УДК 541.1+628.16

САМОПОДДЕРЖИВАЮЩИЕСЯ ПРОЦЕССЫ УМЯГЧЕНИЯ-ОПРЕСНЕНИЯ ВОДЫ: ХЛОРИДНО-СУЛЬФАТНЫЕ СИСТЕМЫ

© 2022 г. Р. Х. Хамизов^{а,} *, И. В. Комарова^а, Н. К. Галкина^а, А. Г. Прудковский^а

^аИнститут геохимии и аналитической химии им. В.И. Вернадского РАН, Москва, Россия *e-mail: khamiz@mail.ru

> Поступила в редакцию 13.07.2021 г. После доработки 07.10.2021 г. Принята к публикации 08.12.2021 г.

Методом численного эксперимента исследована возможность организации стационарных самоподдерживающихся (СМП) процессов умягчения—опреснения солоноватых вод на примере многокомпонентных модельных растворов, содержащих хлориды и сульфаты натрия и кальция. В СМП процессах умягченная с помощью катионита вода подвергается опреснению, а образующийся при этом рассол, без добавления каких-либо дополнительных химических реагентов, используется для регенерации катионита в повторяющихся циклах сорбции—десорбции. Интерес к самоподдерживающимся процессам связан с новыми технологическими возможностями создания систем водоподготовки нового поколения, например мобильных автономных установок или систем с высокой степенью извлечения пресной воды. Проведены расчеты динамики ионного обмена для многих десятков последовательных циклов умягчения—опреснения при изменении варьируемых параметров, в частности, соотношения компонентов в исходном растворе и состава опресненной воды. Показаны условия, при которых формируются или не достигаются стационарные режимы. На основании результатов численных экспериментов предложено критериальное соотношение для предварительной оценки реализуемости самоподдерживающихся процессов.

Ключевые слова: самоподдерживающиеся процессы, умягчение, опреснение, катионит, сорбция, регенерация, стационарный режим

DOI: 10.31857/S0040357122020099

введение

Самоподдерживающиеся (СМП) процессы умягчения-опреснения соленых вод были предсказаны почти полвека назад, что было весьма актуально в связи с растущей индустрией опреснения морских и других природных соленых вод [1]. Суть СМП процесса легко пояснить с помощью простейшей схемы, представленной на рис. 1а.

В повторяющемся циклическом процессе через колонну с катионитом в Na-форме пропускается соленая вода, и ионы жесткости, например, кальция, сорбируются в результате реакции ионного обмена, умягченная вода подвергается глубокому опреснению без опасности образования отложений слаборастворимых веществ, рассол, содержащий только соли натрия, накапливается и возвращается на регенерацию катионита после его отработки для вытеснения катионов жесткости и обратного перевода катионита в Na-форму. При использовании двух колонн, работающих в противофазе, можно организовать процесс, в котором непрерывно осуществляются умягчение и регенерация. Интерес к теории СМП-процессов [2-4] связан с технологическими возможностями создания систем водоподготовки нового поколения, например, не требующих привозных реагентов мобильных автономных установок опреснения соленых или солоноватых вод или систем с высокой степенью извлечения пресной воды и концентрирования рассола. В связи с новыми возможностями, которые открывает создание самоподдерживающихся процессов, или просто процессов умягчения-опреснения с рециркуляцией рассолов для частичной или полной регенерации катионита, интенсивно проводятся практические исследования в этой области [6-8]. В работах [3, 5] была показана реализуемость таких процессов для морской воды с использованием специальных неорганических ионообменников, получаемых пока в лабораторных масштабах. В работе [4], посвященной анализу возможности осуществления СМП-процессов для хлоридных растворов с меньшей минерализацией, были рассмотрены фундаментальные основы самоподдерживающихся (СМП)-процессов и показано, что возможность таких процессов связана с явлением электроселективности в ионном обмене и с нели-

Рис. 1. Самоподдерживающиеся процессы умягчения-опреснения в хлоридных (а) и хлоридно-сульфатных системах (б). Процессы: I – Na-катионирование; II – опреснение; III –удаление сульфата. Потоки: *1* – исходная соленая вода; *2* – умягченная соленая вода; *3* – опресненная вода; *4* – рассол без ионов жесткости; *5* – рассол после регенерации.

нейными эффектами формирования концентрационных фронтов при обмене разнозарядных ионов. Были представлены результаты моделирования большого количества последовательных циклов умягчения-опреснения водных растворов смесей хлоридов кальшия и натрия. Численные эксперименты показали осуществимость стационарных (повторяющихся) самоподдерживающихся процессов с использованием промышленного сильнокислотного катионита. Было показано влияние различных факторов на возможность осуществления и характеристики циклических самоподдерживающихся процессов на стадиях сорбции и регенерации: соотношения концентраций одно- и двухзарядных ионов в исходном растворе. суммарной концентрации этих растворов, степени концентрирования возвратных рассолов по сравнению с исходными растворами, потерь однозарядных ионов, "уносимых" с опресненной водой.

В настоящей работе рассматриваются сульфатсодержащие системы, более близкие к реальным природным соленым и солоноватым водам. По сравнению с двухкомпонентной смесью хлоридов натрия и кальция сульфатсодержащие системы имеют некоторые особенности:

1) комплексообразование (образование молекул сульфата кальция) влияет на ионообменные свойства катионита на стадии сорбционного умягчения;

2) в процессе сорбции идет накопление кальция к фазе катионита, что приводит к опасности осадкообразования при пропускании через кальциевую форму ионита исходного раствора с повышенным содержанием сульфата;

3) процесс опреснения раствора, содержащего ионы кальция и сульфата, может осложняться отложением гипса на теплопроводящих поверхностях или мембранах в зависимости от типа опреснителя;

4) десорбция кальция и регенерация натриевой формы катионита невозможны сульфатсодержащим концентратом после опреснения из-за образования осадка гипса в колонне с катионитом.

