УДК 544.31.031:546.881.5

ТЕРМОДИНАМИКА ИСПАРЕНИЯ ТРИИОДИДА ИТТРИЯ В ФОРМЕ МОЛЕКУЛ YI₃ И Y₂I₆

© 2020 г. Е. Л. Осина^{1, *}, Л. Н. Горохов¹, С. Б. Осин²

¹Объединенный институт высоких температур РАН, Москва, Россия ²Химический факультет, Московский государственный университет, Москва, Россия *E-mail: j-osina@vandex.ru

Поступила в редакцию 18.03.2020 г. После доработки 18.03.2020 г. Принята к публикации 18.06.2020 г.

В результате критического анализа экспериментальных и теоретических данных по структуре и частотам колебаний мономерной и димерной форм молекул трииодида иттрия выбраны значения молекулярных постоянных и рассчитаны термодинамические функции YI_3 и Y_2I_6 . С использованием литературных данных об отношении парциальных давлений димерных и мономерных молекул методом третьего закона термодинамики определена энтальпия реакции $YI_3(кр., ж) + YI_3(г) = Y_2I_6(г)$ и рассчитан состав пара иодида иттрия в температурном интервале 800-961 K, для которого в литературе приведены данные по полному давлению. Установлено, что в исследованном температурном интервале отношение давлений $P_{\rm m}/P_{\rm m}$ увеличивается от 0.003 до 0.014. По найденным парциальным давлениям впервые рассчитаны величины энтальпии сублимации трииодида иттрия в форме мономерных и димерных молекул и энтальпии образования этих молекул. Полученные величины введены в базу данных программного комплекса ИВТАНТЕРМО.

DOI: 10.31857/S0040364420050075

введение

Данная работа завершает серию публикаций по исследованию термодинамики испарения тригалогенидов иттрия. В публикациях [1–4] приведены значения термодинамических функций, энтальпий сублимации трифторида, трихлорида и трибромида иттрия в форме мономерных и димерных молекул YX₃ и Y₂X₆ и энтальпий их образования. Целями настоящей работы являются:

1) расчет термодинамических функций молекул YI_3 и Y_2I_6 на основе современных данных об их структурных и энергетических свойствах;

2) расчет состава пара над трииодидом иттрия, $P_{\rm A}/P_{\rm M}$ и парциальных давлений мономерных и димерных молекул по экспериментальным данным об общем давлении пара трииодида иттрия;

3) расчет энтальпий сублимации и энтальпий образования мономерной и димерной форм молекул трииодида иттрия с использованием рассчитанных в данной работе таблиц термодинамических функций $YI_3(\Gamma)$ и $Y_2I_6(\Gamma)$.

ВЫБОР МОЛЕКУЛЯРНЫХ ПОСТОЯННЫХ

Трииодид иттрия YI₃. Структура молекулы YI₃ экспериментально исследовалась методом газовой электронографии в [5–7]. В работе [5], проведенной в предположении наличия в исследуемом

паре только молекул YI₃ и их плоской структуры, найдено межатомное расстояние $r_{o}(Y-I) = 2.80(3)$ Å. Несовершенная методика стала причиной большой неточности определения этого структурного параметра. В [6, 7] приведены более точные значения структурных параметров $YI_3 - r_g(Y-I) =$ = 2.831(5) [6], 2.817(7) [7] и установлена плоская структура молекулы симметрии D_{3h} . Согласно выводам авторов [6], в паре присутствует только одна молекулярная форма, соответствующая молекуле YI₃. В фундаментальном обзоре [7] приведены сведения о том, что при температуре 1260 К пар содержит 25 ± 5% димерных молекул Y₂I₆. Квантово-химические расчеты выполнены в работах [8] (приближение MP2), [9] (CISD + Q), [10] (RHF, B3LYP). Во всех расчетах получена плоская структура молекулы. Произведение моментов инерции, приведенное в табл. 1, рассчитано для межъядерного расстояния r_g (Y–I) = 2.817 ± 0.007 Å [7] с погрешностью расчета 7 × 10^{-112} г³ см⁶.

