УДК 66.094.3.097.66.081.6

МОДЕЛИРОВАНИЕ ПАРОВОГО РИФОРМИНГА ПРОПАНА В КАТАЛИТИЧЕСКОМ МЕМБРАННОМ РЕАКТОРЕ ПРИ ВЫСОКИХ ТЕМПЕРАТУРАХ

© 2022 г. В. Н. Бабак^{а,} *, Л. П. Диденко^а, Л. А. Семенцова^а, Ю. П. Квурт^а

^аИнститут проблем химической физики РАН, г. Черноголовка, Московская обл., Россия

**e-mail: tabor47@mail.ru* Поступила в редакцию 16.11.2020 г. После доработки 19.11.2021 г. Принята к публикации 03.12.2021 г.

Разработана модель парового риформинга пропана в каталитическом реакторе, основным элементом которого являются две цилиндрические камеры, разделенные тонкой перегородкой (высокоселективная по отношению к водороду палладиевая фольга или непроницаемая стальная пластина). Верхняя камера вакуумируется, а в нижней засыпается никелевый катализатор и поддерживается постоянное давление. При равномерной подаче сырья (C_3H_8 и H_2O) по периметру нижней камеры проблема сведена к нахождению средних потоков C_3H_8 , CH_4 , H_2O , CO, CO_2 и H_2 из решения шести нелинейных обыкновенных дифференциальных уравнений первого порядка. Исследования проводили в интервале температур 673 K < T < 823 K при отношении входных потоков водяной пар/пропан равном 5 и скорости подачи сырья 1800–3600 1/ч. Сравнения расчетов с экспериментом подтвердило предположение о существовании двух участков парового риформинга (короткого начального и основного). Доказано, что оптимальными условиями проведения парового риформинга пропана являются скорость подачи сырья ~2000 и температура ~800 K.

Ключевые слова: каталитический реактор, паровой риформинг пропана, палладиевая фольга **DOI:** 10.31857/S0040357122020051

введение

Истощение запасов ископаемого природного сырья и ухудшение экологической обстановки ставят на повестку дня поиск альтернативных источников энергии. Одним из таких источников является водород — наиболее доступный и экологически чистый энергоноситель. Наряду с его широким использованием в химической промышленности при получении аммиака, соляной кислоты, метанола и т.п. [1] водород применяется в качестве сырья для низкотемпературных топливных элементов при производстве электроэнергии [2]. При этом в отличие от традиционных источников (уголь, нефть) в атмосферу выбрасывается только небольшое количество тепла и водяной пар.

Водород получают (~50% общей добычи) из природного газа, основным компонентом которого является метан (~90–95%). Этот способ наиболее экономичен из-за доступности и низкой цены сырья. Порядка 30% производства H_2 приходится на переработку нефти, а ~18% – на газификацию угля [3]. Кроме природного газа в качестве сырья для получения водорода используют попутные нефтяные газы (ПНГ) – смеси пропана и бутана [4]. Эти смеси легко сжижаются при умеренном давлении (~1.5 МПа) и нормальной температуре. Их легко хранить и транспортировать. По сравнению с более тяжелым углеводородным сырьем (нефть, дизельное топливо) ПНГ являются более чистым сырьем и содержат достаточно высокий процент водорода.

Основным методом получения H_2 является паровая конверсия (риформинг) углеводородного сырья [4]. Процессы обычно проводят в традиционных каталитических реакторах (трубы, полости) различных конструкций [5, 6].

Расчет базируется на решении уравнений гидродинамики конвективной диффузии и теплопередачи. Однако коэффициенты переноса тепла и массы для каталитических систем обычно не известны, поэтому паровую конверсию проводят в условиях, когда температура и давление в системе поддерживаются постоянными.

Водород можно получить также с помощью углекислотного риформинга, который, однако, протекает значительно медленнее парового риформинга. При парциальном окислении сырья в продуктах содержится большое количество СО, метанола, а содержание H₂ невелико [7, 8] из-за частичного окисления его кислородом.

Комбинация парциального окисления и паровой конверсии (автотермический риформинг) повышает устойчивость катализатора из-за снижения образования УО, однако высокого выхода H₂ достичь не удается [9, 10].

Однако паровой риформинг остается наиболее распространенным способом получения H_2 , на его долю приходится до ~50% производства водорода [11]. Кроме метана сырьем для парового риформинга может быть метанол [12], этанол [13], нафта [14], а также сжиженные ПНГ. По сравнению с более тяжелым углеводородным сырьем ПНГ является более чистым и имеет ряд других преимуществ. Исследование паровой конверсии ПНГ имеет важное значение. Для понимания этого процесса необходимо экспериментально изучить паровую конверсию отдельных компонентов — пропана и н-бутана. Такие исследования были проведены ранее [15, 16].

Важной проблемой получения Н2 паровой конверсией углеводородов С₂₊ является образование УО, дезактивирующих катализатор. В этой связи большое значение имеет устойчивость катализатора. Чаще всего при паровом риформинге используют никелевые катализаторы, что связано с их доступностью и низкой ценой. В настоящее время большое число исследований направлено на создание устойчивых к дезактивации катализаторов. Высокую активность и устойчивость имеют Pt, Rh и Ru катализаторы, нанесенные на оксидные носители [17, 18]. Такие катализаторы дороги, и более экономично использовать их в качестве добавок к никелевым [18]. Сравнительное исследование Ni/Al₂O₃и Ni/Cd-CeO₂ катализаторов показало преимущество (повышенную активность и устойчивость) использования в качестве носителя CeO₂, допированного Cd [19]. Помимо подбора подходящего катализатора для снижения выхода УО используют широко известный метод низкотемпературного предриформинга [20]. Паровую конверсию ПНГ проводят в две стадии. На первой стадии, протекающей при "пониженных" температурах (менее 700 К) и малых отношениях входных потоков пар/алканы ($m \leq 1$), ПНГ превращается в смесь метана, водорода и оксидов углерода. На второй стадии полученная смесь подогревается до более высоких температур и с помощью парового риформинга при $m \sim 2-5$ превращается в смесь Н₂, СО и СО₂.

Уменьшение температуры процесса, а следовательно и выхода УО можно достичь используя мембранную технологию, объединяющую реакционный процесс и отвод водорода из зоны реакции с помощью высокоселективных по отношению к H₂ палладиевых мембран [21]. Для увеличения производительности палладиевых мембран можно использовать сплавы Pd-6% In, Pd-6% In-0.5% Ru, Pd-23% Ag, Pd-6% Ru, Pd-10% Ru, получаемые в виде металлической фольги методом холодного проката с промежуточным отжигом в инертной среде [22]. Минимальная толщина получаемой таким способом фольги составляет ~10 мкм. Более тонкие палладиевые слои получают с помощью нанесения палладия на пористые подложки (стекло, керамика, металлы) различными методами. Тонкие композиционные мембраны имеют высокую проводимость по водороду, однако они недостаточно водородселективны и сложны в изготовлении. Фольговые мембраны имеют практически 100%-ную селективность по Н₂ и для их изготовления не нужна сложная технология.

Впервые идея каталитического мембранного процесса сформулирована и реализована в работах академика Грязнова В.Н. [23].

Результаты экспериментального исследования паровой конверсии пропана в мембранном реакторе при высоких температурах ($T \ge 700$ K) показали, что отвод H₂ из реакционной смеси через фольговую мембрану приводит к увеличению конверсии алканов в целевые продукты и к снижению выхода углеродных отложений (УО) [15, 16].

В данной работе разработана модель паровой конверсии пропана в многофункциональном модуле [24]. Цель работы — найти основные закономерности как мембранного, так и немембранного процессов (в этом случае палладиевую фольгу заменяли непроницаемой стальной перегородкой). Неплохое совпадение теории с экспериментом подтвердило основные предположения, положенные в основу предлагаемой модели.

МЕТОДИКА ЭКСПЕРИМЕНТА

В качестве водородселективной мембраны использовали фольгу (толщина 30 мкм) из сплава

Pd-6% Ru. Мембрана имела форму диска ($2r'_{max} = 5.6 \text{ см}$, эффективная площадь $s_{3\phi} = 15.2 \text{ см}^2$). Для поддержания механической прочности ее помещали между сетками тонкого плетения из нержавеющей стали. Реактор состоял из верхней и нижней камер (высота h = 4 мм), между которыми помещали мембрану. Конструкция MM описана в [24]. Схема MM показана на рис. 1.

В нижней камере поддерживали атмосферное давление. Для отвода H_2 применяли вакуумирование верхней камеры, используя безмасляный диафрагменный вакуумный насос MZ 2C NT (Германия). Давление снижали до 3 мм рт. ст. Паровой риформинг изучали при T = 673, 723, 773, 823 К.

В нижнюю камеру помещали 2 см³ промышленного никелевого катализатора марки НИАП-03-01 (производитель ООО "НИАП-КАТАЛИ- МОДЕЛИРОВАНИЕ ПАРОВОГО РИФОРМИНГА ПРОПАНА

3

смешивали с водяным паром в требуемом соотношении и полавали на катализатор через отверстия. расположенные по периферии нижней камеры, а образующиеся продукты отводили через центральное узкое отверстие и пропускали через холодильник для конденсирования непрореагировавшей воды (рис. 1). Объемную скорость "сухих" газов (смесь C₃H₈, CH₄, CO, CO₂, H₂) на выходе из холодильника измеряли пенным расходомером, для анализа смесь подавали в хроматограф ("Кристалл-5000" с ПИД и детектором по теплопроводности). Содержание Н₂ в продуктах определяли на колонке с молекулярными ситами 13Х (2 мм × 2 м, 50°С, газ-носитель-аргон). Углеводородный состав смеси на выходе определяли на колонке HP-Al/KCl (0.5 мм × 30 м, газ-носительгелий). Содержание СО и СО₂ определяли на колонке с активированным углем (2 мм \times 2 м, 80°С, газ-носитель-гелий).

ЗАТОР"), содержащего ~11 мас. % Ni. Пропан

Расходы газовых потоков контролировали регуляторами расхода РРГ-12 ("Электроприбор", г. Зеленоград). Нагрев реактора осуществляли электропечью. Температуру измеряли хромель-алюмелевыми термопарами.