Проблемы 3) и 4) могут быть решены, если проводить извлечение сульфата из умягченной воды перед ее опреснением, как это показано на рис. 16. Такое удаление может быть сделано ионообменным способом на анионите в хлоридной форме, что требует регенерации, например, хлоридом натрия, и что автоматически выводит такой процесс из класса самоподдерживающихся процессов. В данной работе рассмотрено удаление сульфата с помощью метода нанофильтрации, позволяющей разделять двух и однозарядные анионы в процессах, практически аналогичных рассматриваемым [9, 10].

ТЕОРЕТИЧЕСКИЙ АНАЛИЗ

В работе [3] для проведения динамических расчетов в циклических процессах на МЦА была использована общая модель многокомпонентного ионного обмена с линейными кинетическими уравнениями разностного типа. Авторы [11] предложили более сложную модель расчета катионирования на цеолитах, учитывающую конвективные процессы продольной дисперсии. В данной работе мы используем т. н. послойную (тарельчатую) модель динамики ионного обмена, которая, с одной стороны, лучше всего апробирована для процессов ионообменной сорбции и регенерации в поточном и противоточном режимах на сильнокислотном катионите [4, 12], с другой стороны, она обеспечивает быстрый счет большого количества последовательных циклов с изменяющимися характеристиками (до выхода на стационарный режим).

Решается задача о прохождении элюента через сорбционную колонну заданной длины L и сечения S, равномерно наполненной сорбентом. Предполагается, что раствор движется по колонне с постоянной скоростью v. Обозначим через $\overline{c}_i(x,t)$ концентрации (моль-экв/л) веществ в сорбенте, традиционно рассчитывающиеся на единицу объема колонны, а через $c_i(x,t)$ концентрации веществ в растворе, движение которых описываемые уравнениями переноса:

$$\frac{\partial c_i}{\partial t} + v \frac{\partial c_i}{\partial x} + \frac{1}{\varepsilon} \frac{\partial \overline{c_i}}{\partial t} = D_{Li} \frac{\partial^2 c_i}{\partial x^2}$$
(1)

с граничными условиями первого рода на входе $c_i(0, t) = f_i(t)$, условиями второго рода на выходе из колонны $\frac{\partial c_i(L,t)}{\partial x} = 0$ и некоторыми начальными условиями при t = 0: $c_i(x,0) = c_{i0}(x)$; $\overline{c_i}(x,0) = \overline{c_{i0}}(x)$. Обмен ионов между раствором и неподвижным

сорбентом описывается в приближении квазистационарности:

$$\frac{\overline{c}_i}{c_i} = K_{\rm H}^{Cat,i} \left(\frac{\overline{c}_{\rm H}}{c_{\rm H}}\right)^{z_i},\qquad(2)$$

$$c_{\rm OH} + \sum_{j=1}^{m} c_j = c_{\rm H} + \sum_{i=1}^{n} c_i,$$
 (3)

$$\overline{c}_{\rm H} + \sum_{i=1}^{n} \overline{c}_i = \overline{c}_{\Sigma},\tag{4}$$

$$\varepsilon c_i + \overline{c_i} = \hat{c}_i,\tag{5}$$

где (2) — уравнение ионного обмена с коэффициентом равновесия определенного катиона с зарядом z_i на ион гидроксония $K_{\rm H}^{Cat,i}$; (3) — уравнение электронейтральности в жидкой фазе, ($\sum_{j=1}^{m} c_j$ суммарная концентрация (моль-экв/л) сопутствующих анионов); (4) — уравнение электронейтральности в неподвижной фазе; (5) — уравнение сохранения количества вещества \hat{c}_i — суммарная концентрация *i*-ого вещества в слое; \overline{c}_{Σ} — емкость ионита. Предполагается, что: $c_{\rm H}c_{\rm OH} = 10^{-14}$.

Молекулярные комплексы

В рассматриваемых в данной работе системах присутствуют ионы Ca^{2+} и SO_4^{2-} , а также молекулярные комплексы, образуемые в соответствии с равновесиями: $CaSO_4 \leftrightarrow Ca^{2+} + SO_4^{2-}$, характеризующимися концентрационными константами устойчивости.

$$\frac{c_{\text{CaSO}_4}}{c_{\text{Ca}}^{2+} \cdot c_{\text{SO}_4}^{2-}} = K_{\text{CaSO}_4} \quad (1/\text{моль}). \tag{6}$$

Табличные значения соответствующей константы устойчивости [13]:

$$\lg K_{\text{CaSO}_4} = 2.31, \ (K_{\text{CaSO}_4}^{-1} = 0.004898).$$

Из (6) получаем систему уравнений относительно $x = c_{CaSO_4}$:

$$xK_{CaSO_{4}}^{-1} = (c_{Ca} - x)(c_{SO_{4}} - x) \Rightarrow x =$$

$$= \frac{c_{Ca} + c_{SO_{4}} + K_{S}^{-1}}{2} - \sqrt{\left(\frac{c_{Ca} + c_{SO_{4}} + K_{S}^{-1}}{2}\right)^{2} - c_{SO_{4}}c_{Ca}}.$$
(7)

Концентрацию ионов кальция и сульфата можно теперь рассчитать по формулам:

$$c_{\rm Ca}^+ = c_{\rm Ca} - x; \ \bar{c_{\rm SO_4}} = c_{\rm SO_4} - x.$$
 (8)

Для расчета ионообменных процессов были модифицированы разработанные нами ранее математическая модель и созданная на ее основе программа "Createscheme" [4, 14], базирующаяся на решении дифференциальных уравнений, описывающих эти процессы в приближении квазистационарности. Решение системы (2)-(5) совместно с уравнениями (6), (7) производится с помощью метода последовательных приближений при каждом акте сорбции на каждом шаге программы. Отличительной особенностью представленной здесь задачи является учет концентраций комплекса CaSO₄, которые не участвуют в процессах ионного обмена, но могут снижать эффективность умягчения, способствуя переносу двухзарядных ионов в слое катионита.