Колебательный спектр молекулы YI₃ экспериментально не исследован. В литературе имеются данные по значениям частот колебаний, оцененным в [11], рассчитанным по силовому полю в электронографической работе [6] и полученным в теоретических расчетах [8–10]. Значения гармонических частот колебаний в приближениях MP2 [8], CISD + Q [9] и RHF/SDD [10] согласуются.

Молекула	$I_A I_B I_C \times 10^{117}$, г ³ см ⁶	v_1	v_2	v ₃	ν_4	v_5	ν_6	ν_7
YI ₃	315.7×10^{5}	143	30	243(2)	38(2)	—	_	-
Y ₂ I ₆	161.4×10^{7}	243	239	222	204	172	131	124

Таблица 1. Молекулярные постоянные YI_3 и Y_2I_6 ($p_x = 1$ для обеих молекул)

Примечание. Числа симметрии – $\sigma(YI_3) = 6$, $\sigma(Y_2I_6) = 4$; p_x – статистический вес основного состояния; $v_8 = 117$, $v_9 = 67$, $v_{10} = 43$, $v_{11} = 38$, $v_{12} = 37$, $v_{13} = 31$, $v_{14} = 28$, $v_{15} = 28$, $v_{16} = 27$, $v_{17} = 17$, $v_{18} = 3$ см⁻¹.

Однако в случае расчета ВЗЦҮР, так же как для молекулы YBr₃, получены малореалистичные значения частот неплоских колебаний для базисов LANL2DZ и SDD (-1, 22 см⁻¹ соответственно). В [6] значения частот колебаний рассчитаны с использованием колебательных характеристик электронографического эксперимента, а именно величины средних амплитуд колебаний ядер и значения эффективного сокращения, измеренного авторами впервые. Значения валентных частот колебаний v_1 и v_3 в [6] ниже гармонических величин в расчетах [8-10], а деформационных частот v_2 и v_4 – выше. Так, частота неплоского колебания $v_2 = 70 \text{ см}^{-1}$ не только существенно выше рассчитанных гармонических значений $v_2 = 38$, 40, 35 и 40 см⁻¹ [8–10] (LANL2DZ и SDD) соответственно, но и превышает экспериментальную величину для молекулы YCl_3 ($v_2 = 58.6 \text{ см}^{-1}$ [12]), что вызывает сомнения. Частоты колебаний, приведенные в табл. 1, приняты по данным расчета [8]. Их погрешности оценены в 10 см⁻¹ для v_2 , v₄, 15 для v₁ и 20 для v₃.

Димер трииодида иттрия. В обзоре [7] приведены результаты исследования структуры молекул Y₂I₆ методом газовой электронографии. Теоретически строение Y₂I₆ изучено методом теории возмущений МР2 в [8] и функционала плотности (DFT) в [10]. Согласно данным, приведенным в [7], при 1260 К пар содержит 25 ± 5% димерных молекул. Кроме состава пара, варьируемыми параметрами димера были $r(Y-I_t)$ и $r(Y-I_b)$ (I_t – концевой атом иода, І_b – атом иода в плоском четырехчленном цикле). Значения валентных углов $\angle I_b - Y - I_b$, $\angle I_t - Y - I_t$ приняты из расчета [8] и закреплены. Приведенные в обзоре [7] величины структурных параметров согласуются с соответствующими результатами теоретических расчетов [8, 10]. Во всех работах установлена структура с плоским четырехчленным циклом І_b-Y-I_b-Y симметрии D_{2h} . Произведения моментов инерции в табл. 1 вычислены с использованием структурных параметров $r_g(Y-I_t) = 2.806(6), r_g(Y-I_b) =$ = 3.023(7) Å, $\angle I_b - Y - I_b = 91.9(5.0)$, $\angle I_t - Y - I_t =$ = 116.7(2.0)°, принятым по экспериментальным данным [7] и расчету [8]. Погрешность произведения моментов инерции оценена в $9 \times 10^{-110} \, r^3 \, cm^6$.