Катализатор (зерна фракции 0.2–0.4 мм) предварительно обрабатывали в реакторе смесью (60% H₂-40% Ar)-пар в течение 60 мин. Эксперименты показали, что изменение температуры предварительной обработки катализатора в интервале 723-973 К не влияет на его активность.

В немембранном процессе вместо мембраны устанавливали заглушку – газонепроницаемую перегородку из нержавеющей стали.

Продуктами паровой конверсии пропана являются смеси С₃H₈, CH₄, CO, CO₂ и H₂. Помимо этого образуются УО. На практике используют достаточно высокие соотношения между входными потоками пара и пропана *m*. Это необходимо для снижения образования УО. Однако большой избыток водяного пара увеличивает капитало- и энергоемкость процесса. Объемную скорость подачи смесей пропана с паром G определим следующим образом:

$$G = \dot{V}_{\Sigma} / V_{\text{kat}}, [1/\mathbf{q}]; \quad \dot{V}_{\Sigma} = (1+m) \dot{V}_{C_{3}H_{8}} [cm^{3}/muh],$$

где \dot{V}_{Σ} и $\dot{V}_{C_3H_8}$ — скорости подачи сырья (смесь С₃H₈ и H₂O) [см³/мин] и пропана [см³/мин], $V_{\text{кат}}$ объем засыпки катализатора [см³].

В данной работе эксперименты проводили при температурах 723 и 823 К и объемных скоростях G = 1800 и 3600 [1/ч]. Соотношение пар/пропан на входе m = 5.

Для эффективной работы ММ необходимо обеспечить контакт газа в нижней камере с катализатором по всему объему. Катализатор засы-

 H_2

Рис. 1. Схематическое изображение мембранного модуля. 1 – верхняя камера, 2 – нижняя камера, 3 – мембрана. x, y – безразмерные координаты в радиальном направлении.

пают приблизительно на 1/3-1/2 объема камеры (в наших экспериментах ~2 см³, объем камеры 5.3 см³). Это необходимо, чтобы процесс протекал в режиме хаотического движения частичек катализатора для поддержания постоянной температуры в камере и выравнивания концентрации по высоте.

Устойчивая работа реактора наблюдается в ограниченном интервале средних скоростей среды [25]. Ранее было показано [21], что для нашего

случая ($r'_{\text{max}} = 2.2 \text{ см}, h = 0.35 \text{ см}, d_{\text{кат}} = 0.03 \text{ см}$) до-пустимый интервал изменения объемной скорости подачи сырья G по порядку величины равен:

$$10^{3} [1/4] \le G \le 10^{4} [1/4].$$
(1)

МАТЕМАТИЧЕСКОЕ ОПИСАНИЕ ΠΡΟΠΕССА ΠΑΡΟΒΟΓΟ РИФОРМИНГА ПРОПАНА

Рассмотрим движение потоков сырья (пропан-водяной пар) и образующихся продуктов в ММ, представленном схематическим на рис. 1.

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ХИМИЧЕСКОЙ ТЕХНОЛОГИИ том 56 Nº 2 2022 A - A

Смесь C_3H_8 и H_2O (отношение потоков *m*) подается по периметру цилиндрической нижней камеры. Компоненты реакционной смеси (C_3H_8 , CH_4 , CO, CO_2 , H_2O , H_2) отводятся через централь-

ное отверстие ($r'_0 = 1$ мм).

При равномерной подаче сырья концентрации изменяются только в радиальном направлении. Пренебрегая диффузией в уравнениях переноса и интегрируя их по z' от нуля до h, для расчета интегральных мольных потоков N_i (моль/с) получим уравнения [21]:

$$\frac{\partial \dot{N}_{i}}{\partial r'} = (2\pi r')h\rho_{\rm Kar}\varphi_{i} - (2\pi r')I_{iS}, \quad \dot{N}' = \varepsilon u'c'_{i}, \quad (2)$$

где
$$\dot{N}_i = 2\pi r' \int_0^h N'_i dz'$$
 и $I_{iS} = \varepsilon v_S - D \frac{\partial c'_i}{\partial z'} \bigg|_S$ – инте-

гральный поток и поток на границе мембраны для *i*-го компонента.

Введем безразмерные координаты r и y (рис. 1):

$$r' = r'_{\max}r = r'_{\max}(1-y), \quad y = 1-r$$

Уравнения для расчетов интегральных потоков принимают вид:

$$\frac{\partial}{\partial x}(-\dot{N}_i) = w_{\rm kar}\varphi_i - s_{\rm sop}I_{iS},\tag{3}$$

где $x = 2y - y^2$ — безразмерная координата, $I_{iS} = 0$ для всех частиц кроме H₂. Для потока H₂ через мембрану запишем закон Сивертса при условии вакуумирования верхней камеры:

$$I_{S,H_2} = \frac{Q_0 \exp(-E/RT)}{\delta} \sqrt{p_{H_2}},$$
 (4)

где *p*_{H₂} – давление водорода в нижней камере, Па.

Рассматриваются следующие реакции:

1.
$$C_3H_8 + 3H_2O = 3CO + 7H_2$$
 (*K*₁),
2. $CO + H_2O = CO_2 + H_2$ (*K*₂), (5)
3. $CO + 3H_2 = CH_4 + H_2O$ (*K*₃).

Функции источников ϕ_i (см. (3)) для компонентов смеси представим в виде:

$$\begin{aligned} \varphi_{C_{3}H_{8}} &= -b_{1}, \quad \varphi_{CH_{4}} = -b_{2}, \\ \varphi_{H_{2}O} &= b_{3} - b_{2} - 3b_{1}, \\ \varphi_{CO_{2}} &= b_{2}, \quad \varphi_{CO} = -b_{2} + 3b_{1} - b_{3}, \\ \varphi_{H_{2}} &= 7b_{1} + b_{2} - 3b_{3}, \end{aligned}$$
(6)

где для никелевого катализатора [26, 27]:

$$b_{1} = \frac{V_{HK}\tilde{k}_{1} \times 10^{5}}{RTw_{\text{kar}}} \frac{p_{\text{C}_{3}\text{H}_{8}}p_{\text{H}_{2}\text{O}}^{3} - p_{\text{CO}}^{3}p_{\text{H}_{2}}^{\prime}/K_{1}}{p_{\text{H}_{2}\text{O}}^{3}},$$

$$b_{2} = \frac{\tilde{k}_{2}(p_{\text{CO}}p_{\text{H}_{2}\text{O}} - p_{\text{H}_{2}}p_{\text{CO}_{2}}/K_{2})}{p_{\text{H}_{2}\text{O}}^{AT}[1 + k_{\text{CO}}p_{\text{CO}} + k_{\text{H}_{2}}p_{\text{H}_{2}} + k_{\text{H}_{2}\text{O}}p_{\text{H}_{2}}]^{2}}, \quad (7)$$

$$b_{3} = \frac{\tilde{k}_{3}(p_{\text{H}_{2}}^{3}p_{\text{CO}}K_{3} - p_{\text{CH}_{4}}p_{\text{H}_{2}\text{O}})}{p_{\text{H}_{2}}^{2.5}[1 + k_{\text{CO}}p_{\text{CO}} + k_{\text{H}_{2}}p_{\text{H}_{2}} + k_{\text{H}_{2}\text{O}}p_{\text{H}_{2}}]^{2}}.$$

Кинетические и равновесные константы $\tilde{k_1}$, $\tilde{k_2}$, $\tilde{k_3}$ и K_2 , K_3 , а также коэффициенты Лэнгмюра для CO, H₂, H₂O известны [27]:

10

$$k_{1} = 8 \times 10^{10} \exp[-112000/RT], 1/c,$$

$$\tilde{k}_{2} = 0.54 \times 10^{6} \exp[-8074.3/T], \text{ моль/ат } \kappa_{\Gamma_{\text{кат}}} \cdot c,$$

$$\tilde{k}_{3} = 1.17 \times 10^{15} \exp[-28867/T], \text{ моль } \cdot \text{ат}^{1/2}/\kappa_{\Gamma_{\text{кат}}} \cdot c,$$

$$K_{3} = 1.27 \times 10^{-13} \exp[220000/RT], \text{ at}^{-2},$$

$$K_{2} = 1.41 \times 10^{-2} \exp[37720/RT], \quad (8)$$

$$k_{\text{CO}} = 8.23 \times 10^{-5} \exp[70650/RT], \text{ at}^{-1},$$

$$k_{\text{CH}_{4}} = 6.65 \times 10^{-4} \exp[-38280/RT], \text{ at}^{-1},$$

$$k_{\text{H}_{2}} = 6.12 \times 10^{-9} \exp[82900/RT], \text{ at}^{-1},$$

$$k_{\text{H}_{2}0} = 1.77 \times 10^{5} \exp[-89680/RT], \text{ at}^{-1}.$$

Реакции 1–3. в общем случае предполагаются обратимыми.

Для нахождения потоков частиц получаем систему из шести обыкновенных дифференциальных уравнений первого порядка:

$$\frac{dn_{C_{3}H_{8}}}{dx} = -b_{1}\left(\frac{w_{\kappa ar}}{\dot{N}_{BX}}\right), \quad \frac{dn_{CH_{4}}}{dx} = b_{3}\left(\frac{w_{\kappa ar}}{\dot{N}_{BX}}\right), \\
\frac{dn_{H_{2}O}}{dx} = (-b_{2} - 3b_{1} + b_{3})\left(\frac{w_{\kappa ar}}{\dot{N}_{BX}}\right), \\
\frac{dn_{CO}}{dx} = (-b_{3} + 3b_{1} - b_{2})\left(\frac{w_{\kappa ar}}{\dot{N}_{BX}}\right), \quad \frac{dn_{CO_{2}}}{dx} = b_{2}\left(\frac{w_{\kappa ar}}{\dot{N}_{BX}}\right), \\
\frac{dn_{H_{2}}}{dx} = (7b_{1} + b_{2} - 3b_{3})\left(\frac{w_{\kappa ar}}{\dot{N}_{BX}}\right) - \left(\frac{S}{\dot{N}_{BX}}\right)I_{S,H_{2}}.$$
(9)

Начальные условия на входе (x = 0) равны:

 $n_{C_{3}H_{8}} = 1$, $n_{H_{2}O} = m$, $n_{CH_{4}} = n_{CO} = n_{CO_{2}} = n_{H_{2}} = 0.(10)$ Здесь $n_{i} = \dot{N}_{i} / \dot{N}_{BX}$; $\dot{N}_{BX} -$ поток пропана на входе.

