УКД 66+502.1

НИЗКОТЕМПЕРАТУРНОЕ КАТАЛИТИЧЕСКОЕ РАЗЛОЖЕНИЕ N₂O

© 2022 г. К. О. Денисова^{*a*}, А. А. Ильин^{*a*}, *, А. П. Ильин^{*a*}, Ю. Н. Сахарова^{*a*}

^аИвановский государственный химико-технологический университет, Иваново, Россия

**e-mail: ilyin@isuct.ru* Поступила в редакцию 14.05.2021 г. После доработки 20.07.2021 г. Принята к публикации 29.07.2021 г.

Методом механохимического синтеза получена серия оксидных катализаторов модифицированных катионами калия 1-5% K₂O/CoFe₂O₄ со структурой шпинели. Полученные образцы исследовали методами рентгенофазового анализа, адсорбции-десорбции азота, термопрограммированного восстановления водородом и термопрограммированной десорбции кислорода. Показано, что увеличение содержания калия приводит к значительному уменьшению степени окристаллизованности оксидов, повышению удельной поверхности и появлению слабосвязанных форм кислорода, что способствует росту каталитической активности образцов в реакции разложения закиси азота при температурах 150–400°С. Наибольшей активностью обладает катализатор 5% K₂O/CoFe₂O₄, характеризующийся наличием максимального количества слабосвязанных форм кислорода. Установлено, что присутствие кислорода или воды в реакционной смеси снижает активность в процессе низкотемпературного каталитического разложения N₂O.

Ключевые слова: феррит кобальта, разложение закиси азота, формы кислорода, термопрограммированая десорбция

DOI: 10.31857/S0040357122010055

ВВЕДЕНИЕ

Наиболее эффективным способом обезвреживания нитрозных газов производства азотной кислоты является каталитическое восстановление оксидов азота до молекулярного азота. Процесс восстановления протекает на поверхности катализатора в присутствии газа — восстановителя [1].

В зависимости от характера восстановителя каталитические методы подразделяются на селективные и неселективные по отношению к оксидам азота. В качестве восстановителей могут быть использованы оксид углерода(II), водород [2], природный газ, аммиак, пары керосина, нефтяной и коксовый газ, азотоводородная смесь [3].

При использовании в качестве газа восстановителя — аммиака протекает процесс селективного каталитического восстановления оксидов азота в отходящих газах [4]. Каталитический способ очистки газов от оксидов азота различными восстановителями, кроме аммиака, протекает при условии связывания кислорода, присутствующего в газе. Восстановление оксидов азота аммиаком протекает селективно в присутствии кислорода, причем единственными продуктами реакции являются молекулярный азот и вода. Аммиак реагирует с оксидами азота, восстанавливая их до безвредных веществ и не взаимодействует при этом с кислородом. В связи, с чем аммиак расходуется в количествах, эквивалентных содержанию оксидов азота в обезвреживаемых газах [5, 6]. При этом температура поддерживается в пределах 250–350°С. В процессе восстановления оксидов азота аммиаком протекают реакции:

$$4NH_3 + NO = 5N_2 + 6H_2O,$$
 (1)

$$8NH_3 + 6NO_2 = 7N_2O + 12H_2O.$$
 (2)

Однако в зависимости от активности катализатора и температуры возможно протекание нежелательных побочных реакций:

$$2NH_3 + 8NO = 5N_2O + 3H_2O,$$
 (3)

$$4NH_3 + 4O_2 = 2N_2O + 6H_2O.$$
 (4)

К недостаткам этого вида очистки относятся трудность точной дозировки небольших количеств аммиака в газ после абсорбционных колонн и равномерного распределения его в газовом потоке, а также образования в трактах после очистки нитрит-нитратов аммония. Для исключения образования последних температуру газов, выбрасываемых в атмосферу после рекуперационных турбин, поддерживают выше 200°С.

При неселективном методе восстановления газом восстановителем является метан, поэтому он реагирует с кислородом, намного быстрее, чем с оксидами азота [7]. Метан принципиально отличается от других углеводородов. Недостатками использования метана в роли газа восстановителя NO_x является то, что требуется создание высоких температур — 700—750°С и использование дорогостоящего алюмопалладиевого катализатора. В настоящие время модернизация действующих производств азотной кислоты предусматривает замену высокотемпературной неселективной на низкотемпературную селективную очистку.