Нанофильтрация

Процесс удаления сульфата с помощью нанофильтрации (НФ) также требует учета концентрации незаряженного комплекса $CaSO_4$, который проходит свободно сквозь наномембрану и не участвует в процессах фильтрации. Фильтрацию оставшихся ионов можно моделировать с помощью приведенного далее несложного алгоритма.

Основным параметром НФ является: степень концентрирования:

$$Q_N = V_{KN} / V_S; \quad V_S = V_{KN} + V_{PN},$$
 (9)

где V_S – исходный объем подаваемого на НФ раствора (в нашем случае – объем умягченной воды), V_{KN} – объем концентрата нанофильтрации, V_{PN} – объем пермеата. А селективность мембран обычно выражается через степень удерживания заряженных ионов (анионов) компонента в процентах (Retentionpercentage) [15, 16], или в безразмерных долях:

$$R_{N,i} = (c_{S,i} - c_{PN,i}) / c_{S,i}, \tag{10}$$

где $c_{S, i}$ — исходная концентрация ионов *i*-го компонента в умягченной воде, $c_{PN, i}$ — концентрация ионов компонента в пермеате после нанофильтрации или в виде массового коэффициента селективности:

$$R_{M,i} = \frac{c_{KN,i}V_{KN}}{c_{S,i}V_S}.$$
 (11)

Для каждого из компонентов раствора выпишем соотношения баланса (выраженные в моль-экв):

$$V_{S}c_{S,i} = V_{PN}c_{PN,i} + V_{KN}c_{KN,i}.$$
 (12)

Используя (12), можно установить формулу связи концентрационного (10) и массового (11) коэффициентов селективности мембраны:

$$R_{M,i} = Q_N + R_{N,i} - Q_N R_{N,i}.$$
 (13)

С учетом высокой селективности многих НФмембран к двухзарядным ионам и практического отсутствия у них селективности к простым однозарядным ионам [15, 16] для концентраций катионов и анионов, задерживаемых наномембраной, получим:

$$c_{PN,i} = c_{S,i} (1 - R_{N,i}); \quad c_{KN,i} = \frac{c_{S,i} V_S - c_{PN,i} V_{PN}}{V_{KN}}.$$
 (14)

В нашем случае наномембрана определяет концентрации двухзарядного иона SO₄ и двухзарядного иона Ca, при этом однозарядные ионы Cl и ионы Na проходят сквозь мембрану практически свободно. В связи с тем, что при катионировании концентрации анионов не изменяются в умягченной воде, поступающей на наномембрану, суммарная концентрация ионов кальция много меньше концентрации сульфат-иона, поэтому заряд вещества, задержанного при фильтрации, будет отрицательным и может быть скомпенсирован только положительными ионами натрия. Откуда следует, что концентрации хлорид ионов, свободно проходящих сквозь наномембрану, не меняются $c_{PN,Cl} = c_{KN,Cl} = c_{S,Cl} = c_{0,Cl}$. А концентрации ионов натрия, компенсирующих отрицательный заряд вещества, задержанного наномембраной и пропущенного сквозь нее, можно найти из соотношений электронейтральности:

$$c_{PN,Na} = c_{PN,Cl} + c_{PN,SO_4} - c_{PN,Ca}, c_{KN,Na} = c_{S,Cl} + c_{KN,SO_4} - c_{KN,Ca}.$$
(15)

Учитывая, что в пермеате концентрации сульфата и кальция малы, справедлива оценка:

$$c_{PN,\text{Na}} \approx c_{S,\text{Cl}} = c_{0,CL}.$$
 (16)

В данной работе моделируется стационарные режимы работы системы, при которых состояние системы стабильно повторяется от цикла к циклу. Такие стабильные режимы полностью определяются граничными условиями и практически не зависят от начальных условий. Соответственно, такие режимы слабо реагируют на случайные ошибки, возвращая систему в прежний режим через несколько циклов. Таким образом, несмотря на длительность счета, накопления ошибок не происходит, что также показано в работе [4], где эта проблема исследована путем введения в процесс искусственных однократных возмущений. Однако, в случае повторяющихся (из цикла в цикл) однотипных малых возмущений такое воздействие может быть существенным, что следует учитывать в будущих исследованиях.

УСЛОВИЯ ПРОВЕДЕНИЯ ЧИСЛЕННЫХ ЭКСПЕРИМЕНТОВ

Для расчетов выбраны следующие параметры: диаметр слоя катионита в колонне — 0.5 м (площадь сечения — 0.196 м^2); высота слоя — 1 м; объем слоя сорбента — 0.196 м^3 ; скорость пропускания растворов на стадиях сорбции — 5 колоночных объемов в час ($0.980 \text{ м}^3/\text{ч}$); скорость пропускания растворов на стадиях регенерации — 1 колоночный объем в час ($0.196 \text{ м}^3/\text{ч}$).

Предполагается, что катионит загружен в колонну так, что отсутствует жидкость вне слоя. Свободный объем жидкости определяется только порозностью (межзерновым пространством) стационарного слоя.

Виртуальный циклический процесс осуществляется в соответствии со схемой, показанной на рис. 2.

В каждом цикле стадия сорбции начинается с вытеснения рассола, который остался в межзерновом пространстве слоя катионита после предыдущего цикла регенерации. Также в каждом цикле стадия регенерации начинается с т. н. частичной регенерации с использованием этого рассола, полученного после указанной выше операции вытеснения при сорбции. Циклы удобнее описывать по цепочке: вытеснение (и частичная сорбция) — основная сорбция — частичная регенерация — основная регенерация.