Потоки $n_{\rm CO}$ и $n_{\rm CO_2}$ можно выразить через потоки $n_{\rm C_3H_8}, n_{\rm CH_4}, n_{\rm H_2O}$:

$$n_{\rm CO} = 6(1 - n_{\rm C_3H_8}) - (m - n_{\rm H_2O}) - 2n_{\rm CH_4}, n_{\rm CO_2} = (m - n_{\rm H_2O}) - 3(1 - n_{\rm C_3H_8}) + n_{\rm CH_4}.$$
(11)

Суммарный поток смеси n_{Σ} равен:

$$n_{\Sigma} = \sum_{i} n_{i} = 1 + 2(1 - n_{C_{3}H_{8}}) + n_{H_{2}O} + n_{H_{2}}.$$
 (12)

В результате система (9) сводится к четырем уравнениям:

$$\frac{dn_{C_{3}H_{8}}}{dx} = -\alpha_{1}F_{1}, \quad \frac{dn_{CH_{4}}}{dx} = \alpha_{3}F_{3},$$

$$\frac{dn_{H_{2}O}}{dx} = -\alpha_{2}F_{2} + \alpha_{3}F_{3} - 3\alpha_{1}F_{1}, \quad (13)$$

 $4\frac{dn_{C_{3}H_{8}}}{dx}+2\frac{dn_{CH_{4}}}{dx}+\frac{dn_{H_{2}O}}{dx}+\frac{dn_{H_{2}}}{dx}=-\beta\sqrt{n_{H_{2}}/n_{\Sigma}}.$

Последнее уравнение этой системы можно получить, если выразить функции $b_i (w_{\text{кат}}/N_{BX})$ из первых трех уравнений и подставить их в шестое.

Выше введены безразмерные функции F_i (i = 1-3):

$$F_{1} = \frac{\left(X_{C_{3}H_{8}}X_{H_{2}O}^{3} - X_{CO}^{3}X_{H_{2}}^{7}p_{AT}^{6}/K_{1}\right)}{X_{H_{2}O}^{3}} = \frac{\left(\frac{n_{C_{3}H_{8}}}{n_{\Sigma}}n_{H_{2}O}^{3} - n_{CO}^{3}n_{H_{2}}^{7}p_{AT}^{6}/n_{\Sigma}^{7}K_{1}\right)}{n_{H_{2}O}^{3}},$$

$$F_{2} = \frac{X_{H_{2}}(X_{CO}X_{H_{2}O} - X_{H_{2}}X_{CO_{2}}/K_{2})}{X_{H_{2}O}^{2}[1 + ...]^{2}} = \frac{n_{H_{2}}(n_{CO}n_{H_{2}O} - n_{H_{2}}n_{CO_{2}}/K_{2})}{n_{H_{2}O}^{2}n_{\Sigma}[1 + ...]^{2}},$$

$$F_{3} = \frac{\left[X_{H_{2}}^{3}X_{CO}\left(p_{AT}^{2}K_{3}\right) - X_{CH_{4}}X_{H_{2}O}\right]}{X_{H_{2}O}^{2}X_{H_{2}}^{1/2}[1 + ...]^{2}} = \frac{\sqrt{n_{\Sigma}}\left[n_{H_{2}}^{3}n_{CO}\left(p_{AT}^{2}K_{3}\right)/n_{\Sigma}^{2} - n_{CH_{4}}n_{H_{2}O}\right]}{n_{H_{3}O}^{2}\sqrt{n_{H_{2}}}[1 + ...]^{2}}.$$
(14)

Квадратная скобка в знаменателях функций F_2 и F_3 и безразмерные параметры α_i (i = 1-3) и β равны:

$$[1 + ...] = 1 + \frac{1}{K_{H_2O}} \left(\frac{n_{H_2}}{n_{H_2O}}\right) + p_{AT} \left(\frac{k_{CO}}{k_{H_2O}}\right) \left(\frac{n_{H_2}}{n_{H_2O}}\right) \left(\frac{n_{CO}}{n_{\Sigma}}\right) + p_{AT} \left(\frac{k_{CH_4}}{k_{H_2O}}\right) \left(\frac{n_{H_2}}{n_{H_2O}}\right) \left(\frac{n_{CH_4}}{n_{\Sigma}}\right), \quad \alpha_1 = \left(\frac{\tilde{k}_1}{N_{BX}}\right) \frac{V_{HK} p_{HK}}{RT}, \quad (15)$$

$$\alpha_2 = \frac{\tilde{k}_2}{k_{H_2O}^2} \left(\frac{w_{KaT}}{N_{BX}}\right) p_{AT}, \quad \alpha_3 = \frac{\tilde{k}_3}{k_{H_2O}^2} \left(\frac{w_{KaT}}{N_{BX}}\right) \frac{1}{p_{AT}^{1/2}}, \quad \beta = s_{9\Phi} \left[\frac{Q_0 \exp(-E/RT)}{\delta}\right] \frac{\sqrt{p_{H_2} \times 10^5}}{N_{BX}}.$$

Выше мольные доли частиц газовой смеси X_i ($i = C_3H_8$, CH₄, H₂O, CO, CO₂, H₂) были выражены через потоки n_i :

$$X_i = n_i / n_{\Sigma} \,. \tag{16}$$

Константа равновесия K_1 для реакции 1. находится стандартным образом [28]:

$$\ln K_1 = \frac{1}{R} \left(\Delta S - \frac{\Delta H}{T} \right),$$

где ΔS и ΔH — значения энтропии и энтальпии реакции пропана с водой.

В результате вычислений получаем:

$$\ln K_{1} = \frac{1}{R} \{671.8 + 200.8 \ln(T/298) - - 332(T - 298) \times 10^{-3} \} - - \frac{1}{RT} \{497747 + 200.8(T - 298) - - 166(T^{2} - 298^{2}) \times 10^{-3} \}.$$
(17)

Предполагая газовые смеси идеальными, нетрудно показать, что мольный поток пропана на входе \dot{N}_{BX} и объемная скорость *G* связаны соотношением (*T* = 300 K):

$$\dot{N}_{BX} = \frac{p}{RT} \dot{V}_{C_3 H_8} =$$

$$= [p_{AT}G/450(m+1)] \times 10^{-5}, \text{ моль/с},$$
(18)

где T = 298 K, $p = 10^5$ Па.

Следовательно, по порядку величины потоки пропана на входе равны $\dot{N}_{BX} \sim 10^{-5} - 10^{-4}$ (моль/с). Как видно из системы (13), распределения безразмерных потоков $n_i(x)$ внутри нижней камеры зависит от кинетических параметров $\alpha_1, \alpha_2, \alpha_3$ и безразмерной проницаемости мембраны В. В табл. 1 приведены некоторые параметры, необходимые для дальнейшего изложения при различных температурах для мембранного модуля ($w_{\text{кат}} = 3.5$ г, $s = 15.2 \text{ см}^2$, $\delta = 30 \text{ мкм}$, h = 3.5 мм). В общем случае системы типа (13) решаются каким-либо эффективным численным методом (например, используя схему Рунга-Кутта четвертого порядка) при условии, что соответствующая схема является устойчивой [29]. Однако, как следует из табл. 1, при допустимых значениях потока пропана на входе (18) в рассматриваемой области изменения Т для мембранного модуля кинетические параметры α_i (i = 1-3) удовлетворяют неравенствам $\alpha_i \ge 1$. Последнее означает, что потоки n_i испытывают заметное изменение в узкой области х на входе газовой смеси в нижнюю камеру ($x \approx 1/\min(\alpha_i) \ll 1$). Это дает возможность свести общую проблему (13) к двум, связанным между собой задачам – решениям на начальном (коротком) участке ($x < x_{\text{нач}} \ll 1$) и

171

Т, К	673	723	773	823	873
$\left. lpha_{\mathrm{l}} \dot{N}_{\mathrm{BX}} \right/ p_{\mathrm{AT}}$, моль/с	1.5×10^{-2}	5.59×10^{-1}	1.776×10^{-1}	0.473	1.140
$lpha_2 \dot{N}_{ m BX} / p_{ m AT}$, моль/с	20.46	5.28	1.61	0.58	0.22
$\left. lpha_{3} \dot{N}_{\mathrm{BX}} \right/ p_{\mathrm{AT}}^{\mathrm{l/2}}$, моль/с	1.95×10^{-3}	3.78×10^{-3}	7.13×10^{-3}	1.35×10^{-2}	2.27×10^{-2}
$(\beta \dot{N}_{ m BX}) \big/ p_{ m AT}^{1/2}$, моль/с	$0.8 imes 10^{-4}$	10^{-4}	1.15×10^{-4}	1.3×10^{-4}	1.5×10^{-4}
$(\alpha_1/\alpha_3)p_{\rm AT}^{3/2}$	7.69	14.87	24.91	35.04	50.22
$(\alpha_2/\alpha_3)p_{\rm AT}^{3/2}$	1.05×10^4	1.4×10^{3}	2.26×10^{2}	43	9.69
$(\beta/\alpha_3)/p_{\rm AT}$	0.041	0.026	0.016	0.96×10^{-2}	0.66×10^{-2}
$K_3 p_{\rm AT}^2$	1.7×10^{4}	10 ³	10 ²	12.5	2
<i>K</i> ₂	12	7.7	5	4	2.5
$K_1/p_{\rm AT}^6$	2×10^{-3}	9.1	318	2×10^4	2.7×10^{6}

Таблица 1. Кинетические и равновесные константы и безразмерные параметры при различных температурах