Высокотемпературное каталитическое восстановление NO_x имеет существенный недостаток стремление обеспечить высокую степень очистки приводит к образованию попутных выбросов монооксида углерода, метана, аммиака, формальдегида. При недостатке кислорода из метана могут образоваться водород и оксид углерода:

$$CH_4 + 0.5O_2 = CO + 2H_2 + 35.13 \text{ кДж/моль.}$$
 (5)

Все три восстановителя (CH₄, CO и H₂) реагируют на катализаторе с оксидами азота, восстанавливая их до элементарного азота:

$$NO_2 + H_2 = NO + H_2O,$$
 (6)

$$2NO + 2H_2 2 \rightarrow N_2 + 2H_2O.$$
 (7)

Водород в качестве восстановителя имеет преимущества перед другими газами в отношении времени реакции из-за лучшего контакта между газом и металлом. Н₂ связывает атомы кислорода у оксидов металлов и неметаллов. При этом он "отдает" свои электроны. Действие водорода как бы противоположно действию кислорода: водород является восстановителем.

Известно, что оксиды переходных металлов со структурой шпинели таких, как Co_3O_4 , $CoFe_2O_4$ проявляют высокую каталитическую активность в реакции низкотемпературного разложения N_2O . Причем на температуру 50%-го и 100%-го разложения N_2O существенное влияние оказывает соотношение $CoO : Fe_2O_3$ в составе катализатора и состав реакционный газовой смеси. Однако, систематических исследований о взаимодействии водорода, кислорода и закиси азота с поверхности катализатора не выполнено. Кроме того, выполнение данных исследований позволит выявить взаимосвязь прочности связи кислорода с поверхностью катализатора и его каталитической активностью.

Для повышения активности и стабильности катализатора для процесса разложения N_2O промотируют разными металлами [2]. Установлено, что калий изменяет как электронные, так и кислотноосновные свойства поверхности, что приводит к увеличению каталитической активности в области низких температур 200–300°C [8]. В представленном исследовании использовали метод термопрограммируемой десорбции ($T\Pi A$) для исследования взаимосвязи между каталитическим разложением N_2O и десорбционными свойствами O_2 , поскольку кислород играет важную роль в качестве ингибитора в реакции разложения N_2O .

В связи с этим целью работы является изучение влияния модифицирования $CoFe_2O_4$ катионами калия на каталитическую активность в реакции разложения N_2O при низких температурах. Дополнительно необходимо выявить влияние водяного пара, кислорода и водорода на процесс разложения N_2O и их взаимодействию с поверхностью катализатора.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Феррит кобальта со структурой частично обращенной шпинели CoFe₂O₄ синтезировали механохимическим методом с использованием в качестве исходных компонентов оксалаты железа и кобальта, модифицированных катионами калия 1-5%. Исследование катализаторов методом термопрограммированного восстановления водородом (ТПВ-Н₂) проводили на установке "Хемосорб". Навеску образца Со Fe_2O_4 (0.1–0.15 г), загружали в U-образный кварцевый реактор. Образец предварительно отдували в токе (5 мл/мин) Ar, нагревая от комнатной температуры до 150°C со скоростью 10°С/мин, после чего выдерживали при заданной температуре в течение 10 мин. Затем образец охлаждали в токе Ar до 50°C. Восстановление образцов проводили смесью 10% H₂ в Ar со скоростью подачи 30 мл/мин в режиме нагрева до 700°С со скоростью 5°С/мин. Площадь поверхности, изотермы адсорбции-десорбции азота и данные по распределению пор по размерам получены на приборе Sorbi-MS. Удельная поверхность определялась методом БЭТ по низкотемпературной адсорбции-десорбции азота. Перед исследованием образцы были обработаны в токе азота при температуре 250°С в течение 60 мин.

