаны значения произведений растворимости. Указано только, что "растворимость  $Al_2(SeO_3)_3$ · $6H_2O$  незначительна и увеличивается с увеличением концентрации SeO<sub>2</sub> в жидкой фазе". Произведение растворимости селенита алюминия при 25 °C ( $lg\Pi P = -31.1$ ) приведено в работе (Popova et al., 1986). Однако, как сказано в самом полном и авторитетном справочнике по термодинамике селена (Olin et al., 2005), эта величина не может быть принята как достоверная и нуждается в проверке и уточнении, т.к. авторы не приводят в своей работе исходные экспериментальные данные и оценку точности определения произведения растворимости. К тому же формула селенита алюминия в этой работе (Popova et al., 1986) указана как  $Al_2(SeO_3)_3$ , и нет уверенности, что речь идет именно о шестиводном кристаллогидрате.

Альфредопетровит является очень редким минералом и встречается в чрезвычайно малых количествах. Поэтому, как и в других подобных случаях, для исследования термодинамических свойств минерала не может быть использован природный материал. Отсюда возникает необходимость синтеза аналога альфредопетровита в лабораторных условиях, его идентификации и последующего экспериментального определения растворимости, что и явилось целью настоящей работы.

# 1. МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

### 1.1. Синтез

За основу синтеза Al<sub>2</sub>(SeO<sub>3</sub>)<sub>3</sub>·6H<sub>2</sub>O была взята методика, описанная в работе (Савченко, Тананаев, 1968). Синтез выполнялся медленным смешиванием двух водных растворов (концентрация 0.03 моль/л) AlCl<sub>3</sub>·6H<sub>2</sub>O и Na<sub>2</sub>SeO<sub>3</sub> при комнатной температуре и атмосферном давлении. В результате выпадал белый осадок селенита алюминия, который выдерживали в течение недели в маточном растворе, затем промывали

дистиллированной водой, фильтровали и просушивали сначала при комнатной температуре, а затем дополнительно при 50 °C до постоянной массы. Всего проведено 10 синтезов, что позволило получить количество вещества, достаточное для его идентификации и изучения различными методами, а также экспериментального определения растворимости.

### 1.2. Методы исследования

Идентификация полученного вещества проводилась методом рентгенофазового анализа на автоматическом порошковом дифрактометре UltimaIV (Rigaku), излучение рентгеновской трубки Cu $K_{\alpha_{1+2}}$ , длины волн  $\lambda$ Cu $K_{\alpha_1} = 1.54059$  Å и  $\lambda$ Cu $K_{\alpha_2} = 1.54443$  Å, режим работы трубки 40 кВ/30 мА, позиционно-чувствительный детектор, геометрия на отражение, схема фокусировки Брегг–Брентано, скорость вращения образца 20 оборотов в минуту, интервал углов дифракции 2 $\theta = 3^{\circ}-75^{\circ}$ , шаг сканирования 0.02°, скорость съемки 2 град/мин, T = 25 °C, атмосфера – воздух. Образцы готовили сухим прессованием исследуемого вещества в низкофоновую кювету из монокристаллического кремния. Идентификация фаз проводилась при помощи программного комплекса PDXL2 (Rigaku) с использованием базы порошковых дифракционных данных Powder Diffraction File (PDF-2, 2020). Расчет параметров элементарной ячейки проводился методом Паули в программном комплексе TOPAS 5 с использованием структурных данных для Al<sub>2</sub>(SeO<sub>3</sub>)<sub>3</sub>·6H<sub>2</sub>O из базы Inorganic Crystal Structure Database (ICSD 2021/1).

Фазовый состав синтезированного образца дополнительно исследовался методом ЯМР на спектрометре Bruker Avance III 400 WB. Вещество помещалось в цилиндрический ротор с внешним диаметром 4 мм, вращалось в постоянном магнитном поле под магическим углом с частотами 15 и 12.5 кГц; исследования проводились на ядрах <sup>1</sup>H и <sup>27</sup>Al (резонансная частота 400.2 и 104.3 МГц, соответственно); для возбуждения резонанса использовалась одноимпульсная последовательность с длительностью возбуждающего импульса 2.5 и 4.5 мкс, релаксационной задержкой 30 и 2 с, количеством накоплений 8 и 1024 для соответствующих ядер. В качестве внешних референсов использовались тетраметилсилан для <sup>1</sup>H спектров и 1M·D<sub>2</sub>O раствор AlCl<sub>3</sub> для <sup>27</sup>Al спектров. Для ядер <sup>27</sup>Al были так же зарегистрированы 2D MQMAS спектры ЯМР.

Для изучения микроморфологии синтезированных образцов и определения их химического состава использовался электронный микроскоп Hitachi S-3400N с аналитической приставкой для энергодисперсионного рентгеноспектрального микроанализа.

Дополнительная идентификация соединения и исследование характера связей в нем проводилось с помощью методов инфракрасной и рамановской спектроскопии. Регистрация ИК-спектров выполнялась на ИК-спектрометре Bruker Vertex 70 в КВг таблетке. Условия съемки: разрешение 1 см<sup>-1</sup>, диапазон измерений 370–4000 см<sup>-1</sup>, сканирование со скоростью 64 см<sup>-1</sup>/мин. Рамановские спектры были получены с помощью спектрометра Horiba Jobin-Yvon LabRam HR800. Источником возбуждения служил Ar ионный лазер с рабочей частотой 514 нм и мощностью 50 мВт. Спектральное разрешение 2 см<sup>-1</sup>, диапазон измерений 70–4000 см<sup>-1</sup>. Для улучшения соотношения сигнал/шум происходило накопление сигнала в течение 5 с с десятью повторами.