ЧИСЛЕННОЕ РЕШЕНИЕ СИСТЕМЫ УРАВНЕНИЙ (13) НА НАЧАЛЬНОМ УЧАСТКЕ

Из табл. 1 видно, что минимальное значение $\min_{i=1-3} (\alpha_i)$ равно α_3 . Разделив уравнения системы (13) на α_3 и вводя безразмерную продольную координату $z = \alpha_3 x$, перепишем эту систему следующим образом ($\Delta \equiv m - n_{\rm H,O}$):

$$\frac{dn_{C_{3}H_{8}}}{dz} = -\left(\frac{\alpha_{1}}{\alpha_{3}}\right)F_{1}, \quad \frac{dn_{CH_{4}}}{dz} = F_{3},$$
$$\frac{d\Delta}{dz} = \left(\frac{\alpha_{2}}{\alpha_{3}}\right)F_{2} - F_{3} + 3\left(\frac{\alpha_{1}}{\alpha_{3}}\right)F_{1}, \quad (19)$$

 $4\frac{dn_{C_{3}H_{8}}}{dz}+2\frac{dn_{CH_{4}}}{dz}-\frac{d\Delta}{dz}+\frac{dn_{H_{2}}}{dz}=-\left(\frac{\beta}{\alpha_{3}}\right)\sqrt{\frac{n_{H_{2}}}{n_{\Sigma}}}.$

Начальные условия равны:

$$n_{C_{3}H_{8}} = 1, \ \Delta = 0, \ n_{CH_{4}} = 0 \ \text{при} \ z = 0.$$

Коэффициенты системы (19) зависят только от температуры ($p_{AT} = 1$). Для рассматриваемого MM они приведены в табл. 1. На начальном участке влияние мембраны незначительно, так как членом в правой части последнего уравнения системы (19) можно пренебречь: (β/α_3) $\sqrt{n_{H_2}/n_{\Sigma}} \le \beta/\alpha_3 \ll 1$ (см. табл. 1). Это означает, что это уравнение, учитывая начальные условия, можно заменить равенством:

$$n_{\rm H_2} = 4(1 - n_{\rm C_3H_8}) + \Delta - 2n_{\rm CH_4}, \ x < x_{\rm Hay},$$
 (20)

то есть поток водорода выражается через $n_{\rm C_3H_8}$, $n_{\rm CH_4}$ и Δ .

Безразмерные потоки пропана, метана и воды (или $\Delta = m - n_{H_{2}O}$) можно найти численным интегрированием трех первых уравнений системы (19). При расчетах использовали разностную схему, аппроксимирующую систему (19) с четвертым порядком точности (метод Рунге—Кутта) [29]. Однако при расчетах в области z > 0 возникают вопросы устойчивости, так как в правой части системы в точке z = 0 имеется особенность (см. знаменатель функции F_3). Чтобы обойти эту трудность, получим приближенное аналитическое решение при достаточно малых z, в непосредственной близости от входа смеси в нижнюю камеру. Нетрудно показать, что в этой области вдали от равновесия реакций (5) система (19) упрощается:

$$\frac{dn_{C_{3}H_{8}}}{dz} \cong -\left(\frac{\alpha_{1}}{\alpha_{3}}\right)\frac{n_{C_{3}H_{8}}}{n_{\Sigma}}, \quad \frac{dn_{CH_{4}}}{dz} \cong K_{3}\frac{n_{H_{2}}^{2}\sqrt{n_{H_{2}}}n_{CO}}{n_{\Sigma}\sqrt{n_{\Sigma}}n_{H_{2}O}^{2}}, \quad (21)$$
$$\frac{d\Delta}{dz} \cong 3\left(\frac{\alpha_{1}}{\alpha_{3}}\right)\frac{n_{C_{3}H_{8}}}{n_{\Sigma}}.$$

Приближенное решение этой системы, если предположить, что $n_{CH_4} \ll \Delta$, $n_{CH_4} \ll n_{CO}$, равно $(z \rightarrow 0)$:

$$n_{\rm C_3H_8} \cong \exp\left(-\frac{\alpha_1}{\alpha_3}\frac{z}{1+m}\right),$$

$$\Delta \cong 3\left[1 - \exp\left(-\left(\frac{\alpha_1}{\alpha_3}\right)\frac{z}{1+m}\right)\right],$$
 (22)

$$n_{\rm CH_4} \cong K_3 \int_0^z \frac{n_{\rm H_2}^2 \sqrt{n_{\rm H_2}} n_{\rm CO}}{n_{\rm \Sigma} \sqrt{n_{\rm \Sigma}} n_{\rm H_2O}^2} dz,$$

Рис. 2. Расчет безразмерных потоков $n_i(z)$ на начальном участке при T = 673 К. Кривая $1 - n_{\text{H}_2}(z)$, $2 - \Delta(z)$, $3 - n_{\text{CH}_4}(z)$, $4 - n_{\text{C}_3\text{H}_8}$, $5 - n_{\text{CO}}$, $6 - n_{\text{CO}_2}$.

где
$$n_{\Sigma} \approx 1 + m + 6 \left[1 - \exp\left(-\frac{\alpha_1}{\alpha_3} \frac{z}{1+m}\right) \right], n_{H_2O} \approx$$

 $\approx m - 3 \left[1 - \exp\left(-\frac{\alpha_1}{\alpha_3} \frac{z}{1+m}\right) \right] (CM. (12)), n_{H_2} \approx$
 $\approx 7 \left[1 - \exp\left(-\frac{\alpha_1}{\alpha_3} \frac{z}{1+m}\right) \right], n_{CO} = 3 \left[1 - \exp\left(-\frac{\alpha_1}{\alpha_3} \frac{z}{1+m}\right) \right], n_{CO_2} = n_{CH_4} (CM. (11), (20).$

При достаточно малых $\left(\frac{\alpha_1}{\alpha_3}\right) \frac{z}{1+m} \le \left(\frac{\alpha_1}{\alpha_3}\right) \frac{z_0}{1+m} = 0.05$ можно написать:

$$n_{\rm C_3H_8} \cong 1 - \left(\frac{\alpha_1}{\alpha_3}\right) \frac{z}{1+m}, \quad \Delta \cong 3\left(\frac{\alpha_1}{\alpha_3}\right) \frac{z}{1+m},$$

$$n_{\rm H_2} \cong 7\left(\frac{\alpha_1}{\alpha_3}\right) \frac{z}{1+m}, \quad n_{\rm CO} \cong 3\left(\frac{\alpha_1}{\alpha_3}\right) \frac{z}{1+m}, \quad (23)$$

$$n_{\rm CH_4} = n_{\rm CO_2} \left[\frac{K_3}{4.5} / \left(\frac{\alpha_1}{\alpha_3} \frac{1}{(1+m)}\right)\right] \left(\frac{\alpha_1}{\alpha_3} \frac{z}{1+m}\right)^{4.5}.$$

Легко видеть, что сделанные выше предположения $n_{CH_4} \ll \Delta$, $n_{CH_4} \ll n_{CO}$ выполняются. На рис. 2 представлены результаты численных расчетов в области $z > z_0$ при T = 673 К. Подобные расчеты были проведены для других температур. Заметим, то при достаточно малых $z < z_0$ потоки n_{CH_4} и n_{CO_2} значительно меньше потоков n_{CO} , Δ и n_{H_2} . Это можно объяснить тем, что метанирование и образование CO₂ являются вторичными реакциями (см. (5)), требующими накопления в системе СО. Было показано, что при $z > z_{\text{нач}}$ производные $dn_i/dz \Rightarrow 0$, а безразмерные потоки n_i стремятся к постоянным значениям, причем $n_{\text{C}_3\text{H}_8} \Rightarrow 0$ (см. рис. 2). Значения $z_{\text{нач}}$ не превышало 10. Участок $z < z_{\text{нач}}$ (или $x < x_{\text{нач}} = z_{\text{нач}}/\alpha_3$) в дальнейшем будем называть начальным участком. Можно заметить, что $x_{\text{нач}} \ll 1$ (табл. 1), т.е. размеры начального участка намного меньше радиуса нижней камеры.

Как следует из табл. 1, при T > 700 К параметры $(\alpha_1/\alpha_3), (\alpha_2/\alpha_3)$ и K_3 намного больше единицы. Принимая во внимание, что производные dn_i/dz при $z > z_{\text{нач}}$ малы, можно сделать вывод, что функции F_i (i = 1-3) в этой области также стремятся к нулю. Последнее означает, что реакции (1)–(3). приближаются к равновесию, т.е. скорости прямых и обратных реакций становится соизмеримыми (см. (14)). Следовательно, значения потоков $n_i(z)$ на выходе начального участка можно получить не только в результате численных расчетов на участке $z \le z_{\text{нач}}$ (см., например, рис. 2), но и с помощью условия (20) и равенств $F_1 = F_2 = F_3 = 0$.

Заметим, что в расчетах распределений потоков $n_i(z)$ на начальном участке нет необходимости, так как величина этого участка настолько мала, то не оказывает никакого влияния на поток H_2 через мембрану. Для дальнейшего изложения нам понадобятся только значения потоков $n_i(z)$ на выходе этого участка.

В заключение этого раздела остановимся на вопросах аппроксимации, устойчивости и сходимости.