Каталитическая активность. Образцы испытывались в реакции разложения N_2O . Испытания проводились с помощью каталитического комплекса ПКУ-2ВД. Состав реакционной газовой среды $N_2 : N_2O : H_2 = 100 : 1 : 1, N_2 : N_2O : H_2O = 100 : 1 : 1, N_2 : N_2O : O_2 = 100 : 1 : 1. Объемная скорость газа рассчитывается по формуле и составляла 20000 ч⁻¹:$

$$w = \frac{V_{\Gamma}}{V_{kt}} \, \mathrm{u}^{-1}$$

 $V_{\rm r}$ – объем газа, м³/ч, V_{kt} – объем катализатора, м⁻³.

Температура в реакторе варьировалась от 100 до 550°С. Для определения состава продуктов реакции использовался газовый хроматограф Кри-

Рис. 1. Кривые ТПВ-H₂ K₂O/CoFe₂O₄. Соотношения K₂O/CoFe₂O₄, мас. %: 1 – 1/99; 2 – 2/98; 3 – 3/97; 4 – 4/96; 5 – 5/95.

сталлюкс – 4000 М с детекторами по теплопроводности.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЯ

С целью изучения параметров процесса взаимодействия катализатора с водородом были выполнены исследования методом термопрограммированного восстановления водородом, которые приведены на рисунке 1. В *ТПВ*-H₂ спектрах образцов наблюдаются три области интенсивного поглощения водорода 250-370°С, 370-550°С и 550-620°С. Более слабый пик в интервале температур 180-300°C связан с восстановлением поверхностных частиц кобальта [9, 10]. Эти три пика характерны для восстановления CoFe₂O₄ и были приписаны восстановлению Co²⁺ до металлического кобальта (первый) и последовательному восстановлению Fe³⁺ до металлического железа при более высокой температуре. Ведение катионов калия приводит сдвигу пиков в область более низких температур. Общие поглощение водорода образцами увеличивается, что связано с сокращением в них содержания кобальта при введении калия. С ростом содержания калия величина поглошения в первом пике проходит через максимум, а во втором пике происходит смещение температуры с 505 до 455°С. Наблюдаемое снижение температуры начала восстановления для пиков может быть обусловлено уменьшением размера кристаллитов и небольшим увеличением удельной поверхности образцов. Очевидно, что взаимодействие между катионами K и Co способствует восстановлению Co^{2^+} до Co^0 и Fe^{3^+} до $\mathrm{Fe}^{2^+}.$

Сильно уширенные области 350–600°С в профилях образцов, в состав которых входит 1 мас. % K_2O , отвечают присутствию ионов K, сильно связанного с ферритом кобальта. Схожим образом в появление высокотемпературных пиков объясняется восстановлением шпинельных форм на поверхности катализатора. В сравнении с профилем восстановления 1% $K_2O/CoFe_2O_4$ пики восстановления катализаторов 5% $K_2O/CoFe_2O_4$ смещаются в сторону более низких температур. Это означает, что окислительно-восстановительная способность 5% $K_2O/CoFe_2O_4$ увеличивается.

В процессе разложения N_2O , что Co^{2+} окисляется до Co^{3+} атомом кислорода. Затем образованный таким образом Co^{3+} должен быть восстановлен до Co^{2+} , чтобы регенерировать активные центры. Добавка K_2O в катализаторе, по-видимому, играет важную роль в ускорении этой стадии восстановления. Добавление K_2O делает восстановление Co^{3+} до Co^{2+} и образование кислородных вакансий более разнообразным, что увеличивает структуру потока кислорода в решетке и увеличивает каталитическую активность катализатора. Температурные максимумы, наблюдаемые при 250–300°С, приписываются восстановлению адсорбированных форм кислорода.

Восстановление до Fe^0 происходит ступенчато от Fe_2O_3 до Fe_3O_4 , называемого магнетитом, и продолжается до металлического железа. Промежуточный оксид, $Fe_{(1-x)}O$, не стабилен при температурах ниже 570°С. При температурах восстановления выше 570°С вюстит также должен учитываться в процессе восстановления. В этом случае восстановление происходит от Fe_2O_3 через Fe_3O_4 до $Fe_{(1-x)}O$ и продолжается затем до Fe^0 .