Для определения областей термической устойчивости образцов применялся комплексный термический анализ. Он проводился на синхронном термическом анализаторе Netzsch STA 449 F3 Jupiter, позволяющем одновременно определять потери массы (термогравиметрический анализ) и тепловые эффекты (дифференциальная сканирующая калориметрия) при линейном программированном изменении температуры. Съемка образцов проходила в интервале температур от 25 до 1000 °C с шагом 10°/мин, использовался корундовый тигель. Обработка результатов проводилась в программе NETZSCH Proteus Thermal analisis v. 5.2.1.



**Рис. 1.** Дифактограмма синтезированного Al<sub>2</sub>(SeO<sub>3</sub>)<sub>3</sub>·6H<sub>2</sub>O (образец № 5). **Fig. 1.** Representative XRD pattern of synthesized Al<sub>2</sub>(SeO<sub>3</sub>)<sub>3</sub>·6H<sub>2</sub>O (sample #5).

Для определения произведения растворимости использовался метод изотермического насыщения: небольшие количества твердой фазы переносили в колбы, заливали растворами с различным значением pH и помещали в термостатируемый шейкер при температуре 25 °C. Исходные значения pH были выбраны равными 1.0, 1.5, 2.0, 2.5, 3.0, использовались растворы серной и азотной кислот. Отбор проб насыщенных растворов проводился через 15 сут и через 30 или 45 сут – для подтверждения установления равновесия. Концентрации Al и Se в растворах определяли методом ICP MS на масс-спектрометре Agilent 7700х. После окончания эксперимента осадок отделяли центрифугированием и фильтрованием и исследовали методом порошковой рентгенографии.

# 2. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

### 2.1. Рентгенофазовый анализ

Рентгенофазовый анализ был выполнен для всех синтезированных образцов; полученные дифрактограммы оказались практически идентичными и соответствующими альфредопетровиту (Al<sub>2</sub>(SeO<sub>3</sub>)<sub>3</sub>·6H<sub>2</sub>O, PDF-2 № 01-081-1483), без примеси дополнительных фаз. Одна из дифрактограмм в качестве примера представлена на рис. 1. В табл. 1 приведены параметры элементарной ячейки Al<sub>2</sub>(SeO<sub>3</sub>)<sub>3</sub>·6H<sub>2</sub>O. Как видно из таблицы, они хорошо согласуются с литературными данными (Morris et al, 1991; Kampf et al, 2016).

#### 2.2. Ядерный магнитный резонанс

На рис. 2 представлены СЭМ-изображения синтезированных образцов  $Al_2(SeO_3)_3$ ·6H<sub>2</sub>O. Рентгеноспектральный микроанализ показал присутствие в синтезированном веществе только Al, Se и O, за исключением одного образца, в котором присутствуют следы Cl — по всей видимости, это связано с тем, что синтез производился из раствора хлорида алюминия. Однако, поскольку соотношение атомных содержа-

| Параметры элементарной<br>ячейки | Наши данные<br>(средние значения) | Kampf et al., 2016 | Morris et al., 1991 |  |  |
|----------------------------------|-----------------------------------|--------------------|---------------------|--|--|
| Пространственная группа          | P62c                              |                    |                     |  |  |
| <i>a</i> , Å                     | $8.787 \pm 0.004$                 | 8.7978             | 8.8020              |  |  |
| <i>c</i> , Å                     | $10.692\pm0.005$                  | 10.7184            | 10.7070             |  |  |

**Таблица 1.** Параметры элементарной ячейки  $Al_2(SeO_3)_3$ ·6H<sub>2</sub>O **Table 1.** Unit cell parameters  $Al_2(SeO_3)_3$ ·6H<sub>2</sub>O

ний селена и алюминия в синтезированных образцах  $Al_{2}(SeO_{3})_{3}$ . 6H<sub>2</sub>O не вполне соответствует стехиометрическому, была проведена дополнительная проверка возможного присутствия аморфной примеси, не проявляющейся при рентгенофазовом анализе например, гидроксида или основной соли алюминия. Подобная проблема, характерная для синтеза солей алюминия, упоминается в статье (Majzlan et al., 2018). Авторы этой работы для подтверждения фазовой чистоты синтезированного ими аналога мансфельдита (AlAsO<sub>4</sub>·2H<sub>2</sub>O) используют метод ядерного магнитного резонанса  $^{27}$ Al. Мы также использовали этот метод, проведя измерения ЯМР-спектров и для атомов <sup>27</sup>Аl, и для протонов. Спектры были получены для трех синтезированных образцов, до и после эксперимента по растворимости, они оказались идентичны. В качестве примера на рис. 3 представлены спектры для одного из них. На рис. 3, а показан спектр ЯМР на ядрах <sup>27</sup>Аl. Видно, что спектр представляет собой изотропную линию центрального перехода около 2.9 м. д. с набором сателлитов вращения, огибающая которых характерна для спектров ядер, обладающих квадрупольным моментом, в условиях квадрупольных взаимодействий первого рода. На рис. 3, б показан MQMAS спектр ЯМР на ядрах <sup>27</sup>Аl. Видно, что на спектре представлена единственная компонента около того же значения химического сдвига по оси  $f_1$ , которая соответствует резонансу без вклада квадрупольных взаимодействий. На рис. 3, в показан спектр ЯМР на ядрах <sup>1</sup>Н. Видно, что спектр состоит из двух компонент около 4.8 и 8.7 м. д., кроме того, показаны первые сателлиты вращения изотропных линий. Линии могут относиться к протонам воды, сорбированным на поверхности частиц и структурной воде соответственно. Таким образом, можно сделать вывод, что в синтезированном образце присутствует только одна фаза, содержащая алюминий и кристаллизационную воду.