Согласно известной теореме, решение разностной задачи сходится к соответствующему решению дифференциальной, если разностная схема аппроксимирует с некоторой точностью дифференциальную задачу и устойчива [29]. В случае системы уравнений первого порядка с произвольной правой частью достаточным условием устойчивости схемы являются существование непрерывных частных производных правых частей по искомым переменным и ограниченность этих производных [29]. Применительно к нашему случаю (система (19)) в области $z > z_0$ непрерывность производных $\partial F_i / \partial n_i$ (*i* = 1-3; *j* = C₃H₈, H₂O, CH₄) по переменным $n_{C_{3}H_{8}}$, $n_{CH_{4}}$, Δ несмотря на громоздкость соответствующих формул не вызывает сомнения, т. к. функции F_i (см. (14)) не имеют особенностей и содержат только алгебраические многочлены, зависящие от $n_{C_3H_8}$, n_{CH_4} и Δ , и степени этих многочленов (см. (11), (12), (20)):

$$n_{\rm H_2O} = m - \Delta, \quad n_{\rm CO} = 6(1 - n_{\rm C_3H_8}) - \Delta - 2n_{\rm CH_4},$$

$$n_{\rm CO_2} = \Delta - 3(1 - n_{\rm C_3H_8}) + n_{\rm CH_4},$$

$$n_{\rm H_2} = 4(1 - n_{\rm C_3H_8}) + \Delta - 2n_{\rm CH_4},$$

$$n_{\Sigma} = 1 + m + 6(1 - n_{\rm C_3H_8}) - 2n_{\rm CH_4}.$$

Ограниченность частных производных следует из неравенств:

$$\frac{n_{C_{3}H_{8}} < 1, \quad n_{CH_{4}} < 3, \quad n_{CO_{2}} < 3,}{n_{CO} < 3, \quad n_{H_{2}} < 4 + m,}$$
(24)

а также из условий, что минимальные значения потоков n_{Σ} , n_{H_2} и n_{H_2O} в области $z_0 < z < z_{Hav}$ ограничены снизу. В частности, $n_{H_2} \ge 0.35$, $n_{\Sigma} > 1 + m$, а минимальное значение n_{H_2O} достигает на выходе начального участка и равно 3.5, 3.1, 2.8 и 2.44 для T = 673 K, 723, 773 и 823 K, соответственно (см., например, рис. 2).

Ограниченность сверху потоков следует из балансовых соотношений для углерода и H₂ на начальном участке:

$$3n_{C_{3}H_{8}} + n_{CH_{4}} + n_{CO_{2}} + n_{CO} = 3,$$

$$n_{H_{2}O} + n_{H_{2}} + 2n_{CH_{4}} + 4n_{C_{2}H_{8}} = 4 + m.$$

ПАРОВОЙ РИФОРМИНГ ПРОПАНА С НЕПРОНИЦАЕМОЙ ЗАГЛУШКОЙ (НЕМЕМБРАННЫЙ ПРОЦЕСС)

Наряду с использованием палладиевой мембраны были проведены опыты с непроницаемой (из нержавеющей стали) заглушкой. В этом случае в последнем уравнении системы (13) членом $(\beta/\alpha_3)\sqrt{n_{\rm H_2}/n_{\Sigma}}$ можно пренебречь при любом z $(\beta = 0)$. Для рассматриваемого немембранного процесса потоки $n_{\rm C_3H_8}(z)$, $n_{\rm CH_4}(z)$, $n_{\rm H_2O}(z)$ и $n_{\rm H_2}(z)$ на начальном участке $(z \le z_{\rm Haq})$ практически совпадают с соответствующими потоками для мембранного процесса, рассмотренного в предыдущем разделе. На расстоянии от входа $z \ge z_{\rm Haq}$ производные $dn_i/dz \Rightarrow 0$, а потоки n_i постоянны, которые, как указано выше, можно получить из условий равновесия $F_1 = F_2 = F_3$ и уравнения (20). Это постоянные потоки в дальнейшем обозначим

звездочкой (*): $n_i = n_i^*$. В случае мембранного процесса, как будет показано ниже, в области $x > x_{\text{нач}}$ потоки $n_i(x)$ отклоняются от соответству-

ющих величин n_i^* . Подобные результаты были получены в работе [30] при расчете концентраций реагирующих веществ от длины реактора. Рассматривался паровой риформинг смеси пропана—метан в трубчатом каталитическом немембранном реакторе (длина ~20 см). При температуре $T \cong 700$ К размер реакционной зоны ($x_{\text{нач}}$) не превышал 4 мм. За пределами этой области концентрации не изменялись.

Получим равновесные значения потоков n_i^* в случае, когда константа равновесия K_1 достаточно велика, то есть при T > 700 К (18). Соответствующую систему уравнений запишем в виде (см. (14)):

$$n_{\rm C_3H_8}^* n_{\rm H_2O}^{*3} - n_{\rm CO}^{*3} n_{\rm H_2}^{*7} \left(p_{\rm AT}^6 / K_1 \right) / n_{\Sigma}^{*6} = 0,$$

$$n_{\rm CO}^* n_{\rm H_2O}^* - n_{\rm CO_2}^* n_{\rm H_2}^* (1/K_2) = 0,$$

$$n_{\rm CH_4}^* n_{\rm H_2O}^* - n_{\rm CO}^* n_{\rm H_2}^{*3} \left(p_{\rm AT}^2 K_3 \right) / \left(3 + n_{\rm H_2}^* + n_{\rm H_2O}^* \right)^2 = 0.$$
(25)

Предполагая $n_{C_3H_8}^* \cong 0$ (это будет показано в дальнейшем), равновесные значения потоков n_{CO}^* , $n_{CO_2}^*$, $n_{H_2}^*$ равны (11, 12, 20):

$$n_{\rm CO}^* = 2\left(3 - n_{\rm CH_4}^*\right) - \left(m - n_{\rm H_2O}^*\right),$$

$$n_{\rm CO_2}^* = (m - n_{\rm H_2O}) - (3 - n_{\rm CH_4}),$$

$$n_{\rm H_2}^* = \left(m - n_{\rm H_2O}^*\right) + 2(2 - n_{\rm CH_4}),$$

$$n_{\Sigma}^* = 3 + n_{\rm H_2}^* + n_{\rm H_2O}^*.$$
(26)

Для нахождения $n_{CH_4}^*$, $n_{H_2O}^*$ и $n_{H_2}^*$ получаем систему из трех нелинейных алгебраических уравнений:

<i>Т</i> , К	$n_{C_3H_8}^*$	$n_{\rm H_2O}^*$	$n_{\mathrm{CH}_4}^*$	n [*] _{CO}	$n_{\rm CO_2}^*$	$n_{\mathrm{H}_2}^*$	$X^*_{\mathrm{CH}_4}$	$X_{\rm CO}^*$	$X^*_{CO_2}$	$X^*_{\mathrm{H}_2}$
623	0.00	3.69	2.34	0.01	0.65	0.62	0.65	0.00	0.19	0.17
673	0.00	3.44	2.22	0.02	0.78	1.08	0.54 (0.52)*	0.005 (0.00)	0.19 (0.18)	0.27 (0.30)
723	0.00	3.1	2	0.1	0.9	1.85	0.41 (0.42)	0.02 (0.01)	0.19 (0.18)	0.38 (0.39)
773	0.00	2.78	1.8	0.18	1.02	2.62	0.32 (0.26)	0.03 (0.02)	0.18 (0.16)	0.50 (0.56)
823	0.00	2.44	1.48	0.46	1.06	3.65	0.22 (0.17)	0.07 (0.04)	0.16 (0.16)	0.55 (0.63)

Таблица 2. Равновесные потоки n_i^* внутри нижней камеры и составы смеси (после холодильника) для немембранного процесса

* В скобках приведены экспериментальные значения (X_i) .

$$\left(\frac{n_{\rm CH_4}^*}{m - n_{\rm H_2O}^*}\right)n_{\rm H_2O}^* = (27)$$

$$= n_{\rm H_2}^{*3} \left[2\left(\frac{m - n_{\rm CH_4}^*}{m - n_{\rm H_2O}^*}\right) - 1\right]\left(\frac{1}{K_3}\right) / n_{\Sigma}^{*2}, \qquad (27)$$

$$\left[2\left(\frac{3 - n_{\rm CH_4}^*}{m - n_{\rm H_2O}^*}\right) - 1\right]n_{\rm H_2O}^* - (28)$$

$$- n_{\rm H_2}^* \left[1 - \left(\frac{3 - n_{\rm CH_4}^*}{m - n_{\rm H_2O}^*}\right)\right]\left(\frac{1}{K_2}\right) = 0, \qquad (28)$$

$$\left(\frac{n_{\rm CH_4}^*}{m - n_{\rm H_2O}^*}\right) = 1 + 2\left(\frac{2 - n_{\rm CH_4}^*}{m - n_{\rm H_2O}^*}\right). \qquad (29)$$

Выразив из уравнения (28) отношение $(3 - n_{CH_4}^*)/(m - n_{H_2O}^*)$ через $n_{H_2O}^*$ и $n_{H_2}^*$, в результате получаем:

$$n_{C_{3}H_{8}}^{*} = \frac{n_{H_{2}}^{*10}(1/K_{2})^{3}(1/K_{1})\Delta^{*3}}{n_{H_{2}O}^{*3}n_{\Sigma}^{*6} \left[2n_{H_{2}O}^{*} + n_{H_{2}}^{*}(1/K_{2})\right]^{3}},$$
(30)

$$n_{\rm CH_4}^* = \frac{n_{\rm H_2}^{*4}(1/K_2)(1/K_3)\Delta^*}{n_{\Sigma}^* \left[2n_{\rm H_2O}^* + n_{\rm H_2}^*(1/K_2)\right]n_{\rm H_2O}^*},$$
(31)

$$n_{\rm CH_4}^* = 3 - \left[\frac{n_{\rm H_2O}^* + n_{\rm H_2}^* (1/K_2)}{2n_{\rm H_2O}^* + n_{\rm H_2}^* (1/K_2)} \right] \Delta^*,$$
(32)

$$n_{\rm H_2}^* + 2 = \left[\frac{4n_{\rm H_2O}^* + 3n_{\rm H_2}^*(1/K_2)}{2n_{\rm H_2O}^* + n_{\rm H_2}^*(1/K_2)}\right]\Delta^*,$$
 (33)

где $\Delta^* = m - n_{\rm H_2O}^*$.

Из уравнения (33) получаем явную зависимость Δ^* (или $n^*_{\rm H_2O}$) от потока водорода $n^*_{\rm H_2}$:

$$2\Delta^{*} = \frac{2m + 2 + n_{H_{2}}^{*} + (3/2)(1/K_{2})n_{H_{2}}^{*}}{2} - \frac{2}{2}$$

$$\sqrt{\left[\frac{2m + 2 + n_{H_{2}}^{*} + (3/2)(1/K_{2})n_{H_{2}}^{*}}{2}\right]^{2} - \left(n_{H_{2}}^{*} + 2\right)\left[2m + n_{H_{2}}^{*}(1/K_{2})\right]}.$$
(34)

Знак (—) перед радикалом выбран из условия, что $\Delta^* \to 1$ при $n_{\rm H_2}^* \to 0$ (см. (33)).