Для образца 5% $K_2O/CoFe_2O_4$ наблюдается смещение максимума в область низких температур. Это свидетельствует о снижении энергии связи металл-кислород в этих оксидах. Для образца $K_2O/CoFe_2O_4$ с ростом содержания оксида калия 1% до 5% наблюдается тенденция к уменьшению количества водорода, поглощенного при восстановлении кислородсодержащих частиц на поверхности. Наблюдаемая тенденция указывает на уменьшение количества хемосорбированного кислорода на поверхности образцов при введении оксида калия в структуру CoFe₂O₄. Содержание K_2O в катализаторе, по-видимому, играет важную роль в ускорении стадии восстановления

Термопрограммированая десорбция кислородом была проведена, чтобы понять роль оксида калия в процессе разложения N₂O [11]. На рис. 2 показаны профили десорбции кислорода для катализаторов. Для катализатора CoFe₂O₄ и с добавлением К₂О 1-5% пики десорбции наблюдались при температуре в интервалах 50-140°C, 140-195°С, 195-242°С, 195-285°С и 285-422°С. Добавление в количестве K₂O 1-5% вызвало значительное изменение профиля, и пики десорбции имели большую площадь поверхности (рис. 2). Этот результат показывает, что десорбции кислорода способствует добавление K2O в состав катализатора. Наибольшая интенсивность пика десорбции наблюдалась для катализатора CoFe₂O₄ с добавлением 4% К₂О, что указывает на то, что количество центров адсорбшии кислорода коррелирует с активностью катализатора. Из рисунка 2 видно, что на этих пяти катализаторах появляется большой пик десорбции при температуре около 157°С на рис. 2.2, который принадлежит десорбции молекулярного кислорода О2. Это связано с тем, что входит K_2O в решетку $CoFe_2O_4$, образуя относительно однородный твердый раствор, при этом образуется больше кислородных вакансий на поверхности и в объемной фазе. По мере увеличения содержания до 4% К₂О на рис. 2.4 появляются два больших пика десорбции около 208 и 258°С, которые приписываются десорбции атомарного адсорбционного кислорода О⁰. Пик десорбции при 400-500°С объясняется десорбцией кислорода, адсорбированного решеткой, это в основном связано с восстановительной реакцией. Кроме того, с увеличением количества К₂О в образцах площадь пика десорбции кислорода катализатора $CoFe_2O_4$ постепенно уменьшается, а температура десорбции снижается. Это связано с тем, что введение до 5% K_2O приводит к определенному дефекту кристаллической решетки CoFe₂O₄, образуя множество кислородных вакансий, что способствует адсорбции кислорода на катализаторе и способствует миграции и десорбции кислорода в решетке.

Феррит кобальта промотированный K_2O характеризуется более высокой активностью в реакции разложения N_2O так, как адсорбирует меньшие количество кислорода. Поскольку десорбция кислорода из CoFe₂O₄, промотированного оксидом калия, завершается при более низких температурах, то следует ожидать увеличения каталитической активности в области низких температур.

Также стоит отметить, что перенос кислорода влияет на хемосорбцию N_2O . Если кислород, скопившийся на поверхности частиц катализатора, не будет своевременно удален, хемосорбция N_2O будет подавлена. Быстрое выделение кислорода из частиц катализатора способствует хемосорбции N_2O .

Исследование каталитической активности образцов $CoFe_2O_4$, модифицированного катионами калия 1-5% в реакции разложения закиси азота показало, что разложение N_2O в присутствии оксида калия существенно выше по сравнению с чистой кобальтовой шпинелью.

Природа щелочной добавки увеличивает активность шпинельного катализатора в соответствии с порядком их ионного радиуса: Li < Na < < Rb < K < Cs [12]. Наблюдаемое увеличение или уменьшение активности катализатора, изображенное как сдвиг в ряду активности параметра $T_{50}\%$, можно объяснить химической природой (s-, р-, d-катионы) и расположением (поверхность, объем) примесей. Металлы, такие как Na, K, Cs, Rb, Sr и Ba, действуют как эффективные легирующие примеси, когда расположены на поверхности, оказывая сильное положительное влияние на характеристики шпинели. Среди поверхностных промоторов наиболее эффективными являются тяжелые щелочные металлы K, Rb и Cs, снижающие T_{50} % до 200°С. В общем, элементы, которые считаются объемными добавками, можно разделить на две группы: окислительно-восстановительные (чаще всего катионы переходных металлов) и не окислительно-восстановительные (s- и p-катионы) добавки [13, 14].