Колебательные спектры Y_2I_6 экспериментально не изучены. Частоты колебаний этих молекул рассчитаны в работах [8, 10]. Теоретические расчеты в [10] выполнены в приближениях RHF и B3LYP с базисами LanL2DZ и SDD, в [8] – методом теории возмущений MP2. Величины частот, полученные в расчетах [10], как валентные, так и деформационные, систематически меньше соответствующих значений в [8]. Исключение составляет частота неплоской деформации четырехчленного цикла. Ее значение в [10] несколько выше (6–8 см⁻¹). Значения частот колебаний приняты по расчету [8] и приведены в табл. 1. Погрешности частот колебаний оценены в 10% для валентных частот и 15–20% для деформационных.

РАСЧЕТ ТЕРМОДИНАМИЧЕСКИХ ФУНКЦИЙ

Термодинамические функции молекул YI₃ и Y₂I₆ рассчитаны в приближении "жесткий ротатор гармонический осциллятор" в интервале температур 298.15—3000 К. Возможность использования гармонического приближения для вычисления колебательной статистической суммы YI₃ подтверждена постоянством величин колебательных квантов $\Delta G_{v+1/2}$, рассчитанных в работе [13]. В расчетах термодинамических функций использованы молекулярные постоянные, приведенные в табл. 1. Возбужденные электронные состояния при расчете термодинамических функций не учтены, поскольку ион Y⁺³ имеет заполненную электронную конфигурацию ...4*s*²4*p*⁶. Результаты расчетов термодинамических функций представлены полиномами вида [14]:

$$\Phi^{\circ}(T) = \varphi_1 + \varphi_2 \ln X + \varphi_3 X^2 + \varphi_4 X^1 + \varphi_5 X + \varphi_6 X^2 + \varphi_7 X^3.$$

Для увеличения точности аппроксимации термодинамических функций температурный интервал 298.15–3000 К разбивался на два подынтервала 298.15–1500 и 1500–3000 К. При этом отклонение рассчитанных и аппроксимированных значений приведенной энергии Гиббса $\Phi^{\circ}(T)$ в каждом интервале не превышало 0.001 Дж моль⁻¹ K⁻¹.

Коэффициенты полиномов даны в табл. 2. В табл. 3 приведены значения термодинамиче-

2020

<i>Т</i> , К	ϕ_1	φ ₂	$\phi_3 \times 10^{-4}$	$\phi_4 \times 10^{-1}$	φ ₅	φ ₆	φ ₇
YI ₃							
298.15-1500	614.6375	82.42163	-8.295918	4.139274	10.02238	-33.39631	56.49020
1500-3000	532.0269	38.1854	957.692	-42.72213	209.9379	-239.675	142.6408
Y ₂ I ₆							
298.15-1500	1135.939	183.0493	-19.882	10.53509	-5.199428	26.27253	-56.577
1500-3000	1003.632	114.2097	1387.009	-59.46529	332.0225	-395.2883	247.3677

Таблица 2. Коэффициенты полиномов, аппроксимирующих значения $\Phi^{\circ}(T)$ для молекул YI₃ и Y₂I₆ в двух температурных интервалах

Таблица 3. Термодинамические функции YI_3 и Y_2I_6

	$C_p^{\circ}(T)$	$\Phi^{\circ}(T)$	$S^{\circ}(T)$	$H^{\circ}(T) - H^{\circ}(0)$	$C_p^{\circ}(T)$	$\Phi^{\circ}(T)$	$S^{\circ}(T)$	$H^{\circ}(T) - H^{\circ}(0)$
Т, К	Дж моль $^{-1}$ K $^{-1}$			кДж моль ⁻¹	$Д$ ж моль $^{-1}$ K $^{-1}$			кДж моль ⁻¹
			YI ₃		Y ₂ I ₆			
298.15	80.979	338.332	408.983	21.064	178.373	525.899	677.980	43.343
1000	82.941	429.636	508.587	78.952	182.495	724.475	897.222	172.747
2000	83.093	485.145	566.142	161.994	182.811	846.126	1023.852	355.453
3000	83.121	518.138	599.840	245.104	182.870	918.556	1097.989	538.299

ских функций $YI_3(г)$ и $Y_2I_6(г)$ при температурах 298.15, 1000, 2000 и 3000 К.

Погрешности термодинамических функций обусловлены как погрешностями принятых значений молекулярных постоянных, так и методом расчета ("жесткий ротатор—гармонический осциллятор") и составляют 10, 12, 15 и 21, 28, 36 Дж моль⁻¹ К⁻¹ в приведенной энергии Гиббса $\Phi^{\circ}(T)$ при T = 298.15, 1000, 3000 К для YI₃ и Y₂I₆ соответственно.