Равновесные значения потока водорода $n_{\rm H_2}^*$ находим из условия пересечения кривых $n_{\rm CH_4}^* \left(n_{\rm H_2}^* \right)$ (формулы (31) и (32)), где Δ^* определяется из (34). В табл. 2 рассчитаны равновесные значения потоков частиц $\binom{n^*}{i}$ и составы смеси после холодильника $\binom{X^*}{i}$ для немембранного процесса при различных температурах и m = 5.

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ХИМИЧЕСКОЙ ТЕХНОЛОГИИ том 56 № 2 2022

В скобках приведены экспериментальные значения X_i^* после удаления из смеси водяного пара. Неплохое совпадение рассчитанных и экспериментальных значений подтверждает применимость предложенного метода расчета. Нетрудно пока-

зать, что равновесные значения пропана $n_{C_3H_8}^*$ (см. формулу (30)) в рассматриваемой области температур (T > 700 K), как и предполагалось выше, практически равняются нулю (см. табл. 1 и 2).

РЕШЕНИЕ ПРОБЛЕМЫ ЗА ПРЕДЕЛАМИ НАЧАЛЬНОГО УЧАСТКА (МЕМБРАННЫЙ ПРОЦЕСС)

При мембранном процессе на выходе начального участка ($z \cong z_{\text{нач}}$) все безразмерные потоки n_i , очевидно, совпадают с равновесными значе-

ниями *n*^{*}_{*i*} (см. табл. 2 и рис. 2).

Допустимые значения потока C_3H_8 на входе нижней камеры принадлежат интервалу 0.00001 $\leq \leq \dot{N}_{BX} \leq 0.0001$ (моль/с) (18). Следовательно, безразмерные параметры α_i (i = 1-3) при $T \geq 700$ К намного больше единицы (табл. 1). Если предположить, что на основном участке ($x > x_{\text{нач}}$) производные $\partial n_i / \partial x$ ограничены ($i = C_3H_8$, CH₄, H₂O, H₂), то несмотря на отток H₂ через мембрану за пределами начального участка условия равновесия реакций 1–3. не нарушаются, так как функции F_i (i = 1-3) практически равняются нулю ($F_1 \sim$ $\sim 1/\alpha_1 \ll 1$, $F_2 \sim 1/\alpha_2 \ll 1$, $F_3 \sim 1/\alpha_3 \ll 1$, см. (19)). Условия $F_1 = F_2 = F_3 = 0$ позволяют найти потоки n_{CH_4} , $n_{\text{H}_2\text{O}}$ и $n_{\text{C}_{3H_8}}$ как функции n_{H_2} за пределами начального участка, где из-за перехода H₂ через

мембрану выполняется неравенство $n_{\rm H_2} < n_{\rm H_2}^*$. Это так называемое псевдо-равновесие, при котором из-за слабого оттока $\rm H_2$ через мембрану химическое равновесие реакций в нижней камере не нарушается.

Предположим, что на основном участке равенство $n_{C_3H_8} \cong 0$ сохраняется, следовательно (см. (11), (12)):

$$n_{\rm CO} = 2(3 - n_{\rm CH_4}) - (m - n_{\rm H_2O}),$$

$$n_{\rm CO_2} = (m - n_{\rm H_2O}) - (3 - n_{\rm CH_4}).$$

А из условий $F_i = 0$ (i = 1-3), так же как и выше (см. (31), (32)), можно получить:

$$n_{\rm C_3H_8} = \frac{n_{\rm H_2}^{10}(1/K_2)^3(1/K_1)\Delta^3}{n_{\rm H_20}^3 n_{\Sigma}^6 [2n_{\rm H_2O} + n_{\rm H_2}(1/K_2)]^3},$$
(35)

$$n_{\rm CH_4} = \frac{n_{\rm H_2}^4 (l/K_2)(l/K_3)\Delta}{n_{\Sigma} [2n_{\rm H,O} + n_{\rm H_2}(l/K_2)]n_{\rm H,O}},$$
(36)

$$n_{\rm CH_4} = 3 - \left[\frac{n_{\rm H_2O} + n_{\rm H_2}(1/K_2)}{2n_{\rm H_2O} + n_{\rm H_2}(1/K_2)}\right]\Delta,$$
 (37)

где $\Delta = m - n_{\text{H}_2\text{O}}$.

Ранее было показано, что на выходе начально-

го участка поток пропана $n_{C_3H_8} = n_{C_3H_8}^* = 0$ (см. формулу (30) и табл. 2). Из формулы (30) видно, что на основном участке, где $n_{H_2} \le n_{H_2}^*$, условие $n_{C_2H_8} \cong 0$ также выполняется.

Получим распределения безразмерных потоков $n_i(x)$ на основном участке $x_{\text{нач}} < x \le 1$.

При отсутствии пропана на основном участке четвертое уравнение системы (19) принимает вид:

$$2\frac{\partial n_{\rm CH_4}}{\partial x} + \frac{\partial n_{\rm H_2O}}{\partial x} + \frac{\partial n_{\rm H_2}}{\partial x} = -\beta \sqrt{n_{\rm H_2}/n_{\Sigma}}.$$
 (38)

Зная зависимости $n_{CH_4}(n_{H_2})$ и $n_{H_2O}(n_{H_2})$, последнее уравнение представим в виде:

$$\left(2\frac{\partial n_{\rm CH_4}}{\partial n_{\rm H_2}} + \frac{\partial n_{\rm H_2O}}{\partial n_{\rm H_2}} + 1\right)\frac{\partial n_{\rm H_2}}{\partial x} = -\beta\sqrt{n_{\rm H_2}/n_{\Sigma}},\qquad(39)$$

где производные $\frac{\partial n_{\mathrm{CH}_4}}{\partial n_{\mathrm{H}_2}}$ и $\frac{\partial n_{\mathrm{H}_2\mathrm{O}}}{\partial n_{\mathrm{H}_2}}$ находятся численным дифференцированием.

Упомянутые выше функции $n_{\rm H_2O}$ ($n_{\rm H_2}$) и $n_{\rm CH_4}$ ($n_{\rm H_2}$), находятся с помощью формул (36), (37). Для любого $n_{\rm H_2} \leq n_{\rm H_2}^*$ находим точку пересечения Δ функций $n_{\rm CH_4}(\Delta)$ (см. (36)) и $n_{\rm CH_4}(\Delta)$ (см. (37)), т.е. зависимость $n_{\rm H_2O}$ ($n_{\rm H_2}$), так как $\Delta = m - n_{\rm H_2O}$. Соответствующую зависимость $n_{\rm CH_4}$ ($n_{\rm H_2}$) находим из любой из формул (36) или (37) при известном Δ (или $n_{\rm H_2O}$). Функции $n_{\rm CH_4}$ ($n_{\rm H_2}$) и $n_{\rm H_2O}$ ($n_{\rm H_2}$) для ряда температур представлены на рис. 3.

Распределение потоков водорода внутри мембраны $n_{\rm H_2}(x)$ находится в квадратурах из уравнения (39) с помощью численных расчетов:

$$\int_{n_{H_2}}^{n_{H_2}^*} \frac{\left(2\frac{\partial n_{CH_4}}{\partial n_{H_2}} + \frac{\partial n_{H_2O}}{\partial n_{H_2O}} + 1\right) \left(\sqrt{3 + n_{H_2} + n_{H_2O}(n_{H_2})}\right) dn_{H_2}}{\sqrt{n_{H_2}}} = \beta(x - x_{Hay}).$$
(40)

Рис. 3. Расчет на основном участке фольги псевдо-равновесных зависимостей $n_{CH_4}(n_{H_2})$ и $n_{H_2O}(n_{H_2})$ для ряда температур. Сплошные кривые – поток водяного пара $n_{H_2O}(n_{H_2})$, штриховые линии – поток метана $n_{CH_4}(n_{H_2})$. Кривые 1, l' – температура T = 823 K, 2, 2' - 773 K, 3, 3' - 723 K, 4, 4' - 673 K, 5, 5' - 623 K.

Для случая m = 5 и различных G эти распределения представлены на рис. 4.

Интегрируя потоки $n_{\rm H_2}(x)$ внутри нижней камеры по продольной координате x от нуля до единицы, нетрудно получить поток H₂ через мембрану (на

выходе верхней камеры): $I_S = \beta \dot{N}_{BX} \int_0^1 \sqrt{n_{\rm H_2}/n_{\Sigma}} dx$, a

также отвод водорода φ — отношение потока $n_{\rm H_2}$ на выходе верхней камеры I_S к суммарному потоку H₂ на выходе из нижней ($\dot{N}_{BX}n_{\rm H_2}(l)$) и верхней (I_S) камер:

$$\varphi = \frac{I_{S}}{I_{S} + \dot{N}_{BX} n_{H_{2}}(1)} = \frac{\beta \dot{N}_{BX} \int_{0}^{1} \sqrt{n_{H_{2}}/n_{\Sigma}} dx}{\beta \dot{N}_{BX} \int_{0}^{1} \sqrt{n_{H_{2}}/n_{\Sigma}} dx + \dot{N}_{BX} n_{H_{2}}(1)},$$
(41)

где $n_{\rm H_2}(1)$ — поток водорода на выходе нижней камеры.

В табл. 3 приведены результаты расчетов потоков компонентов смеси $n_i(1)$ на выходе нижней камеры до холодильника и состав газовой смеси X_i после холодильника при m = 5 и G = 3600 [1/ч]. Как видно, на выходе нижней камеры при мембранном процессе независимо от температуры потоки $n_i(1)$ ($i = H_2$, CH₄, H₂O) ниже по сравне-

нию с соответствующими потоками n_i^* для немембранного процесса (табл. 2), в то время как потоки n_{CO} и n_{CO_2} выше.