Нами было исследовано влияние содержания K_2O в $CoFe_2O_4$ на каталитическую активность в реакции разложения N_2O при избыточном давлении 0.04 МПа. Показано, что добавка K_2O значительно снижает температуру полного разложения N_2O , которая симбатно уменьшается с увеличением количества K_2O .

Так для образца, содержащего K_2O в количестве 1% температура 50%-го превращения N_2O состав-

Рис. 2. ТПД-О₂ СоFe₂O₄, модифицированного щелочным металлам K₂O. Соотношения K₂O/CoFe₂O₄, мас. %: *1* – 1/99; *2* – 2/98; *3* – 3/97; *4* – 4/96; *5* – 5/95.

ляет 350°С тогда, как образца 5% $K_2O/CoFe_2O_4$ равна 275°С. Данные по активности (T_{50} %, T_{100} %) для других катализаторов приведены в табл. 1. Следует, отметит, что наблюдаемая, корреляция свидетельствует о существенном влиянии слабосвязанного кислорода в катализаторах на скорость протекания реакции, что согласуется с данными о лимитирующей стадии реакции разложения закиси азота в области низких температур. При увеличении содержания щелочной промотирующей добавки свыше 5% приводит к спеканию катализатора $K_2O/CoFe_2O_4$ при температуре эксплуатации свыше 450°C.

Процессы образования азотной кислоты в промышленной практике протекают как при поглощении оксидов азота водой, кислорода. Одновремен-

Состав газа, об. %			N ₂ : : N ₂ O	$\begin{array}{c} N_2:\\ : N_2O:\\ : H_2O \end{array}$	$N_2: \\ : N_2O: \\ : O_2$	$N_2: \\ : N_2O: \\ : H_2$	$N_2: \\ : N_2O: \\ : H_2O$	$N_2: \\ : N_2O: \\ : H_2O$	$N_2: \\ : N_2O: \\ : H_2$	$N_2: \\ : N_2O: \\ : H_2O$	$\begin{array}{c} N_2:\\ : N_2O:\\ : O_2 \end{array}$	$N_2: \\ : N_2O: \\ : H_2$
	100 : 1 : 1				100:1:1			100:1:1				
<i>P</i> , МПа			0.1				0.7			1.1		
Состав К ₂ О/СоFе ₂ О ₄ , мас. %:	<i>S</i> _{уд} м²/г	<i>D</i> _{окр} нм	$rac{{{T_{50\%}}}}{{{T_{100\%}}}}{^\circ }{ m C}$									
1/99	35	18	$\frac{350}{500}$	$\frac{390}{550}$	$\frac{380}{530}$	$\frac{340}{490}$	$\frac{362}{400}$	$\frac{350}{450}$	$\frac{270}{340}$	$\frac{352}{380}$	$\frac{280}{350}$	$\frac{260}{320}$
2/98	40	16	$\frac{340}{480}$	$\frac{365}{530}$	$\frac{355}{520}$	$\frac{320}{475}$	$\frac{355}{390}$	$\frac{345}{420}$	$\frac{260}{330}$	$\frac{345}{370}$	$\frac{270}{345}$	$\frac{240}{310}$
3/97	38	15	$\frac{330}{475}$	$\frac{350}{525}$	$\frac{345}{515}$	$\frac{310}{465}$	$\frac{320}{375}$	$\frac{320}{410}$	$\frac{230}{320}$	$\frac{310}{365}$	$\frac{365}{335}$	$\frac{210}{300}$
4/96	40	12	$\frac{315}{460}$	$\frac{340}{500}$	$\frac{310}{480}$	$\frac{305}{450}$	$\frac{310}{367}$	$\frac{310}{400}$	$\frac{210}{300}$	$\frac{300}{357}$	$\frac{240}{320}$	$\frac{200}{260}$
5/95	45	10	$\frac{310}{445}$	$\frac{320}{480}$	$\frac{315}{460}$	$\frac{310}{437}$	$\frac{300}{350}$	$\frac{300}{380}$	$\frac{200}{270}$	$\frac{290}{340}$	$\frac{230}{300}$	$\frac{180}{245}$