РАСЧЕТ СОСТАВА ПАРА И ПАРЦИАЛЬНЫХ ДАВЛЕНИЙ МОНОМЕРНЫХ И ДИМЕРНЫХ МОЛЕКУЛ

В литературе имеется только одна экспериментальная работа по исследованию процесса сублимации трииодида иттрия [15]. Авторы определяли давление насыщенного пара от 800 до 961 К эффузионным методом Кнудсена. Для этого интервала температур методом наименьших квадратов получено уравнение зависимости логарифма давления пара от температуры

$$\lg P = (-11706 \pm 330)/T + 9.54 \pm 0.378, \qquad (1)$$

где *P* – в мм рт. ст.

Погрешности коэффициентов уравнения (1) являются среднеквадратичными ошибками, полученными для доверительной вероятности 0.95. Из уравнения (1) по методу второго закона термодинамики авторами была рассчитана величина

энтальпии сублимации трииодида иттрия $\Delta H_s^{\circ}(0) = 224.3 \pm 6$ кДж моль⁻¹. При этом полагалось, что насыщенный пар над трииодидом содержит только мономерные молекулы. Также получена величина температуры плавления $T_{nn} = 964^{\circ}$ С и установлено, что трииодид иттрия не разлагается по крайней мере до 1650°С. Эксперименты при более высоких температурах авторами не проводились из-за летучести иттрия.

В настоящей работе данные по полному давлению [15] совместно с полученными значениями термодинамических функций YI_3 и Y_2I_6 использовались для расчета состава пара, т.е. отношения давлений димерных и мономерных молекул $P_{\rm m}/P_{\rm m}$, являющихся константами равновесия реакции при разных температурах:

$$YI_{3}(\kappa p., \mathbf{x}) + YI_{3}(\mathbf{r}) = Y_{2}I_{6}(\mathbf{r}).$$
⁽²⁾

Для этой цели необходима хотя бы одна точка с известным значением $P_{\rm A}/P_{\rm M}$. В [7] имеются данные по составу пара над иодидом иттрия (75 ± 5% мономера и 25 ± 5% димера) для температуры 1260 К. С использованием этих данных рассчитана энтальпия реакции (2) по уравнению метода третьего закона термодинамики (см. [14]):

$$\Delta_r H^{\circ}(0) = T(\Delta_r \Phi^{\circ}(T) - R \ln K_p).$$
(3)

Термодинамические функции $YI_3(кр., ж)$, необходимые для расчетов, взяты из базы данных программного комплекса ИВТАНТЕРМО. Значение энтальпии реакции (2) получено равным $\Delta_r H^{\circ}(0) = 98.5 \pm 12 \text{ кДж моль}^{-1}$. Погрешность этой величины обусловлена главным образом погрешностью термодинамических функций участников реакции (2). Найденная величина $\Delta_r H^{\circ}(0)$ дает возможность рассчитать отношение парциальных давлений мономера $YI_3(\Gamma)$ и димера $Y_2I_6(\Gamma)$ для разных температур.

На основании результатов расчетов состава пара и данных об общем давлении в температурном интервале 800–961 К [15] рассчитаны значения парциальных давлений YI_3 и $Y_2I_6 P_M$ и P_{A} . Полученные давления использованы для расчета энтальпий сублимации YI_3 (кр.) в форме молекул мономера и димера. Средние значения, рассчитанные в интервале 800–961 К, представлены ниже (кДж моль⁻¹):

$$\Delta_{s} H^{\circ}(YI_{3}, \kappa p., 0 \text{ K}) = 297.8 \pm 10,$$

$$2YI_{3}(\kappa p.) = Y_{2}I_{6}(\Gamma),$$

$$\Delta_{s} H^{\circ}((4), 0 \text{ K}) = 396.3 \pm 17.$$
(4)