Как видно из рис. 4, потоки H_2 внутри камеры возрастают с ростом T, что, очевидно, связано с ростом скоростей каталитических реакций. Интересно выяснить влияние скорости подачи сырья G на заполнение нижней камеры водородом. Это влияние увеличивается с ростом температуры (рис. 4). С увеличением G, так же как и T, растет заполнение камеры водородом, так как при этом увеличивается количество пропана на входе нижней камеры.

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ХИМИЧЕСКОЙ ТЕХНОЛОГИИ том 56 № 2 2022

Рис. 4. Распределение потока $H_2(n_{H_2}(x))$ внутри нижней камеры при T = 823 K (а), 773 K (б), 723 K (в), 673 K (г). Кривые I - G = 1800 [1/4], 2 - 3600, 3 - 7200.

<i>Т</i> , К	$n_{{ m CH}_{4}}(1)$	$n_{\rm CO}\left(1 ight)$	$n_{\rm CO_2}(1)$	$n_{{ m H}_2}(1)$	$n_{{ m H}_{2}{ m O}}\left(1 ight)$	$X_{\rm CH_4}$	X _{CO}	$X_{\rm CO_2}$	$X_{ m H_2}$
623	2.08	0.04	0.88	0.48	3.20	0.6	0.01	0.25	0.14
673	1.8	0.06	1.14	0.75	2.66	0.48 (0.51)*	0.016 (0.00)	0.30 (0.25)	0.20 (0.24)
723	1.4	0.10	1.5	1.02	1.9	0.35 (0.21)	0.03 (0.00)	0.37 (0.36)	0.25 (0.43)
773	1.08	0.52	1.6	1.25	1.48	0.25 (0.18)	0.08 (0.02)	0.38 (0.46)	0.29 (0.32)
823	0.63	0.67	1.7	1.25	0.93	0.15 (0.12)	0.16 (0.07)	0.40 (0.55)	0.29 (0.27)

Таблица 3. Безразмерные потоки компонентов смеси на выходе нижней камеры $n_i(1)$ и составы смеси (после холодильника) X_i при m = 5, G = 3600 и различных температурах

* В скобках приведены экспериментальные значения (X_i).

Проницаемость мембраны также увеличивается с ростом *T*. Как видно из табл. 1, при изменении температуры от 673 до 873 К произведение βN_{BX} возрастает в 2 раза. При "низких" температурах ($T \le 700$ K) мембрана не справляется с количеством H₂ в камере даже при "малых" потоках сырья. Например, если при $G = 1800 \ 1/4 \ u \ T = 673 \ K$ отношение потока водорода на выходе $n_{\rm H_2}(1)$ к

равновесному значению $n_{H_2}^*$ равно 0.5, то с увеличением T отношения этих потоков уменьшаются: при T = 723 К оно равно 0.24, при T = 773 К – 0.15, при T = 823 К – 0.016 (рис. 4). Следовательно, при T = 823 К и $G \le 1800$ 1/ч водород полностью расходуется внутри камеры (как впрочем и CH₄, рис. 3). В этих случаях на выходе (до холодильника) мы получаем смесь водяных паров, CO и CO₂. После удаления H₂O, прогоняя эту смесь через холодильник, получаем только CO и CO₂. В верхней камере (которая вакуумируется) присутствует чистый водород.

Расчет потока водорода на выходе верхней камеры (I_s) при различных температурах и подачах сырья на входе G представлен на рис. 5. При вакуумировании верхней камеры в соответствии с законом Сивертса этот поток равен:

$$I_{S} = 2\pi \int_{0}^{r_{\text{max}}} I_{\text{H}_{2},S} r' dr' =$$

$$= s_{9\Phi} \frac{Q_{0} \exp(-E/RT)}{\delta} \sqrt{10 p_{\text{AT}}} 10^{2} \int_{0}^{1} \sqrt{n_{\text{H}_{2}}/n_{\Sigma}} dx) dx.$$
(42)

Как видно, поток водорода I_S увеличивается как с ростом температуры, так и G. Он пропорционален площади мембраны, суммарной движущей силе при переходе H_2 через мембрану и обратно пропорционален толщине мембраны (δ). Нетрудно показать, что суммарная движущая си-

ла $\left(\int_{0} \sqrt{X_{H_2}} dx\right)$ увеличивается не только с ростом *G*, но также и с температурой.

На рис. 6 приведен расчет выхода водорода φ при различных *T* и *G*.

Из рис. 5, 6 видно, что при фиксированной температуре несмотря на то, что с увеличением скорости подачи сырья *G* поток H_2 через мембрану возрастает, однако выход водорода φ падает. Очевидно, это является следствием того, что одновременно возрастает поток $n_{\rm H_2}(1)$ на выходе нижней камеры. Мембрана не справляется с растущим потоком водорода и эффективность MM падает.

Паровой риформинг пропана выгоднее всего проводить при "малых" объемных потоках сырья G и высоких температурах. В этом случае отвод водорода мало отличается от единицы, то есть весь полученный в нижней камере водород удаляется через мембрану.

Неплохое совпадение расчетов и экспериментальных данных, приведенных на рис. 5, 6, под-

Рис. 5. Расчет потока водорода \dot{N}_{BK} на выходе верхней камеры при различных *T*. Кривые 1 - G = 1800 [1/ч], $2 - 3600, 3 - 7200; a - экспериментальные значения <math>\dot{N}_{BK}$ при G = 1800 [1/ч], δ – при G = 3600.

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ХИМИЧЕСКОЙ ТЕХНОЛОГИИ том 56 № 2 2022

Рис. 6. Расчет выхода водорода φ в зависимости от *T*. Кривые $1 - G = 1800 [1/ч], 2 - 3600, 3 - 7200; a - эксперимент при <math>G = 1800 [1/ч], \delta$ – при G = 3600.

тверждает применимость предложенной модели парового риформинга пропана при "высоких" температурах (T > 700 K).

Ранее при экспериментальном исследовании парового риформинга *н*-бутана [15] было отмечено сходное поведение этой системы с пропаном. Это подтверждает предположение, что кинетические константы реакций парового риформинга пропана и *н*-бутана близки между собой. Константы равновесия этих реакций становятся большими при температуре $T \ge 700$ К (см. например, табл. 1). Это означает, что равновесные значения потоков C_3H_8 и C_4H_{10} на выходе начального участка стремятся к нулю.

Выше при расчетах парового риформинга пропана в качестве реакции метанирования мы использовали только реакцию 3. (5). По-видимому, метанирование может происходить и в результате взаимодействия CO₂ с водородом (CO₂ + 4H₂ = $= CH_4 + 2H_2O$). Обе эти обратимые реакции имеют практически одинаковые тепловые эффекты, и, если предположить, что их кинетические константы несильно отличаются, то и эта реакция может быть учтена при расчетах, что, по-видимому, приведет к лучшему совпадению теории и эксперимента.

выводы

1. Предложена теоретическая модель каталитического парового риформинга пропана в мембранном модуле с цилиндрической симметрией верхней и нижней камер, разделенных перегородкой, при равномерной подаче сырья (C_3H_8 и H_2O) по внешнему периметру нижней камере и вакуумировании верхней. Рассматривается как мембранный процесс, когда между камерами помещается тонкая палладиевая фольга, хорошо проводящая только H₂, так и немембранный процесс, при котором мембрана заменяется на стальной непроницаемый диск.

2. Для расчета локальных потоков H₂, CO, CO₂, CH₄, C₃H₈ и H₂O в нижней камере получена система обыкновенных дифференциальных уравнений 1-ого порядка с нелинейными правыми частями.

3. Показано, что при высоких температурах и реальных значениях кинетических и равновесных констант рассматриваемых реакций в нижней камере (заполненной никелевым катализатором) существует начальный участок, размеры которого значительно меньше радиуса камер. На выходе этого участка реакции практически приближаются к равновесию, при этом поток пропана обращается в нуль. Доказывается, что за пределами начального участка равновесия реакций сохраняются несмотря на отток H_2 через мембрану. Это дало возможность получить распределения H_2 и всех компонентов газовой смеси (CO, CO₂, CH₄, H_2 O) внутри нижней камеры.

4. Адекватность модели была проверена в интервале температур $700 \le T \le 800$ К при отношении входных потоков пар/пропан m = 5 в допустимой области скорости подачи сырья ($10^3 \le G \le 10^4$ (1/ч)). Сравнивались расчетные и экспериментальные значения составов смесей на выходе нижней камеры (после холодильника), а также потоки H₂ на выходе верхней камеры.

5. Показано, что с увеличением скорости подачи сырья *G* поток H_2 на выходе верхней камеры увеличивается, однако выход водорода φ падает, что ухудшает эффективность мембранного процесса. Оптимальные условия проведения процесса парового риформинга пропана при m = 5 -это $T \sim$ ~ 800 К и *G* ~ 2000 (1/ч). В этом случае весь полученный в нижней камере водород удаляется мембраной $\varphi \cong 1$, а на выходе нижней камеры (после холодильника) мы получаем смесь СО и CO₂.

6. Закономерности паровой конверсии пропана в мембранном реакторе сходны с установленными ранее на том же катализаторе и в тех же условиях для *н*-бутана [15]. Это позволяет предположить, что при конверсии сжиженных нефтяных газов (смесь пропана и *н*-бутана) имеют место закономерности, которые обнаружены в настоящей работе.

Работа выполнена в рамках Программы фундаментальных научных исследований государственных академий наук, тема ИПХФ РАН 0089-2019-0018 (номер госрегистрации АААА-А19-119022690098-3).