**Рис. 2.** СЭМ изображение синтезированного Al<sub>2</sub>(SeO<sub>3</sub>)<sub>3</sub>·6H<sub>2</sub>O. **Fig. 2.** Secondary electron images of synthesized Al<sub>2</sub>(SeO<sub>3</sub>)<sub>3</sub>·6H<sub>2</sub>O.



**Рис. 3.** Спектры ЯМР синтезированного  $Al_2(SeO_3)_3$ ·6 $H_2O$ : a - 1D <sup>27</sup>Al спектр ЯМР;  $\delta - 2D$  MQMAS <sup>27</sup>Al спектр ЯМР;  $\delta - 1D$  <sup>1</sup>H спектр ЯМР.

**Fig. 3.** NMR spectra of synthesized Al<sub>2</sub>(SeO<sub>3</sub>)<sub>3</sub>·6H<sub>2</sub>O:  $a - 1D^{27}$ Al NMR spectrum;  $\delta - 2D$  MQMAS <sup>27</sup>Al NMR spectrum;  $\delta - 1D^{1}$ H NMR spectrum.

### 2.3. ИК- и рамановская спектроскопия

Дополнительная идентификация вещества проводилась с использованием методов колебательной спектроскопии. На рис. 4 и 5 приведены рамановский и ИК-спектры синтезированного аналога альфредопетровита. Сравнение наших результатов с данными для синтетического  $Al_2(SeO_3)_3$ · $GH_2O$ , полученными в работах (Тананаев и др., 1976; Morris et al., 1991; Ratheesh et al., 1997), а также отнесение полос можно видеть в табл. 2. Пики в районе 700–900 см<sup>-1</sup> отвечают валентным колебаниям селенит-иона, 300–500 см<sup>-1</sup> – деформационным колебаниям. Полосы в интервале 526–580 см<sup>-1</sup> соответствуют колебаниям Al–O. Волновые числа меньше 300 см<sup>-1</sup> характеризуют решеточные колебания. Широкий контур в водной области свидетельствует об образовании сильных и многообразных водородных связей (Ratheesh et al., 1997). Также в ИК-спектре присутствуют полосы в районе деформационных колебаний воды.

#### 2.4. Комплексный термический анализ

Термическая устойчивость шестиводного селенита алюминия впервые была исследована в работе (Тананаев и др., 1976). Авторы приводят следующие температурные интервалы эндотермических эффектов: 120–210 °C (дегидратация), 420–600 °C



**Рис. 4.** Рамановский спектр синтезированного Al<sub>2</sub>(SeO<sub>3</sub>)<sub>3</sub>·6H<sub>2</sub>O. **Fig. 4.** Raman spectrum of synthesized Al<sub>2</sub>(SeO<sub>3</sub>)<sub>3</sub>·6H<sub>2</sub>O.

(частичное разложение с выделением SeO<sub>2</sub>), 630–680 °C (полное разложение до оксида алюминия). При этом они отмечают, что для образца, полученного методом гидротермального синтеза, температуры дегидратации и разложения оказались заметно выше. В статье (Morris et al., 1991) подробных данных термического анализа не приводится, но упоминается о дегидратации Al<sub>2</sub>(SeO<sub>3</sub>)<sub>3</sub>·6H<sub>2</sub>O в районе 190 °C. Наконец, подробное исследование поведения Al<sub>2</sub>(SeO<sub>3</sub>)<sub>3</sub>·6H<sub>2</sub>O при нагревании выполнено Г. Господиновым (Gospodinov, 1991). Им отмечены на термограмме эндотермические пики при 160, 255, 475, 562 и 715 °C и предложена схема термических превращений исходного вещества, которая приводится ниже в виде составленных нами реакций:

$$\begin{aligned} \text{Al}_2(\text{SeO}_3)_3 \cdot 6\text{H}_2\text{O} &\rightarrow \text{Al}_2(\text{SeO}_3)_3 \cdot 2\text{H}_2\text{O} + 4\text{H}_2\text{O}^{\uparrow}, \\ \text{Al}_2(\text{SeO}_3)_3 \cdot 2\text{H}_2\text{O} &\rightarrow \text{Al}_2(\text{SeO}_3)_3 + 2\text{H}_2\text{O}^{\uparrow}, \\ \text{Al}_2(\text{SeO}_3)_3 &\rightarrow \text{Al}_2(\text{SeO}_3)_2\text{O} + \text{SeO}_2^{\uparrow}, \\ \text{Al}_2(\text{SeO}_3)_2\text{O} &\rightarrow \text{Al}_2(\text{SeO}_3)\text{O}_2 + \text{SeO}_2^{\uparrow}, \\ \text{Al}_2(\text{SeO}_3)\text{O}_2 &\rightarrow \text{Al}_2\text{O}_3 + \text{SeO}_2^{\uparrow}. \end{aligned}$$



**Рис. 5.** ИК-спектр синтезированного Al<sub>2</sub>(SeO<sub>3</sub>)<sub>3</sub>·6H<sub>2</sub>O. **Fig. 5.** IR-spectrum of synthesized Al<sub>2</sub>(SeO<sub>3</sub>)<sub>3</sub>·6H<sub>2</sub>O.