Погрешности принятых энтальпий сублимации приведены с учетом как воспроизводимости измерений давления пара, погрешности отношения $P_{\rm A}/P_{\rm M}$, так и неточности использованных в вычислениях термодинамических функций YI₃(кр., ж), YI₃(г) и Y₂I₆(г). Полученные величины энтальпий сублимации трииодида иттрия в форме мономерных и димерных молекул приводят к величине энергии диссоциации (в кДж моль⁻¹) димерных молекул (д) на мономерные (м):

$$D_0 (\pi = 2 \mathrm{M}) = 2 \Delta_s H^{\circ} (\mathrm{YI}_3, \mathrm{Kp.}, 0 \mathrm{K}) - \Delta_s H^{\circ} ((4), 0 \mathrm{K}) = 199 \pm 12.$$

Значение энтальпии сублимации YI₃ (297.8 ± 10), полученное по уравнению метода третьего закона термодинамики (3), существенно отличается от величины, рассчитанной в [15] (224.3 ± 6 кДж моль⁻¹), но находится в согласии со значениями для трихлорида и трибромида иттрия [3, 4] и трииодидов лантаноидов ΔH_s° (298.15 K), например LaI₃ – 304 [16], CeI₃ – 295 [17], GdI₃ – 283 кДж моль⁻¹ [18].

Для расчета энтальпий образования молекул $YI_3(\Gamma)$ и $Y_2I_6(\Gamma)$ необходима энтальпия образования $YI_3(\kappa p.)$. Так же как и в предыдущей работе [3] по термодинамике испарения трихлорида иттрия, в данной работе использованы результаты работы [19] и для энтальпии образования $YI_3(\kappa p.)$ принята величина $-640.9 \pm 2.7 \ \kappa Дж \ моль^{-1}$. В калориметрическом исследовании [20] получено близкое значение $-633.5 \pm 2.4 \ \kappa Дж \ моль^{-1}$.

ТЕПЛОФИЗИКА ВЫСОКИХ ТЕМПЕРАТУР том 58 № 5

Комбинация принятых величин энтальпий сублимации с энтальпией образования YI_3 (кр.) [19] дает значения энтальпий образования молекул YI_3 и Y_2I_6 (кДж моль⁻¹):

$$\Delta_f H^{\circ}(\mathbf{YI}_3, \mathbf{r}, 298.15) = -346.0 \pm 12,$$

$$\Delta_f H^{\circ}(\mathbf{YI}_3, \mathbf{r}, 0) = -341.3 \pm 12,$$

$$\Delta_f H^{\circ}(\mathbf{Y}_2\mathbf{I}_6, \mathbf{r}, 298.15) = -888.1 \pm 20,$$

$$\Delta_f H^{\circ}(\mathbf{Y}_2\mathbf{I}_6, \mathbf{r}, 0) = -882.0 \pm 20.$$

В табл. 4 приведены величины энтальпий сублимации и энтальпий образования всего ряда тригалогенидов иттрия. Энтальпии сублимации в форме молекул мономеров и димеров трихлорида, трибромида и трииодида иттрия имеют близкие значения и существенно отличаются от соответствующей гораздо большей величины для трифторида.

Данные табл. 5 демонстрируют симбатный ход изменения величин энтальпий сублимации и температур плавления в ряду тригалогенидов иттрия.

Технически важной характеристикой вещества является точка кипения $T_{\rm кип}$ при давлении пара 1 атм (760 мм рт. ст). С использованием рассчитанных в настоящей работе энтальпии реакции (2) и энтальпии сублимации YI₃ вычислена температура кипения трииодида иттрия $T_{\rm кип} = 1553$ К. Расчеты показали, что в температурном интервале 800 К $-T_{\rm кип}$ отношение парциальных давлений

Таблица 4. Энтальпии сублимации и образования молекул (кДж моль⁻¹)

Соединение	$\Delta_{s}H^{\circ}(298.15 \text{ K})$	$\Delta_f H^{\circ}(298.15 \text{ K})$
YF ₃	445.2 ± 5	-1273.3 ± 8
YCl ₃	287.0 ± 5	-731.4 ± 8
YBr ₃	289.5 ± 7	-568.6 ± 9
YI ₃	294.9 ± 10	-346.0 ± 12
Y_2F_6	636.8 ± 13	-2800.2 ± 12
Y_2Cl_6	357.4 ± 12	-1679.6 ± 15
Y_2Br_6	394.0 ± 14	-1322.2 ± 17
Y_2I_6	393.6 ± 17	-888.1 ± 20

Таблица 5. Энтальпия сублимации (кДж моль⁻¹) и температура плавления галогенидов иттрия

Соединение	$\Delta_{s}H^{\circ}(YX_{3}, \kappa p., 298.15 \text{ K})$	<i>Т</i> _{пл} , К
YF ₃	445.2	1428
YCl ₃	287.0	994
YBr ₃	289.5	1186
YI ₃	294.9	1238

2020

Зависимость $lg(P_{\Pi}/P_{M})$ от обратной температуры.