Таблица 1. Характеристики катализатора на основе K₂O/CoFe₂O₄

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ХИМИЧЕСКОЙ ТЕХНОЛОГИИ том 56 № 2 2022

Рис. 3. Каталитическая активность K₂O/CoFe₂O₄. Соотношения K₂O/CoFe₂O₄, мас. %: *1* – 0/100; *2* – 1/99; *3* – 2/98; *4* – 3/97; *5* – 4/96; *6* – 5/95. Избыточное давление: 0.04 МПа.

ное присутствие кислорода и воды препятствует разложению N_2O в основном в той же степени. Однако природа ингибирующего действия воды и кислорода заметно отличается. Принимая во внимание, что в случае воды она заключается в простой блокировке активной поверхности. Поскольку наличие кислорода и водяного пара оказывает значительное влияние на процесс разложения закиси азота, то в работе показано тормозящее действие этих компонентов на активность $K_2O/CoFe_2O_4$ в процессе разложения N_2O .

Данные, представленные на рис. 3, свидетельствуют о снижении активности катализатора при наличии ингибиторов в реакционной смеси. В присутствии водяного пара увеличивается температура зажигания катализатора. В результате полное разложение N_2O достигается при температуре 320°С. Пары воды оказывают более сильное ингибирующее действие предположительно из-за конкурентной адсорбции на активных центрах катализатора. Таким образом, добавка калия способствует повышению не только активности, но и устойчивости катализатора к воздействию ингибиторов.

ЗАКЛЮЧЕНИЕ

Методом механохимического синтеза приготовлена серия оксидных катализаторов модифицированных катионами калия 1-5% К₂O/CoFe₂O₄ со структурой шпинели. Показано, что при возрастании содержания калия происходит незначительное увеличение удельной поверхности образцов и снижение степени окристаллизованности шпинели за счет повышения дисперсности частиц и их дефектности. Согласно данным ТПД-О2 и ТПВ-Н2 с ростом содержания катионов калия в структуре шпинели увеличивается количество слабосвязанных форм кислорода и одновременно снижается температура полного восстановления водородом. Выявлена корреляция между каталитической активностью образцов в реакции разложения закиси азота и количеством наиболее слабосвязанного (десорбируемого при низких температурах) кислорода. Максимальной активностью характеризуется образец 5% К2О/СоFе2О4, для которого наблюдается снижение температуры T_{50} % закиси азота на 100°С по сравнению с незамещенной шпинелью СоFe₂O₄. Выявлено влияние паров воды, кислорода и водорода на активность катализатора в реакции разложения закиси азота.

Практическая часть работы выполнена в рамках плана работ лаборатории синтеза, исследований и испытания каталитических и адсорбционных систем для процессов переработки углеводородного сырья (созданной при поддержке Минобрнауки РФ на 2012-2022) тема № FZZW-2020-0010) и при стипендиальной поддержке Президента РФ (№ 15493ГУ/2020). При выполнении исследований привлекалось оборудование ЦКП ИГХТУ.

ОБОЗНАЧЕНИЯ

- ТПД термопрограммированая десорбция
- *ТПВ*-H₂ термопрограмированое восстановление водородом
- *ТПД*-О₂ термопрограммированая десорбция кислорода
- S_{yq} удельная поверхность образцов носителя, M^2/Γ
- *D*_{окр} размер частиц, нм

 V_{Γ} объем газа, м³/ч

- V_{kt} объем катализатора, м⁻³
- *w* объемная скорость газа, 4^{-1}
- *T*₅₀, % температура половинного разложения закиси азота, °C
- $T_{100}, \%$ температура полного разложения закиси азота, °C
- $X_{\rm N,O}$ степень конверсии N₂O, %
- *I* интенсивность сигнала детектора, отн. един.
- Р давление в реакторе, МПа