Наши данные комплексного термического анализа (TG, DTG и DSC кривые при нагревании до 1000 °C) представлены на рис. 6. В целом наблюдается их согласие с литературными данными. Как видно из графика, первый этап потери массы, сопровождающийся эндотермическим эффектом и, очевидно, связанный с потерей воды, происходит при 125–220 °C. Потеря массы на этом этапе составляет 19.74%, что достаточно близко к расчетному значению согласно уравнению реакции  $Al_2(SeO_3)_3 \cdot 6H_2O \rightarrow Al_2(SeO_3)_3 + 6H_2O$  (19.9%). Следующая потеря массы происходит в интервале температур 320–683 °C. На кривой DSC при этом наблюдаются два эндотермических эф-

| Take 2. Violational speet and of Al <sub>2</sub> (See 3), 301120, ent and outle assignments |                                    |                |                         |                        |                   |                            |  |
|---------------------------------------------------------------------------------------------|------------------------------------|----------------|-------------------------|------------------------|-------------------|----------------------------|--|
| Рамановский спектр                                                                          |                                    | ИК-спектр      |                         |                        |                   | Отнасанна                  |  |
| наши данные                                                                                 | Ratheesh, 1997                     | наши<br>данные | Тананаев<br>и др., 1976 | Morris<br>et al., 1991 | Ratheesh,<br>1997 | частот                     |  |
| 3120, 2910, 2455                                                                            | 3165, 3024                         | 3118, 2503     | 3500                    | 3320                   | 3286-2900         | $\nu_1,\nu_3H_2O$          |  |
|                                                                                             | 1640                               | 1659, 1632     | 1650                    | 1652                   | 1638              | $v_2 H_2 O$                |  |
|                                                                                             | 1329                               | 1423           |                         | 1362                   | 1372              | v O-HO                     |  |
| 872                                                                                         | 874, 831                           | 863            | 860                     | 860                    | 857               | $v_1 \operatorname{SeO}_3$ |  |
| 796, 749, 722                                                                               | 750, 722, 704                      | 777            | 780                     | 775                    | 770               | $v_3 SeO_3$                |  |
| 545, 526                                                                                    | 566, 542, 532                      | 577, 547       | 580, 550                | 560                    | 570, 546          | v Al-O                     |  |
| 457, 421, 407                                                                               | 439, 412                           | 474            | 475                     | 475                    | 460, 421          | $v_2 SeO_3$                |  |
| 363, 342, 304                                                                               | 347, 329, 310                      |                |                         |                        | 372, 360, 310     | $v_4  SeO_3$               |  |
| 229-89                                                                                      | 232, 191, 174, 123,<br>110, 92, 74 |                |                         |                        | 295, 241, 221     | Решеточные колебания       |  |
|                                                                                             |                                    |                |                         |                        |                   |                            |  |

Таблица 2. Колебательный спектр  $Al_2(SeO_3)_3 \cdot 6H_2O$ , см<sup>-1</sup> и отнесение полос **Table 2.** Vibrational spectrum of  $Al_2(SeO_3)_3 \cdot 6H_2O$ , сm<sup>-1</sup> and band assignments



**Рис. 6.** ТГ (зеленая), ДТГ (пунктир) и ДСК (синяя) кривые синтезированного Al<sub>2</sub>(SeO<sub>3</sub>)<sub>3</sub>·6H<sub>2</sub>O. **Fig. 6.** TG (green), DTG (dotted) and DSC (blue) curves of synthesized Al<sub>2</sub>(SeO<sub>3</sub>)<sub>3</sub>·6H<sub>2</sub>O.

фекта, очевидно, связанные с различными стадиями разложения селенита алюминия с выделением SeO<sub>2</sub>. Суммарная потеря массы составляет 80.81%, что соответствует полному разложению Al<sub>2</sub>(SeO<sub>3</sub>)<sub>3</sub>·6H<sub>2</sub>O до Al<sub>2</sub>O<sub>3</sub> (расчетное значение 81.2%).

# 2.5. Определение произведения растворимости

Для подавления гидролиза ионов Al<sup>3+</sup> определение растворимости выполнялось в растворах кислот (серной и азотной). Предварительная серия экспериментов была проведена для исходных значений рН 1.0, 1.5, 2.0, 2.5, 3.0. Небольшое количество Al<sub>2</sub>(SeO<sub>3</sub>)<sub>3</sub>·6H<sub>2</sub>O заливали раствором и встряхивали в термостатируемом шейкере. Первые пробы растворов отбирали через 15 сут, вторые – через 30 или 45 сут. В этих растворах методом ICP MS определяли концентрации Se и Al. Время проведения эксперимента было выбрано с учетом результатов работы (Rai et al., 2005), посвященной изучению растворимости селенита железа и показавшей, что в аналогичных кислых растворах уже через две недели концентрации определяемых элементов достигают значений, близких к равновесным. По окончании эксперимента осадок исследовали методом порошковой рентгенографии для подтверждения того, что в ходе взаимодействия с раствором состав твердой фазы не изменился (рис. 7). Результаты предварительных экспериментов показали, что оптимальными являются исходные значения pH растворов 1.5, 2 и 2.5. Более низкое значение (pH 1) привело к полному растворению твердой фазы, а при более высоких значениях в ходе насыщения раствора возникает опасность осаждения гидроксида или основной соли алюминия.