Таблица 6. Парциальные давления (атм.) мономера и димера тригалогенидов иттрия в точках кипения

Соединение	<i>Т</i> _{кип} , К	Литературные данные	$P_{\rm g}/P_{\rm m}$	Рм	$P_{\scriptscriptstyle \mathcal{I}}$
YCl ₃	1777	1761 [21]	0.221	0.819	0.181
YBr ₃	1613	1646 [22]	0.181	0.847	0.153
YI ₃	1553	-	0.634	0.612	0.388

 $P_{\rm A}/P_{\rm M}$ существенно возрастает от 0.004 до 0.634. Зависимость величины lg($P_{\rm A}/P_{\rm M}$) от обратной температуры приведена на рисунке. Она имеет излом с замедлением роста lg($P_{\rm A}/P_{\rm M}$), соответствующий плавлению YI₃ при $T_{\rm пл}$ = 1238 К. При температурах выше точки плавления происходит более плавный, близкий к линейному рост величины lg($P_{\rm A}/P_{\rm M}$) = f(1/T), определяемый вкладом энтальпии плавления YI₃.

Рассчитаны также температуры кипения и соответствующий состав пара в них для трихлорида и трибромида иттрия с использованием энтальпии соответствующих реакций (2), а также значений энтальпий сублимации, опубликованных ранее [3, 4]. Эти данные приведены в табл. 6.

Вычисленные значения точек кипения для YCl₃ и YBr₃ согласуются с литературными данными [21, 22], полученными экстраполяцией измеренных суммарных давлений до температуры, при которой давление достигает 1 атм.

ЗАКЛЮЧЕНИЕ

Впервые рассчитаны значения термодинамических функций, энтальпий сублимации и энтальпий образования $YI_3(r)$ и $Y_2I_6(r)$, а также энергии диссоциации $Y_2I_6 = 2YI_3$. Данные могут быть использованы в технических расчетах и включены в справочные издания. Для термодинамического моделирования высокотемпературных процессов с участием паров тригалогенидов иттрия представляет интерес обработка литературных данных по давлению насыщенного пара, проведенная в настоящей работе и в [3, 4]. На основе полученных результатов рассчитаны составы паров тригалогенидов иттрия до точек кипения.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Осина Е.Л., Ковтун Д.М.* Термодинамические функции трифторида иттрия и его димера в газовой фазе // ЖФХ. 2018. Т. 92. № 5. С. 697.
- Горохов Л.Н., Осина Е.Л., Ковтун Д.М. Термодинамика испарения трифторида иттрия в форме молекул YF₃ и Y₂F₆ // ЖФХ. 2018. Т. 92. № 11. С. 1676.
- Осина Е.Л., Горохов Л.Н., Осин С.Б. Термодинамика испарения трихлорида иттрия в форме молекул YCl₃ и Y₂Cl₆ // ЖФХ. 2019. Т. 93. № 5. С. 650.
- Осина Е.Л., Горохов Л.Н., Ковтун Д.М. Термодинамика испарения трибромида иттрия в форме молекул YI₃ и Y₂I₆ // ТВТ. 2020. Т. 58. № 1. С. 76.
- Акишин П.А., Наумов В.А., Татевский В.М. Электронографическое исследование строения молекул галогенидов галлия и иттрия // Кристаллография. 1959. Т. 4. С. 194.
- 6. *Ежов Ю.С., Комаров С.А., Севастьянов В.Г.* Определение молекулярных постоянных трийодида иттрия из электронографических данных // Журн. структур. химии. 1997. Т. 38. № 1. С. 203.
- Hargittai M. Molecular Structure of Metal Halides // Chem. Rev. 2000. V. 100. P. 2233.