Нулевой цикл. Катионит находится в исходной Na – форме. Исходная вода заданного состава $(c_{\Sigma} = \sum c_{0,i})$ поступает сверху вниз в колонну 1 с катионитом, и умягченная вода собирается в емкости 4. Стадия умягчения заканчивается в момент заданного проскока кальция на выходе из колонны. Весь объем умягченной воды V_S из емкости 4 подается в нанофильтрационный модуль 2. Задаются два параметра нанофильтрации: степень концентрирования Q_N и селективность мембран $R_{N,i}$, $R_{M,i}$ в соответствии с формулами (9–11).

Рис. 2. Схема виртуальной установки для численных экспериментов по СМП-процессу. Модули: *1* – Na-катионирования, *2* – нанофильтрации, *3* – опреснения; *4*–*6* – емкости: *4* – умягченной воды, *5* – регенерирующего раствора, *6* – раствора, вытесняемого из слоя катионита. Потоки: I – исходная вода, II – вытесняемый из слоя раствор, III – умягченная вода, IV – опресненная вода, V – концентрат после опреснителя; VI – регенерирующий раствор, VII – сброс, VIII – концентрат нанофильтрации, IX – добавка раствора NaCl.

Концентрат после нанофильтрации, представляюший собой сульфат натрия или смесь сульфата натрия с небольшой примесью хлорида натрия, является побочным продуктом и удаляется из процесса. Пермеат нанофильтрации объемом V_{PN}, практически не солержаший двухзарядных ионов и представляющий собой раствор хлорида натрия, поступает на опреснительный модуль 3. На схеме он приведен так, как обычно рисуют обратно-осмотический модуль. На самом деле, может быть использован опреснитель любого, в том числе дистилляционного типа. Задаются концентрации регенерационного раствора *с*_{*R*, Na} и потери натрия с опресненной водой $c_{W, Na}$; определяются: степень концентрирования рассола после опреснителя (используемого в качестве регенерационного раствора для катионита) $k_R = c_{R, Na}/c_{PN, Na}$, учитывая, что в силу (16) $c_{PN, Na} = c_{0, Cl}$ имеем $k_R = c_{R, Na}/c_{0, Cl}$, а коэф-фициент $k_W = c_{W, Na}/c_{0, Cl}$ определяет потери натрия с опресненной водой, тогда объем раствора на регенерацию V_R будет равен:

$$V_R = V_{PN}Q_R; \ Q_R = (1 - k_W)/(k_R - k_W),$$
 (17)

где величина Q_R — степень концентрирования опреснителя. Рассол после опреснителя поступает в емкость 5 и далее подается на регенерацию в колонну в направлении снизу-вверх, после того, как прошла стадия частичной регенерации раствором, подаваемым из емкости 6. После стадии регенерации в слое катионита остается такой же объем рассола, который находился в емкости 6, поэтому объем раствора на регенерацию в каждом цикле остается равным V_R .

Первый и последующие циклы проводятся по иному алгоритму, включающему вытеснение и частичную сорбцию: на стадии сорбции, по достижению заданной концентрации ионов натрия на выходе, завершается процесс вытеснения рассола в емкость 6, и поток умягченной воды собирается в 4. откуда подается в нананофильтрационный модуль 2 для получения побочного продукта - концентрата и пермеата, который поступает в опреснитель 3 для получения основного продукта – пресной воды и рассола для регенерации, собираемого в емкости 5. Во всех циклах на стадии регенерации частичная регенерация проводится вытесненным рассолом из 6, а основная – рассолом после опреснения из 5. Для осуществления циклического процесса в случае, когда в численном эксперименте с определенным количеством циклов не удается получить стабильный и повторяющийся СМП-процесс, проводится виртуальная операция по добавлению в емкость 5 определенного дополнительного количества раствора хлорида натрия той же концентрации, что и в 5 для завершения процесса регенерации катионита. Такой процесс не считается самоподдерживающимся.

В численных экспериментах были использованы следующие равновесные параметры – характеристики сульфокатионита КУ-2 (полученные экспериментально и апробированные ранее в расчетах [12]), полная обменная емкость (ПОЕ): $\overline{c}_{\Sigma} = 2$ моль-экв/л. Константы равновесия ионного обмена: $K_{\rm H}^{\rm Na} = 1.2$; $K_{\rm H}^{\rm Ca} = 5.3$.

Были использованы следующие критерии окончания различных стадий: критерий завершения стадии сорбции – проскок ионов $Ca^{2+} = 0.005$ моль-экв/л. Критерий завершения процесса вытеснения – проскок ионов $Na^+ = 0.15$ моль-экв/л.

Завершением стадии регенерации считалось пропускание всего объема рассола из емкости 5 через колонну снизу вверх. Накопление концентрата, полученного после регенерации, и дальней-

Ионы	$Na^+ - 0.025$ $Ca^{2+} - 0.025$	$Na^+ - 0.04$ $Ca^{2+} - 0.01$	$Na^+ - 0.01$ $Ca^{2+} - 0.04$	$Na^+ - 0.045$ $Ca^{2+} - 0.005$
$Cl^{-} - 0.025$ $SO_4^{2-} - 0.025$	K1A1	K2A1	K3A1	K4A1
$Cl^{-} - 0.04$ $SO_4^{2-} - 0.01$	K1A2	K2A2	K3A2	K4A2
$Cl^{-} - 0.01$ $SO_4^{2^{-}} - 0.04$	K1A3	K2A3	K3A3	K4A3

Таблица 1. Составы модельных растворов, моль-экв/л

шая его переработка не рассматривались в рамках настоящих численных экспериментов.