Полученные экспериментально составы насыщенных растворов были использованы в качестве брутто-концентраций для расчета произведения растворимости альфредопетровита. Расчет проводился с помощью программного комплекса Geochemist's Workbench (GMB 9.0, программа SpecE8). Коэффициенты активности вычислялись по расширенному уравнению Дебая—Хюккеля (уравнение B-dot), что для данных значений ионной силы вполне корректно. Расчет выполнен с учетом образования в растворе различных форм диссоциации селенистой кислоты, гидроксокомплексов



**Рис. 7.** Рентгенограммы образцов твердой фазы после эксперимента по растворимости (при исходных значениях pH растворов 1.0, 1.5, 2.0, 2.5, 3.0).

**Fig. 7.** X-ray diffraction patterns of solid phase samples after solubility experiment (at the initial pH values of solutions 1.0, 1.5, 2.0, 2.5, 3.0).

алюминия и, в случае с раствором серной кислоты, комплексов алюминия и сульфатионов. Брутто- концентрации сульфат- и нитрат-ионов задавали исходя из начальных значения pH. Результатами расчета являются концентрации равновесных форм в растворе, их коэффициенты активности и логарифмы активностей. Поскольку растворы являются насыщенными относительно  $Al_2(SeO_3)_3 \cdot 6H_2O$  произведение активностей ионов  $Al^{3+}$  и  $SeO_3^{2-}$  (а также воды) в степенях, равных их коэффициентам в формуле, должно быть равно произведению растворимости альфредопетровита, или в логарифмической форме  $lg\PiP[Al_2(SeO_3)_3 \cdot 6H_2O] = 2lga(Al^{3+}) + 3lga(SeO_3^{2-}) + 6lga(H_2O). Сле$ дует отметить, что активность воды для растворов малорастворимых солей может бытьпринята равной единице.

Концентрации насыщенных растворов и результаты расчета произведения растворимости приведены в табл. 3. В результате расчета получена средняя величина  $lg\Pi P[Al_2(SeO_3)_3 \cdot 6H_2O] = -28.3 \pm 0.5$ , т.е. полученное нами произведение растворимости альфредопетровита оказалось на 3 порядка выше величины, приведенной в работе (Ророva et al, 1986).

#### 2.6. Стабильность альфредопетровита в зоне гипергенеза

Полученное значение произведения растворимости альфредопетровита (lgПP= –28.3) использовано для оценки условий его формирования в зоне окисления селенсодержащих сульфидных руд. На рис. 8 приведена диаграмма Eh–pH системы Al–Se–H<sub>2</sub>O, расчет и построение которой проводился с помощью программного комплекса Geochemist's Workbench (GMB 9.0, программа Act2). Использование при расчете получен-

| Исходный рН<br>рН насы  | рН после  | Концентрация в насып | 1αΠΡ[A1_(SeO_)_6H_O] |                       |
|-------------------------|-----------|----------------------|----------------------|-----------------------|
|                         | насыщения | Al                   | Se                   | Igm [Ai2(3003)301120] |
| 1.5 (HNO <sub>3</sub> ) | 2.01      | 583                  | 2463                 | -28.1                 |
| $2 (H_2 SO_4)$          | 2.61      | 139                  | 500                  | -27.8                 |
| 2 (HNO <sub>3</sub> )   | 2.44      | 161                  | 586                  | -28.4                 |
| 2.5 (HNO <sub>3</sub> ) | 3.09      | 31                   | 104                  | -28.9                 |

**Таблица 3.** Результаты определения растворимости синтетического аналога альфредопетровита при 25 °C **Table 3.** Results of solubility measurements of synthesized analogue of alfredopetrovite at 25 °C

ного в настоящей работе значения lgПP привело к значительному уменьшению области устойчивости альфредопетровита по сравнению с диаграммой, построенной нами ранее (Krivovichev et al., 2017) с использованием литературных данных (Popova et al., 1986).

Диаграмма Eh-pH системы Al-Se-H<sub>2</sub>O построена для суммарных активностей химических элементов в растворах  $a_{\Sigma Se} = 10^{-3}$ ,  $a_{\Sigma Al} = 10^{-3}$ . При меньших значениях активности селена поле устойчивости альфредопетровита на диаграмме вырождается в линию или вообще исчезает. Из рис. 8, видно, что, наиболее распространенным минералом в рассматриваемой системе является гиббсит (Al(OH)<sub>3</sub>), поле устойчивости которого определяется только значениями pH минералообразующей среды. Так, в кислых растворах при pH 3.65 протекает следующая реакция:

$$AI^{3+} + 3H_2O = AI(OH)_3 \downarrow + 3H^+,$$
 (1)

а в щелочных условиях рН 11.2 происходит разложение гиббсита:

$$Al(OH)_3 + H_2O = Al(OH)_4^- + H^+.$$
 (2)

Образование альфредопетровита происходит из кислых растворов с увеличением окислительно-восстановительного потенциала согласно двум реакциям. Первая реакция отвечает условиям образования мономинерального альфредопетровита:

$$2AI^{3+} + 3Se + 15H_2O = AI_2(SeO_3)_36H_2O + 18H^+ + 12\overline{e},$$
(3)

а вторая – ассоциации альфредопетровита с гиббситом:

$$2AI(OH)_{3} + 3Se + 9H_{2}O = AI_{2}(SeO_{3})_{3}6H_{2}O + 12H^{+} + 12\overline{e}.$$
 (4)