- 8. *Kova'cs A*. Molecular Vibrations of Rare Earth Trihalide Dimers M_2X_6 (M = Ce, Dy; X = I, I) // J. Mol. Struct. 1999. V. 482–483. P. 403.
- 9. Соломоник В.Г., Марочко О.Ю. Строение и колебательные спектры молекул MHal₃ (M = Sc, Y, La, Lu; Hal = F, Cl, I, I) // ЖФХ. 2000. Т. 74. № 12. С. 2296.
- Zhang Y., Zhao J., Tang G., Zhu L. Ab initio and DFT Studies on Vibrational Spectra of Some Halides of Group IIIB Elements // Spectrochimica Acta Part A. 2005. V. 62. P. 1.
- Перов П.А., Недяк С.В., Мальцев А.А. Исследование ИК-спектров поглощения паров над ScI₃, YCl₃, LaCl₃, GdCl₃, LuCl₃ методом изоляции в матрице из инертного газа // Вестн. МГУ. Сер. Химия. 1975. Т. 16. № 3. С. 281.
- Konings R.J.M., Booij A.S. High-temperature Infrared Spectroscopy of YCl₃: the Vibration Spectrum, Molecular Structure and Thermodynamic Functions // J. Mol. Struct. 1992. V. 271. № 3. P. 183.
- Марочко О.Ю. Строение и колебательные спектры молекул тригалогенидов скандия, иттрия, лантана и лютеция по данным неэмпирических расчетов методом CISD + Q. Дис. ... канд. хим. наук. Иваново: ИГХТУ, 2001.
- 14. *Гурвич Л.В., Вейц И.В., Медведев В.А. и др.* Термодинамические свойства индивидуальных веществ. Т. 1. Кн. 1. М.: Наука, 1978.
- 15. Dennison D.H., Spedding F.H., Daane A.H. The Determination of the Melting Point, the Vapor Pressure, and the Decomposition Temperature of Yttrium Triiodide. https://babel.hathitrust.org/cgi/pt?id=mdp.39015086500488 &view=1up&seq=7

- Dunaev A.M., Kudin L.S., Motalov V.B., Ivanov D.A, Butman M.F., Krämer K.W. Mass Spectrometric Study of Molecular and Ionic Sublimation of Lanthanum Triiodide // Thermochimica Acta. 2015. V. 622. P. 82.
- Villani A.R., Brunetti B., Vincenzo P. Vapor Pressure and Enthalpies of Vaporization of Cerium Trichloride, Tribromide, and Triiodide // J. Chem. Eng. Data. 2000. V. 45. P. 823.
- Motalov V.B., Dunaev A.M., Tsybert A.O., Kudin L.S., Butman M.F., Krämer K.W. Sublimation Enthalpies of Gadolinium and Thulium Triiodides and Formation Enthalpies of the Molecules LnI₃, Ln₂I₆, and Ln₃I₉ (Ln = Gd, Tm) // Int. J. Mass Spectrometry. 2017. V. 417. P. 29.
- Xiang-Yun W., Tian Zhu J., Goudiakas J., Fuger J. Thermodynamics of Lanthanide Elements IV. Molar Enthalpies of Formation of Y₃⁺ (aq), YCl(cr), YBr(cr), and YI(cr) // J. Chem. Thermodynamics. 1988. V. 20. P. 1195.
- 20. Лежава С.А. Термохимические характеристики трихлоридов и трииодидов иттрия, гольмия, тулия и ионов Y³⁺, Ho³⁺, Tm³⁺ в бесконечно разбавленном водном растворе Автореф. дис. ... канд. хим. наук. М.: МГУ, 1992.
- Дудчик Г.П., Поляченок О.Г., Новиков Г.И. Давление насыщенного пара хлоридов иттрия, празиодима, гадолиния, тербия и диспрозия // Журн. неорг. химии. 1969. Т. 14. 3165.
- 22. Махмадмуродов А., Темурова Н., Шарипов А. Термодинамика парообразования бромидов редкоземельных элементов // Изв. АН Тадж. ССР. Отд. физ. мат., хим. и геолог. 1989. № 1. С. 39.