Были использованы количественные характеристики нанофильтрационных мембран и процессов с их использованием, опубликованные в работах [15, 16]. В соответствии с этими работами, большинство промышленных НФ мембран характеризуется процентом удерживания двухзарядных ионов (Retention percentage) в диапазоне 89–98%. Для расчетов выбирали среднее значение коэффициента, рассчитываемого по формуле (10), равным: $R_{N, i} = 0.938$. При оценке по массам, а не концентрациям двухзарядных ионов, это значение в соответствии с (13) соответствует коэффициенту селективности $R_{M, i} = 0.95$.

В табл. 1 представлены составы модельных растворов, использованные в численных экспериментах.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Реализуемость СМП-процессов для 4-х компонентных растворов

На рис. 3 приведены зависимости количества умягченной воды (в единицах колоночных объемов) в циклическом процессе сорбции-регенерации в зависимости от номера цикла для исходного раствора К4А1 (табл. 1). Эти зависимости рассчитаны для циклических процессов умягчения — опреснения, в которых часть хлорида натрия "теряется" с опресненной водой, в данном случае — для 0.01 М концентрации в ней соли. Кривая *1* соответствует самоподдерживающемуся процессу, в ходе формирования которого наблюдается уменьшение объема умягченной воды от цикла к циклу, а затем процесс полностью стабилизируется.

Рис. 3. Зависимость числа колоночных объемов умягченной воды от номера цикла для раствора K4A1 с исходным содержанием компонентов (моль-экв/л): $c_{0, Ca}$ (Ca²⁺ + CaSO₄) – 0.005, $c_{0, Na}$ – 0.045, $c_{0, Cl}$ – 0.025, c_{0,SO_4} (SO₄²⁻ + CaSO₄) – 0.025. Добавка 1 М раствора NaCl к такому же раствору, возвращаемому на регенерацию в СМП- процессе (%): 1 – 0; 2 – 50; 3 – 100.

Рис. 4. Характеристики стадий сорбции для модельного раствора K4A1. а – Выходные кривые кальция в нулевом (I), первом (2) и тридцатом (3) циклах. б – Распределение ионов Ca²⁺ (I) и Na⁺ (2) вдоль слоя в нулевом, первом и тридцатом (стабильном) циклах.

Кривые 2 и 3 соответствуют процессам, в которых в каждом цикле в растворы, возвращаемые на регенерацию, дополнительно добавляются разные количества раствора хлорида натрия. Эти процессы, в частности, процесс описываемый зависимостью 2, также являются реагент-сберегающими по сравнению с традиционными ионообменными процессами умягчения, однако они не являются самоподдерживающимися.

На рис. 4а приведены несколько выходных кривых стадии умягчения (сорбции кальция) для процессов, переходящих в самоподдерживающийся и описываемых рассмотренной выше зависимостью 1. Кривые рассчитаны для предельного "проскока" кальция, равного 1.2 × 10⁻³ моль-экв/л. Видно, что в стабилизированном процессе по сравнению с процессами в нулевом и первом циклах не только уменьшается емкость слоя катионита по кальцию, но и изменяется качество умягченной воды. Расчеты показывают, что для стабилизированного СМП-процесса усредненная концентрация кальция в объеме умягченной воды становится равной 1.5×10^{-4} моль-экв/л кальция (3 мг/л), что составляет 3% от его содержания в исходной воде. Зависимости для распределения ионов кальция и натрия вдоль слоя катионита после стадий сорбции, приведенные на рис. 4б, показывают, что во всех циклах эти распределения повторяются с высокой точностью и кроме конечных сечений слоя определяются только равновесием между фазами ионита и исходного раствора независимо от распределения компонентов перед сорбцией.

В связи с тем, что лишь часть полной обменной емкости слоя катионита "работает" и участвует в Na⁺ \leftrightarrow Ca²⁺ — обмене в самоподдерживающемся циклическом процессе, в ходе стабилизации СМП-процесса устанавливается существенно меньший

расход регенерирующего (в нашем случае — 1 М раствора NaCl) по сравнению с его расходом в начальных циклах. Это хорошо видно на зависимости 1, приведенной на рис. 5. Зависимости 2 и 3 соответствуют зависимостям с такими же номерами для процессов сорбции, проиллюстрированных на рис. 3.

Выходные кривые десорбции кальция и регенерации катионита для некоторых циклов — нескольких точек зависимости 1 приведены на рис. 6.

Выходные кривые регенерации (рис. 6а) 4.6 и 3.5 на начальном этапе совпадают, однако имеют разную продолжительность циклов выходные кривые первого цикла 2.58 колоночных объемов, а стабильного цикла 1.59 объемов.

Отличительная особенность стабилизированного СМП-процесса по сравнению с процессами в начальных циклах состоит в том, что концентрация катионных компонентов в первых фракциях выходящего из колонны концентрата резко возрастает. На рис. 6б приведены кривые распределения компонентов вдоль слоя колонны после стадии регенерации для различных циклов. При сравнении однотипных рис. 4б и 6б, следует иметь ввиду, что координата длины слоя L = 0 - 1это его верхнее сечение, что соответствует входу потока воды в слой для стадии сорбции и выходу из него жидкого концентрата для стадии регенерации. На рис. 6б видно, что в установившемся самоподдерживающемся процессе, например, в 30-ом цикле, как и в начальных циклах, внизу слоя, т.е. на входе в него регенерирующего раствора хлорида натрия, концентрация кальция становится равной нулю, но толщина части слоя с нулевой концентрацией кальция становится ничтожной.

Рис. 5. Зависимость числа колоночных объемов регенеранта от номера цикла переработки раствора K4A1. Добавка 1 М раствора NaCl (%): 1 - 0; 2 - 50; 3 - 100.