В окислительно-восстановительных условиях, отвечающих стабильности аниона HSeO<sub>3</sub>, устойчивость альфредопетровита зависит от кислотности среды и определяется двумя реакциями: разложение альфредопетровита при pH менее 2.87

$$Al_{2}(SeO_{3})_{3} \cdot 6H_{2}O + 3H^{+} = 2Al^{3+} + 3HSeO_{3}^{-} + 6H_{2}O,$$
(5)

и замещение альфредопетровита гиббситом при рН более 4.44:

$$Al_2(SeO_3)_3 \cdot 6H_2O = 2Al(OH)_3 + 3HSeO_3^- + 3H^+.$$
 (6)

И, наконец, по мере увеличения окислительно-восстановительного потенциала до условий, отвечающих стабильности селенат-аниона, альфредопетровит растворяется согласно следующим уравнением реакций:

$$Al_{2}(SeO_{3})_{3} \cdot 6H_{2}O = 2Al^{3+} + 3SeO_{4}^{-} + 3H_{2}O + 6H^{+} + 6\overline{e},$$
(7)



**Рис. 8.** Диаграмма Eh-pH системы Al–Se–H<sub>2</sub>O при 25 °C и активностях компонентов  $a_{\Sigma Se} = 10^{-3}$ ,  $a_{\Sigma Al} = 10^{-3}$ . Цифрами обозначены уравнения химических реакций (пояснения в тексте). **Fig. 8.** Eh-pH diagrams of the Al–Se–H<sub>2</sub>O system at 25 °C and the activities of the components:  $a_{\Sigma Se} = 10^{-3}$ ,  $a_{\Sigma Al} = 10^{-3}$ . The numbers indicate the equations of chemical reactions (explanations in the text).

$$Al_{2}(SeO_{3})_{3} \cdot 6H_{2}O + 3H_{2}O = 2Al(OH)_{3} + 3SeO_{4}^{-} + 12H^{+} + 6\overline{e}.$$
 (8)

Таким образом, устойчивость альфредопетровита в приповерхностных обстановках может быть количественно объяснена изменениями окислительно—восстановительного потенциала и кислотности-основности минералообразующей среды. Именно эти параметры определяют его осаждение и стабильность в природных условиях.

### ЗАКЛЮЧЕНИЕ

В работе получены следующие основные результаты.

1. Синтезирован аналог альфредопетровита (Al<sub>2</sub>(SeO<sub>3</sub>)<sub>3</sub>·6H<sub>2</sub>O), проведена его идентификация методом порошковой дифрактометрии и спектроскопическими методами, рассчитаны параметры элементарной ячейки, определена область термической устойчивости.

2. Определена растворимость синтетического аналога альфредопетровита  $Al_2(SeO_3)_3 \cdot 6H_2O$  и рассчитано значение произведения растворимости  $lg\Pi P[Al_2(SeO_3)_3 \cdot 6H_2O] = -28.3 \pm 0.5$ .

3. Проведены термодинамические расчеты минеральных равновесий в системе Al– Se– $H_2O$  и построена диаграмма Eh–pH, с помощью которой определены основные физико-химические параметры (pH, Eh, активности компонентов), определяющие устойчивость альфредопетровита в зонах окисления обогащенных селеном сульфидных руд.

В заключение отметим, что важность изучения условий образования альфредопетровита в первую очередь обусловлена тем, что в состав минерала входит алюминий один из наиболее распространенных элементов земной коры. В связи с этим, необходимо при изучении миграции селена в приповерхностных обстановках учитывать возможность его осаждения в виде малорастворимого водосодержащего селенита. В первую очередь это относится к корам выветривания алюмосиликатных пород, в которых возможно образование альфредопетровита при наличии селена в поверхностных или грунтовых водах. Необходимо также изучение взаимосвязей этой фазы с рядом более распространенных вторичных минералов селена (кобальтоменита, альфельдита, мандариноита и др.) для оценки возможной роли алюминия в рассеивании селена в зоне гипергенеза. Отсутствие находок альфредопетровита в корах выветривания алюмосиликатных пород обусловлено сложностями его диагностики (предположительно, белые мелоподобные образования), что требует постановки специальных минералого-геохимических исследований.

Работа выполнена с использованием оборудования ресурсных центров СПбГУ "Геомодель", "Рентгенодифракционные методы исследования" и "Магнитно-резонансные методы исследования". Авторы выражают благодарность Н.С. Власенко, О.Г. Бубновой и Е.Л. Фокиной за помощь в проведении инструментальных исследований.

# СПИСОК ЛИТЕРАТУРЫ

*Кривовичев В.Г., Чарыкова М.В., Яковенко О.С., Депмайер В.* Термодинамика арсенатов, селенитов и сульфатов в зоне окисления сульфидных руд. IV. Диаграммы Eh−pH для систем Me−Se−H<sub>2</sub>O (Me=Co, Ni, Fe, Cu, Zn, Pb) при 25 °C // 3PMO. **2010**. № 4. C. 1–15.

Кривовичев В.Г., Тарасевич Д.А., Чарыкова М.В., Бритвин С.Н., Сийдра О.И., Депмайер В. Термодинамика арсенатов, селенитов и сульфатов в зоне окисления сульфидных руд. V. Халькоменит и его синтетический аналог, свойства и условия образования // ЗРМО. 2011. № 4. С. 1–8.

Савченко Г.С., Тананаев И.В., Володина А.Н. Исследование процесса образования, состава и некоторых свойств селенитов алюминия, галлия и индия // Неорганические материалы. **1968**. Т. 4. № 3. С. 369–380.