ОБОЗНАЧЕНИЯ

c'_i	концентрация компонентов газовой смеси, моль/м ³
D	коэффициент лиффузии. м ² /с
d_{vor}	диаметр частиц катализатора, м
E	энергия активации в уравнении Сивертса, Дж/моль
G	объемная скорость подачи сырья, 1/ч
h	высота камер, м
Η	энтальпия, Дж/моль
I_{H_2}	локальный поток H ₂ через мембрану,
	моль/м ² · с
I_S	интегральный поток H ₂ через мембрану, моль/с
K_1	константа равновесия реакции 1, ат ⁶
<i>K</i> ₂	константа равновесия реакции 2
<i>K</i> ₃	константа равновесия реакции 3, ат ²
k_i	константы равновесия Лэнгмюра для СО, СН ₄ , H ₂ , ат ⁻¹
$k_{\rm H,O}$	константа равновесия Лэнгмюра для H ₂ O
$\tilde{k_1}$	константа скорости реакции 1, 1/с
\tilde{k}_2	константа скорости реакции 2, моль/ат кг _{кат} · с
\tilde{k}_3	константа скорости реакции 3, моль \cdot ат ^{1/2} кг _{кат} \cdot с
т	отношение входных интегральных потоков пар/C ₃ H ₈
\dot{N}_{i}	локальный мольный поток компонентов газовой смеси, моль/с · м ²
\dot{N}_i	интегральный мольный поток компонентов смеси, моль/с
\dot{N}_{BX}	интегральный поток C_3H_8 на входе в ниж-
	нюю камеру, моль/с
n _i	безразмерный локальный поток компо- нента смеси
n_i^*	равновесные потоки компонентов
n_{Σ}	безразмерный локальный поток газовой смеси
n_{Σ}^{*}	равновесный поток смеси
$p_{\rm HK}$	давление в нижней камере, Па
$p_{\rm AT}$	давление в атмосферах, ат
p_i	парциальное давление компонентов в ниж- ней камере, ат
Q_0	предъэкспоненциальный множитель в законе Сивертса, моль/м ^{1/2} · кг ^{1/2}

$r'_{\rm max}$	радиус камер, м
R	универсальная газовая постоянная, Дж/моль · гр
r_0	радиус выходного отверстия нижней камеры, м
b_1, b_2, b_3	скорости реакций (1)–(3), моль/кг _{кат} · с
r', z'	цилиндрическая система координат, м
r	безразмерная координата, отсчитываемая от центра камеры
s_{igh}	площадь фольги, м ²
S	энтропия, Дж/моль · гр
Т	температура, К
<i>u</i> ', v'	компоненты скорости смеси газов, м/с
$V_{\rm HK}$	объем нижней камеры, м ³
$V_{\rm kat}$	объем засыпки катализатора, м ³
\dot{V}_{Σ}	объемный поток сырья на входе, см ³ /мин
$\dot{V}_{C_3H_8}$	объемный поток пропана на входе, см ³ /мин
w _{kat}	масса засыпки катализатора, кг
<i>x</i> , <i>y</i>	безразмерные координаты, отсчитываемые от входа сырья
X_i	мольная доля <i>i</i> -ого компонента смеси в нижней камере
Z.	безразмерная координата на начальном участке
$\alpha_1, \alpha_2, \alpha_3$	безразмерные скорости реакций (1)–(3)
β	безразмерный параметр, учитывающий поток H ₂ через мембрану
ε	порозность
$ ho_{\kappa a au}$	плотность катализатора, к <i>г</i> /м ³
φ	отвод водорода из ММ
ϕ_i	источник (сток) компонента i , моль/кг _{кат} · с

СПИСОК ЛИТЕРАТУРЫ

- Ramachandran R., Menon R.K. An overview of industrial uses of hydrogen // Int. J. Hydrogen Energy. 1998. V. 23. P. 593.
- 2. *Kirillov V.A., Meshcheryakov V.D., Brizitskii O.F, Terent'ev V.Ya.* Analysis of a power system based on lowtemperature fuel cells and a fuel processor with a membrane hydrogen separator // Theor. Found. Chem. Eng. 2010. V. 44. № 3. P. 227.
- Saeidi S., Fazlollahi F., Najari S., Iranshahi D., Klemes I.I., Baxter L.L. Hydrogen production: Perspectives, separation with special emphasis on kinetics of WGS reaction: A state-of-the-art review // J. Ind. and Bugin. Chem. 2017. V. 49. P. 1.
- 4. *Rahimpour M.R., Samimi F., Babapoor A., Tohidian T., Mohebi S.* Palladium membranes applications in reaction systems for hydrogen separation and purification:

A review // Chem. Eng. Proc.: Process Intensification. 2017. V. 121. P. 24.

- Ialianelly A., Alavi M., Baguato G., Liguori S., Wilcox I., Rahimpour M.R., Eslamlouyan R., Anzelmo B., Basile A. Supported Pd–Ag membrane reactor for hydrogen production: Membrane preparation, characterization and testing // Molecules. 2016. V. 21. P. 581.
- 6. *Inlianelli A., Liquori S., Wilcox I., Basile A.* Advances on methane steam reforming to produce hydrogen through membrane reactors technology: A review // Catal. Rev. 2016. V. 58. P. 1.
- Santucci A., Annesini M.C., Dorgognoni F., Marrelli L., Rega M., Tosti S. Oxidative steam reforming of ethanol over a Pt/Al₂O₃ catalyst in a Pd-based membrane reactor // Int. J. Hydrogen Energy. 2011. V. 36. P. 1503.
- Inlianelli A., Liquori S., Calabro V., Pinacci P., Basile A. Partial oxidation of ethanol in a membrane reactor for high purity hydrogen production // Int. J. Hydrogen Energy. 2010. V. 35. P. 12626.
- Tiemersma T., Patil C., van Sint Annaland M., Kuipers I. Modelling of packed bed membrane reactors for autothermal production of ultrapure hydrogen // Chem. Eng. Sci. 2006. V. 61. P. 1602.
- Gallucci F., Annaland M.V.S., Ruipers I. Pure hydrogen production via autothermal reforming of ethanol in a fluidized bed membrane reactor: A simulation study // Int. J. Hydrogen Energy. 2010. V. 35. P. 1659.
- 11. Inlianelli A., Liquori S., Wilcox I., Basile A. Advances on methane steam reforming to produce hydrogen through membrane reactors technology: A review // Catal. Rev. 2016. V. 58. P. 1.
- Basile A., Tosti S., Capanuelli G., Vitulli G., Inlianelli A., Gallucci F., Drioli E. Co-current and counter-current modes for methanol steam reforming membrane reactors: Experimental study // Catal. Today. 2016. V. 118. P. 237.
- Ghasemzadeh K., Zeynali R., Ahmadnejad F., Babalou A., Basile A. Investigation of palladium membrane reactor performance during ethanol steam reforming using CFD method // Chem. Prod. Process Model. 2016. V. 11. P. 51.
- Rahimpour M.R. Enhancement of hydrogen production in a novel fluidized-bed membrane reactor for naphtha reforming // Int. J. Hydrogen Energy. 2009. V. 34. P. 2235.
- Диденко Л.П., Семенцова Л.А., Бабак В.Н., Чижов П.Е., Дорофеева Т.В., Квурт Ю.П. Паровая конверсия нбутана в мембранном реакторе с промышленным никелевым катализаторов и фольгой из Pd-Ru сплава // Мембраны и мембранные технологии. 2020. Т. 10. № 2. С. 99.
- 16. Диденко Л.П., Бабак В.Н., Семенцова Л.А., Дорофеева Т.В. Паровая конверсия пропана в мембранном реакторе с промышленным никелевым катализатором // Нефтехимия. 2021. Т. 61. С. 103.

- Igarashi A., Ohtaka O., Motoki S. Low temperature steam reforming on n-butane over Rh and Ru catalysts supported on ZnO₂ // Catal. Lett. 1991. V. 13. P. 189.
- Avci A.K., Trimm D.L., Aksoylu A.E., Önsan Z.I. Hydrogen production by steam reforming of n-butane over supported Ni and Pt-Ni catalysts // Appl. Catal. A Gen. 2004. V. 258. P. 255.
- 19. Wang X., Gorte R.I. Steam reforming of n-butane on Pd/ceria // Catal. Lett. 2001. V. 73. P. 15.
- Christensen Th.S. Adiabatic prereforming of hydrocarbons an important step in syngas production // App. Catal. A. Gen. 1996. V. 138. P. 285.
- Бабак В.Н., Диденко Л.П., Квурт Ю.П., Семенцова Л.А., Закиев С.Е. Моделирование паровой конверсии метана в мембранном реакторе с никелевым катализатором и фольгой из палладиевого слоя // Теор. основы химич. технол. 2021. Т. 55. № 3. С. 319.
- 22. Burkhanov G.S., Gorina N.B., Kolchugina N.B., Roshan N.R., Slovetsky D.I., Christov E.M. Palladiumbased alloy membranes for separation of high purity hydrogen from hydrogen-containing gas mixtures // Platinum Met. Rev. 2011. V. 55. № 1. P. 3.
- 23. *Gryaznov V.* Hydrogen permeable palladium membrane catalysis // Platinum Met. Rev. 1986. V. 30. P. 68.
- 24. Бабак В.Н., Диденко Л.П., Квурт Ю.П., Семенцова Л.А. Извлечение водорода из бинарных газовых смесей с помощью мембранного модуля на основе палладиевой фольги с учетом дезактивации мембраны // Теор. основы химич. технол. 2018. № 3. С. 318.
- 25. Крылов О.В. Гетерогенный катализ. М.: ИКЦ Академкнига. 2004.
- Zyryanova M.M., Snytnikov P.V., Shigarov A.B., Belyaev V.O., Kirillov V.A., Sobyanin V.A. Low temperature catalytic steam reforming of propane-methane mixture into methane-rich gas: Experiment and macrokinetic modeling // Fuel. 2014. V. 135. P. 76.
- 27. *Lin Y.M., Liu Sh.I., Chuang Ch.H., Chu Y.T.* Effect of incipient removal of hydrogen through palladium membrane on the conversion of methane steam reforming: Experimental and modelling // Catal. Today. 2003. V. 82. № 1. P. 127.
- Гороновский И.Т., Назаренко Ю.П., Некряч Е.Ф. Краткий справочник химика. Киев: Наукова думка, 1974. 992 с.
- 29. Годунов С.К., Рябенький В.С. Разностные схемы. М.: Наука, 1973. 400 с.
- 30. Ахмадулина Л.Ф., Еникеева Л.В., Новичкова А.В., Губайдуллин И.М., Снытников П.В., Потемкин Д.И. Математическое моделирование процесса низкотемпературной паровой конверсии пропана в присутствии метана на никелевом катализаторе // Журн. СВМО. 2016. Т. 18. № 3. С. 117.