Рис. 6. Характеристики стадий регенерации для модельного раствора K4A1. а – выходные кривые компонентов в нулевом, первом, и в тридцатом циклах, соответственно: для кальция – 2, 4, 6; для натрия – 1, 3, 5; δ – распределение ионов вдоль слоя катионита в нулевом, первом и тридцатом (стабильном) циклах, соответственно: 2, 4, 6 для Ca²⁺ и 1, 3, 5 для Na⁺.

В результате проведения численных экспериментов получено, что самоподдерживающийся процесс реализуется из рассмотренных двенадцати модельных растворов только для шести: К4А1, К4А2, К4А3, К2А2, К2А1, К1А2 (табл. 2). Причем, для модельных растворов К4А1, К4А2, К2А2 самоподдерживающийся режим осуществляется при всех значениях потерь натрия с опресненной водой. Для модельных растворов К2А1 и К1А2 СМП процесс реализуется только при нуле-

Таблица 2. Зависимость количества умягченной воды (в колоночных объемах) от потерь натрия с опресненной водой при стабилизации

Раствор	Потери натрия с опресненной водой, моль-экв/л					
	0	0.005	0.01	0.015		
K4A1	246	200	116	54		
K4A2	287	278	263	241		
K4A3	62	31.5	0.46	_		
K2A2	129	119	105	86		
K2A1	76	30	_	_		
K1A2	25	8	—	—		

Рис. 7. Зависимость количества умягченной воды (в колоночных объемах) от потерь натрия с опресненной водой для растворов разного состава: *1* – K4A1, *2* – K4A2, *3* – K4A3, *4* – K2A2, *5* – K2A1, *6* – K1A2.

Рис. 8. Зависимость числа колоночных объемов умягченной воды от номера цикла для раствора K2A1 с исходным содержанием компонентов (моль-экв/л): $c_{0, Ca} = 0.01$, $c_{0, Na} = 0.04$, $c_{0, Cl} = 0.025$, $c_{0,SO_4} = 0.025$. Концентрация Na⁺ в опресненной воде (моль-экв/л): 1 - 0; 2 - 0.005.

вых потерях и при потерях, равных 0.005 мольэкв/л. Для модельного раствора К4А3 СМП процесс реализуется только при нулевых потерях (табл. 2).

Среди факторов, влияющих на возможность осуществления самоподдерживающегося процесса, наиболее важными являются соотношение компонентов в исходном растворе и величина "уноса" (потерь) ионов натрия из системы вместе с опресненной водой. Влияние последнего фактора видно при сравнении приведенных на рис. 7 зависимости количества умягченной воды (в колоночных объемах) от потерь натрия с опресненной водой для растворов разного состава, а на рис. 8 зависимостей, рассчитанных для раствора К2А1 (табл. 1).

Потери ионов натрия с опресненной водой резко снижают объем раствора, который может быть умягчен в стабилизированном цикле, что очевидно связано со степенью регенерации катионита.

Соотношение компонентов в исходном растворе является существенно более сильным фактором. Его влияние на СМП-процесс можно увидеть, если сравнить зависимости, приведенные на рис. 3 (кривая *I*) и рис. 8 (кривая *2*).

Увеличение соотношения $c_{0, Ca}/c_{0, Na}$ от значения 0.005/0.045 = 1/9 (рис. 1) до 0.01/0.04 = 1/4 в стабилизированном процессе, показанном на рис. 8, многократно уменьшает объем раствора, который может быть умягчен в одном цикле, при том, что потери Na⁺ с опресненной водой в этом процессе в два раза меньше.

Рис. 9. Зависимость числа колоночных объемов умягченной воды от номера цикла для раствора K1A1 с исходным содержанием компонентов (моль-экв/л): $c_{0, Ca} = 0.025$, $c_{0, Na} = 0.025$, $c_{0, Cl} = 0.025$, $c_{0, SO_4} = 0.025$, потери натрия с опресненной водой 0.015 моль-экв/л, регенерирующий раствор 1.5 М NaCl. Добавка 1.5 М раствора NaCl к раствору, возвращаемому на регенерацию в СМП-процессе (%): 1 - 100; 2 - 87.5; 3 - 75; 4 - 50; 5 - 0.

Изломы на зависимостях, показанных на рис. 8, являются результатом специальных возмущений, вносимых в расчеты для последовательных циклов с целью установления истинности эффекта стабилизации. В этом случае, процессы самопроизвольно восстанавливаются, как показано на рисунке.

Дальнейшее увеличение соотношения $c_{0, Ca}/c_{0, Na}$ может привести к невозможности осуществления самоподдерживающегося процесса. Такой пример показан на рис. 9, где представлены зависимости для исходного раствора K1A1 (табл. 1) с равной эквивалентной концентрацией этих компонентов.

Как видно из представленных результатов, для раствора такого состава не реализуется не только СМП-процесс, но и стабильный процесс сорбции-регенерации при малых добавках раствора соли (менее 87.5%) к оборотному регенерационному раствору.

Как показано ниже, влияние остальных параметров, в том числе, исходного содержания сульфата в перерабатываемом растворе, имеет более сложный характер.

Критерий реализуемости СМП-процессов

Представляет интерес априорная оценка возможности осуществления самоподдерживающегося процесса, исходя из известных данных по составу перерабатываемой воды и значений варьируемых параметров. Очевидно, что смысл такого приближенного количественного критерия, достаточного для инженерных расчетов, должен состоять в достижении какого-то критического значения соотношения количеств ионов натрия и кальция в замкнутом цикле сорбции— регенерации. Вывод критерия осуществимости стабилизированного СМП-процесса с повторяющимися циклами может быть сделан на основе оценок материального баланса в цикле сорбции—регенерации.