*Тананаев И.В., Володина А.Н., Большакова Н.К., Петров К.И.* Синтез и изучение свойств селенитов алюминия // Неорганические материалы. **1976**. Т. 12. № 12. С. 2212.

Чарыкова М.В., Кривовичев В.Г., Яковенко О.С., Семенова В.В., Семенов К.Н., Депмайер В. Термодинамика арсенатов, селенитов и сульфатов в зоне окисления сульфидных руд. VI. Растворимость синтетических аналогов альфельдита и кобальтоменита при 25 °С // ЗРМО. **2012**. № 1. С. 22–32.

Чарыкова М.В., Фокина Е.Л., Климова Е.В., Кривовичев В.Г., Семенова В.В. Термодинамика арсенатов, селенитов и сульфатов в зоне окисления сульфидных руд. IX. Физико-химические условия образования и термическая устойчивость селенитов цинка // ЗРМО. **2013**. № 5. С. 11–20.

Чарыкова М.В., Вишневский А.В., Кривовичев В.Г., Иванова Н.М., Платонова Н.В., Фокина Е.Л., Семенова В.В. Термодинамика арсенатов, селенитов и сульфатов в зоне окисления сульфидных руд. XII. Минеральные равновесия в системе Cd–Se–H<sub>2</sub>O при 25 °C // 3PMO. **2015**. № 5. C. 33–47. Thermodynamics of Arsenates, Selenites, and Sulphates in the Zone of Oxidation of Sulfide Ores. XV. Synthetic Analogue of Alfredopetrovite – Composition, Properties, Stability Limits

K. L. Ushakova<sup>*a*</sup>, \*, M. V. Charykova<sup>*a*</sup>, V. G. Krivovichev<sup>*a*</sup>, N. M. Efimenko<sup>*a*</sup>, N. V. Platonova<sup>*a*</sup>, V. N. Bocharov<sup>*a*</sup>, and A. S. Mazur<sup>*a*</sup>

<sup>a</sup>Saint Petersburg State University, Institute of Earth Science, p. Dekabristov, 16, Saint Petersburg, 199155 Russia \*e-mail: k.ushakova@spbu.ru

The purpose of this study is the synthesis of hexahydrate aluminum selenite  $Al_2(SeO_3)_3$ : 6H<sub>2</sub>O (analogous to the mineral alfredopetrovite) and the study of its solubility in water. Al<sub>2</sub>(SeO<sub>3</sub>)<sub>3</sub>:6H<sub>2</sub>O was synthesized from AlCl<sub>3</sub> and Na<sub>2</sub>SeO<sub>3</sub> solutions at room temperature and atmospheric pressure. The obtained samples were studied using powder diffractometry, infrared and Raman spectroscopy, energy dispersive X-ray microanalysis, nuclear magnetic resonance spectroscopy, and complex thermal analysis. Solubility was determined by isothermal saturation in ampoules at 25 °C. Solubility products were calculated using Geochemist's Workbench software package (GMB 9.0, SpecE8 program). As a result of the calculation, the average value  $\lg K_{sp}[Al_2(SeO_3)_3 \ 6H_2O] = -28.3 \pm 0.5$  was obtained. An Eh– pH dagram was constructed for the Al–Se–H<sub>2</sub>O system, which was used to analyze the stability of alfredopetrovite in near-surface conditions.

Keywords: selenite minerals, alfredopetrovite, selenium, aluminum

### REFERENCES

*Charykova M.V., Krivovichev V.G., Yakovenko O.S., Semenova V.V., Semenov K.N., Depmeir W.* Thermodynamics of arsenates, selenites, and sulfates in the oxidation zone of sulfide ores. VI. Solubility of synthetic analogs of ahlfeldite and cCobaltomenite at 25 °C. *Zapiski RMO (Proc. Russian Miner. Soc.).* **2012.** N 1. P. 22–32 (*in Russian*, English translation: *Geol. Ore Deposits.* **2012.** Vol. 54. № 8. P. 638– 646).

*Charykova M.V., Fokina E.L., Klimova E.V., Krivovichev V.G., Semenova V.V.* Thermodynamics of arsenates, selenites, and sulfates in the oxidation zone of sulfide ores. IX. Physicochemical formation conditions and thermal stability of zinc selenites. *Zapiski RMO (Proc. Russian Miner. Soc.).* **2013**. N 5. P. 11–20 (*in Russian*, English translation: *Geol. Ore Deposits.* **2014**. Vol. 56. № 7. P. 546–552).

*Charykova M.V., Vishnevskiy A.V., Krivovichev V.G., Fokina E.L., Ivanova N.M., Platonova N.V., Semenova V.V.* Thermodynamics of arsenates, selenites and sulfates in the oxidation zone of sulfide ores: XII. Mineral equilibria in the Cd—Se—H<sub>2</sub>O system at 25 °C. *Zapiski VMO (Proc. Russian Miner. Soc.).* **2015**. № 5. P. 33–47 (*in Russian*, English translation: *Geol. Ore Deposits.* **2016**. Vol. 58. № 8. P. 636– 645).

*Charykova M.V., Krivovichev V.G.* Mineral systems and the thermodynamics of selenites and selenates in the oxidation zone of sulfide ores – a review. *Miner. Petrol.* **2017**. Vol. 111. N 1. P. 121–134.