СПИСОК ЛИТЕРАТУРЫ

- 1. *Revel R.C., Bartholomew C.H.* The stoichiometries of H₂ and CO adsorptions on cobalt: Effects of support and preparation // J. Catal. 1984. V. 85 P. 63. https://doi.org/10.1016/0021-9517(84)90110-6
- Bartholomew C.H., Reuel R.C. Cobalt-support interactions: Their effects on adsorption and CO hydrogenation activity and selectivity properties // Ind. Eng. Chem. Prod. Res. Dev. 1985. V. 24. P. 56. https://doi.org/10.1021/i300017a011
- 3. *Zowtiak J.M., Bartholomew C.H.* The kinetics of H₂ adsorption on and desorption from cobalt and the effects of support thereon // J. Catal. 1983. V. 83. P. 107. https://doi.org/10.1016/0021-9517(83)90034-9

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ХИМИЧЕСКОЙ ТЕХНОЛОГИИ

 Tejuca L.G., Bell A.T., Fierro J.L.G., Pena M.A. Surface behavior of reduced LaCoO₃ as studied by TPD of CO, CO₂ and H₂ probes and by XPS // Appl. Surf. Sci. 1988. V. 31. P. 301.

https://doi.org/10.1016/0169-4332(88)90095-5

- Ильин А.П. Производство азотной кислоты: учебное пособие / А.П. Иль-ин, А.В. Кунин, А.А. Ильин; Иван. гос. хим.-технол. ун-т. Иваново, 2011. 269 с.
- 6. *Близнюк О.Н., Клещев Н.Ф., Огурцов А.Н.* Оптимизация процесса селективного низкотемпературного восстановления №20 аммиаком. Модификация оксидной каталитической системы // Інтегровані технології та енергозбереження. 2013. № 3. С. 50.
- 7. *Матышак В.А., Третьяков В.Ф.* Роль поверхностных структур в селективном восстановлении оксидов азота углеводородами на оксидных катализаторах // Журн. Рос. хим. об-ва им. Д.И. Менделеева. 2008. Т. LII. № 4. С. 151.
- Гайдей Т.П., Кокорин А.И., Пиллет Н. и др. Каталитическая активность металлических и нанесенных оксидных катализаторов в реакции разложения закиси азота // Журн. Физической Химии. 2007. Т. 81. № 6. С. 1028.
- Olusola O.J., Sudip M. Temperature programme reduction (TPR) studies of cobalt phases in γ-alumina supported cobalt catalysts // J. Petroleum Technology and Alternative Fuels. 2016. V. 7. № 1. P. 1 https://doi.org/10.5897/JPTAF2015.0122
- Тихомиров С.А., Трегубова И.В., Алымов М.И., Тарасов О.Д., Коровкина Н.Ф. Низкотемпературное водородное восстановление кобальтовых порошков // Физика и химия обработки материалов. 2010. № 6. С. 73.
- Садыков В.А., Лунин В.В., Розовский А.Я. и др. Разработка в России новых катализаторов и процессов селективного восстановления оксидов азота углеводородами в избытке // Зеленая химия России: Сб. статей. М.: Изд-во МГУ, 2004. С. 64.
- Sylwia W., Gabriela G., Paweł S., Zbigniew S. and Andrzej K.B. Surface and Interface Promotion of Co₃O₄ for the Low-Temperature N₂O Decomposition Catalysis // Catalysts. 2020. № 10. P. 41. https://doi.org/10.3390/catal10010041
- Katerina K., Katerina P., Kvetuše J., Dagmar F., Martin K., Lucie O. K-Modified Co-Mn-Al Mixed Oxide-Effect of Calcination Temperature on N₂O Conversion in the Presence of H₂O and NO_x // Catalysts. 2020. № 10. P. 1134. https://doi.org/10.3390/catal10101134
- Kimihiro A., Chie O., Shinji I., Yasushi S., Masashi I. Potassium-doped Co₃O₄ catalyst for direct decomposition of N₂O // Applied Catalysis B: Environmental. 2008. V. 78. P. 242. https://doi.org/10.1016/j.apcatb.2021.120435

2022

№ 2

том 56