1. Поступающая в умягченный раствор масса ионов натрия в одном цикле (в моль-экв):

— из исходной воды: $c_{0, Na}V_S$, где V_S – объем умягченной воды;

— из сорбента: $\overline{c}_{S,Na}\overline{V}_b = c_{0,Ca}V_S$; где $\overline{c}_{S,Na}$ — концентрация натрия в слое катионита перед умягчением, \overline{V}_b — объем слоя ионита;

2. Потери натрия в одном цикле (в моль-экв):

– потери с сульфатом при нанофильтрации (все количество анионов сульфата, которое задерживается при нанофильтрации, находится в виде натриевой соли): $R_M c_{0,SO_4} V_S$; где, например, $R_M = 0.95$ – коэффициент селективности НФ-мембраны;

— потери с хлоридом при нанофильтрации (концентрация хлорида (и эквивалентная ему часть концентрации натрия) примерно одинаковая в пермеате и концентрате НФ): $c_{0,Cl}V_{k,N}$, где $V_{k,N}$ – объем концентрата нанофильтрации;

– потери ионов натрия с опресненной водой (в моль-экв):

 $-c_{w,Na}V_w$, где $c_{w,Na}$ — концентрация натрия в опресненной воде, V_w — объем опресненной воды в цикле.

Общая масса ионов натрия (в моль-экв), которой можно пользоваться в одном цикле для десорбции кальция и регенерации катионита:

$$M_{\rm Na} = c_{0,\rm Na}V_S + c_{0,\rm Na}V_S - R_M c_{0,\rm SO_4}V_S - - c_{0,\rm Cl}V_{k,\rm N} - c_{w,\rm Na}V_w.$$
(18)

Общая масса ионов кальция (в моль-экв), которую необходимо десорбировать в одном цикле:

$$M_{\rm Ca} = c_{0,\rm Ca} V_S. \tag{19}$$

193

Формулу критерия удобно представить в виде:

$$Rc = \frac{M_{\text{Na}}}{M_{\text{Ca}}} = \frac{c_{0,\text{Na}}V_{S} + c_{0,\text{Ca}}V_{S} - R_{M}c_{0,\text{SO}_{4}}V_{S} - c_{0,\text{Cl}}V_{k,N} - c_{w,\text{Na}}V_{w}}{c_{0,\text{Ca}}V_{S}} = \frac{c_{\Sigma} - R_{M}c_{0,\text{SO}_{4}} - c_{0,\text{Cl}}V_{k,N}/V_{S} - c_{w,\text{Na}}V_{w}/V_{S}}{c_{0,\text{Ca}}},$$
(20)

где: $c_{\Sigma} = c_{0,\text{Na}} + c_{0,\text{Ca}}$.

Рассмотрим параметры: $V_{k,N}/V_S$ и V_w/V_S . Первый представляет собой величину степени концентрирования при нанофильтрации (Q_N). Этот параметр подбирается, исходя из состава умягченного раствора, свойств НФ мембран и рациональных условий нанофильтрации. В наших расчетах он выбирался практически равным: $Q_N = 0.192$. Второй параметр Q_R рассчитывается в соответствии с формулой (17) и зависит от соотношения концентраций NaCl при разделении раствора на опресненную воду и регенерационный раствор:

$$V_w/V_S = (V_{k,N}/V_S)(V_w/V_{k,N}) = (1-Q_N)(1-Q_R).$$

С учетом этого можно записать:

$$Rc = \frac{c_{\Sigma} - R_M c_{0,SO_4} - Q_N c_{0,C1} - (1 - Q_N)(1 - Q_R) c_{w,Na}}{c_{0,Ca}}.$$
 (21)

При использовании критерия (21) задаются исходные концентрации компонентов в перерабатываемой воде и расчет проводится для различных предполагаемых параметров: $c_{w, Na} = 0, 0.005, 0.01, 0.015, c_{R,Na} = 1.$ В силу (16) $c_{PN,Na} \approx c_{0,Cl}, k_R = \frac{c_{R,Na}}{c_{PN,Na}} = \frac{1}{c_{0,Cl}}$ и $k_w = \frac{c_{w,Na}}{c_{PN,Na}} = \frac{c_{w,Na}}{c_{0,Cl}},$ в соответствии с (17) имеем формулу для критерия Q_R :

$$Q_R = (1 - k_W) / (k_R - k_W).$$

Однако, для того, чтобы знать, при каких значениях критерия *Rc* реализуется самоподдерживающийся процесс, оценим его значение, используя результаты проведенных численных экспериментов, которые сведены в табл. 2 для случаев, когда такой процесс стабилен — табл. 3 и нестабилен табл. 4.

Минимальное значение критерия Rc = 1.21 соответствует наименьшему объему умягченной воды, получаемой в одном повторяющемся цикле СМП-процесса: $V_S = 31$ колоночных объемов. При этом исходный раствор имеет состав, приведенный в последней строке таблицы, а опресненная вода содержит 0.005 моль-экв/л (292.5 мг/л) хлорида натрия. В табл. 4 приведены данные для случаев, когда численные эксперименты показывают невозможность реализации самоподдерживающихся процессов. Значения параметров Q_N , Q_R и $c_{w, Na}$ при этом заданы такими же, как для стационарных СМП-процессов.

Как видно из представленных данных, для всех рассмотренных примеров значения критерия: Rc < 1.

Полученные результаты показывают возможность проведения приближенных инженерных расчетов для априорной оценки реализуемости самоподдерживающихся процессов умягчения- опреснения.

ЗАКЛЮЧЕНИЕ

Проведенные численные эксперименты на примере модельных растворов хлоридов и сульфатов натрия и кальция и анализ полученных результатов показывает осуществимость на практике стационарных циклических самоподдерживающихся процессов умягчения—опреснения с использованием сильнокислотного катионита, в которых регенерация катионита в каждом цикле осуществляется только за счет возвратного рассола, получаемого при опреснении умягченной воды.