Gospodinov G.G. Regularities in the formation of selenites in the three-component system  $Al_2O_3$ -Se $O_2$ -H<sub>2</sub>O and their properties. *Thermochim. Acta.* **1991**. Vol. 180. P. 169–176.

Holzheid A., Charykova M.V., Krivovichev V.G., Ledwig B., Fokina E.L., Poroshina K.L., Platonova N.V., Gurzhiy V.V. Thermal behavior of ferric selenite hydrates ( $Fe_2(SeO_3)_3 \cdot 3H_2O$ ,  $Fe_2(SeO_3)_3 \cdot 5H_2O$ ) and the water content in the natural ferric selenite mandarinoite. *Chemie der Erde*. **2018**. Vol. 78. P. 228–240.

*Kampf A.R., Mills S.J., Nash B.P., Thorne B., Favreau G.* Alfredopetrovite, a new selenite mineral from the El Drago 'n mine, Bolivia. *Eur. J. Miner.* **2016**. Vol. 28. P. 479–484.

*Krivovichev V.G., Charykova M.V., Yakovenko O.S., Depmeir W.* Thermodynamics of arsenates, selenites, and sulfates in the oxidation zone of sulfide ores. IV. Eh–pH diagrams of the systems Me–Se–  $H_2O$  (Me = Co, Ni, Fe, Cu, Zn, Pb) at 298 K. *Zapiski RMO* (*Proc. Russian Miner. Soc.*). **2010**. N 4. P. 1–15 (*in Russian*, English translation: *Geol. Ore Deposits*. **2011**. Vol. 53. No 7. P. 514–527).

*Krivovichev V.G., Tarasevich D.A., Charykova M.V., Britvin S.N., Siidra O.I., Depmeier W.* Thermodynamics of arsenates, selenites, and sulfates in the oxidation zone of sulfide ores. V. Chalkomenite and its synthetic analogue, properties and conditions of formation. *Zapiski RMO (Proc. Russian Miner. Soc.).* **2011**. N 4. P. 1–8 (*in Russian*, English translation: *Geol. Ore Deposits.* **2012**. Vol. 54. № 7. P. 498– 502). Krivovichev V.G., Charykova M.V., Vishevsky A.V. The Thermodynamics of selenium minerals in near-surface environments. *Minerals*. **2017**. Vol. 7. N 10. P. 188.

*Majzlan J., Nielsen U.G., Dachs E., Benisek A., Drahota P., Kolitsch U., Herrmann J., Bolanz R., Stevko M.* Thermodynamic properties of mansfieldite (AlAsO<sub>4</sub>·2H<sub>2</sub>O), angelellite ( $Fe_4(AsO_4)_2O_3$ ) and kamarizaite ( $Fe_3(AsO_4)_2(OH)_3$ ·3H<sub>2</sub>O). *Miner. Mag.* **2018**. Vol. 82(6). P. 1333–1354.

*Morris R.E., Harrison W.T.A., Stuck G.D., Cheetham A.K.* The syntheses and crystal structures of two novel aluminum selenites, Al<sub>2</sub>(SeO<sub>3</sub>)<sub>3</sub>·6H<sub>2</sub>O and AlH(SeO<sub>3</sub>)<sub>2</sub>·2H<sub>2</sub>O. *J. Solid State Chem.* Vol. 94. **1991**. P. 227–235.

Olin A., Nolang B., Osadchii E.G. Ohman L.-O., Rosen E. Chemical thermodynamics of Selenium. Amsterdam: Elsevier, 2005. 851 p.

*Pekov I.V., Zubkova N.V., Yapaskurt V.O., Britvin S.N., Chukanov N.V., Lykova I.S., Sidorov E.G., Pushcharovsky D.Y.* Zincomenite, ZnSeO<sub>3</sub>, a new mineral from the Tolbachik volcano, Kamchatka, Russia. *Eur. J. Miner.* **2016**. Vol. 28. P. 997–1004.

*Popova E., Slavtscheva J., Gospodinov G.* Untersuchung der Löslichkeit einiger Phasen des Systems M<sub>2</sub>O<sub>3</sub>–SeO<sub>2</sub>–H<sub>2</sub>O der Elemente der 3. Gruppe des Periodensystems der Elemente. *Z. Chem.* **1986**. Vol. 26. P. 342–343.

*Rai D., Felmy A.R., Moore D.A.* The solubility product of crystalline ferric selenite hexahydrate and the complexation constant of  $FeSeO_{7}^{+}$ . *J. Solid State Chem.* **1995**. Vol. 24. P. 735–752.

*Ratheesh R., Suresh G., Nayar V.U., Morris R.E.* Vibrational spectra of three aluminium selenities Al<sub>2</sub>(SeO<sub>3</sub>)<sub>3</sub>·3H<sub>2</sub>O, Al<sub>2</sub>(SeO<sub>3</sub>)<sub>3</sub>·6H<sub>2</sub>O and AlH(SeO<sub>3</sub>)<sub>2</sub>·H<sub>2</sub>O. *Spectrochimica Acta.* Part A. **1997**. P. 1975–1979.

Savchenko G.S., Tananaev I.V., Volodina A.N. Investigation of the formation process, composition and some properties of selenites of aluminum, gallium and indium. *Inorganic materials.* **1968**. Vol. 4. N 3. P. 369–380 (*in Russian*).

Tananaev I.V., Volodina A.N., Bolshakova N.K., Petrov K.I. Synthesis and study of properties of aluminum selenites. Inorganic materials. **1976**. Vol. 12. N 12. P. 2212–2215 (in Russian).