Для реализации СМП-процессов переработки сульфатсодержащих растворов необходимо разделение сульфатов и хлоридов в умягченной воде, направляемой на опреснение с одновременным получением рассола для регенерации катионита. Для такого разделения можно использовать метод нанофильтрации.

Численные эксперименты показывают, что наличие сульфата в растворе резко сужает диапазон составов соленых вод и условий для осуществления СМП-процессов по сравнению с хлоридными системами, изученными ранее [4].

Численные эксперименты для исследования большого количества последовательных циклов умягчения-опреснения, трудноосуществимые обычными экспериментальными методами, позволяют увидеть распределение катионов в слое катионита и выходные кривые компонентов на любой стадии процессов. Показано, что на характеристики самоподдерживающихся процес-

ХАМИЗОВ и др.

Растворы $C_{\Sigma} = 0.05$		Потери с водой <i>с</i> _{w,Na}	Объемы на разных стадиях цикла в колоночных объемах (объем колонны 0.196 м ³)			Q_R	$(1-Q_N)(1-Q_R)$	Rc
			V _S	$V_{k,\mathrm{N}}$	V_w			
K4A1	$c_{0,Na} = 0$	0	246	47	193	0.025	0.788	4.29
	$\frac{1}{c_{0,Ca}}$	0.005	200	38	158	0.02	0.792	3.5
	$\frac{c_{0,Cl}}{c_{0,Cl}} = 1$	0.010	116	22	92	0.015	0.796	2.7
	c_{0,SO_4}	0.015	54	10	43	0.01	0.8	1.89
K2A2	$c_{0,\mathrm{Na}} = 4$	0	130	25	101	0.04	0.775	3.28
	$\frac{1}{c_{0,C}} = 4$	0.005	119	23	92	0.035	0.779	2.89
	$\frac{c_{0,C}}{2} = 4$	0.010	105	20	82	0.03	0.783	2.50
	c_{0,SO_4}	0.015	86	16	68	0.025	0.787	2.10
K2A1	$c_{0,\mathrm{Na}} - 4$	0	76	14.6	60	0.025	0.788	2.14
	$\frac{1}{c_{0,Ca}}$ – 4	0.005	20	5 (22	0.02	0.70(1 75
	$\frac{c_{0,Cl}}{c_{0,Cl}} = 1$	0.005	29	5.0	23	0.02	0.796	1.75
	c_{0,SO_4}			4.7	10	0.025	0.77(1.01
KIA2	$\frac{c_{0,Na}}{c} = 1$	0	24	4.7	19	0.025	0.776	1.31
	$c_{0,Ca}$							
	$\frac{c_{0,C1}}{c_{0,SO_4}} = 4$							
K4A2	$c_{0.Na}$	0	287	55	222	0.04	0.776	6.56
	$\frac{c_{0,\text{rm}}}{c_{0,\text{Ca}}} = 9$	0.005	277	53	216	0.035	0.78	5.78
	$\frac{c_{0,Cl}}{2} = 4$	0.01	262	50	205	0.03	0.784	5.0
	c_{0,SO_4}	0.015	240	50	190	0.025	0.787	4.2
K4A3	$c_{0.Na}$	0	62	12	50	0.01	0.8	2.02
	$\frac{c_{0,Ca}}{c_{0,Ca}} = 9$ $\frac{c_{0,Cl}}{c_{0,SO_4}} = \frac{1}{4}$	0.005	31	6	25	0.0005	0.804	1.21

Таблица 3. Исходные данные и результаты численных экспериментов для стационарных СМП-процессов

сов, а именно количество циклов до выхода на стационарный режим, а также продолжительность этих циклов на стадиях сорбции и регенерации, оказывают влияние: соотношение концентраций двух- и однозарядных ионов в исходном растворе, а также относительные потери однозарядных ионов, "уносимые" с опресненной водой.

На основе анализа результатов большого количества составов модельных растворов солоноватых вод при изменении варьируемых условий предложено критериальное соотношение для инженерных расчетов с целью априорной оценки реализуемости СМП-процессов.

Проведенный анализ показывает методологию расчетов рациональных условий организации СМП-процессов в реальных условиях переработки природных и техногенных вод. Это дает возможность заложить технологические основы для создания автономных стационарных и передвижных систем водоподготовки при использовании СМП-процесса для переработки подземных солоноватых, а также сточных вод, не требующих привозных реагентов и, соответственно, вспомога-

Растворы $c_{\Sigma} = 0.05$		Потери	Q _R	$(1-Q_N)(1-Q_R)$	Rc
K1A1	$c_{0,Na} - 1$	0	0.025	0.788	0.86
	$\frac{1}{c_{0,Ca}} = 1$	0.005	0.02	0.792	0.70
	$c_{0,Cl} = 1$	0.01	0.015	0.796	0.54
	c_{0,SO_4}	0.015	0.01	0.8	0.38
K1A3	$\frac{c_{0,\text{Na}}}{1} = 1$	0	0.01	0.8	0.40
	$c_{0,Ca}$	0.005	0.0005	0.8	0.24
	$\frac{c_{0,C1}}{c_{0,SO_4}} = \frac{1}{4}$	0.01			
K2A3	$\frac{c_{0,\mathrm{Na}}}{4} = 4$	0	0.01	0.8	1.00
	$c_{0,Ca}$	0.005	0.0005	0.8	0.60
	$\frac{c_{0,\text{CI}}}{c_{0,\text{SO}_4}} = \frac{1}{4}$	0.01	0	0.81	0.2
K3A1	$c_{0.Na}$ 1	0	0.025	0.788	0.54
	$\frac{c_{0,Ca}}{c_{0,Ca}} = \frac{-4}{4}$	0.005	0.02	0.792	0.44
	$c_{0,Cl} = 1$	0.01	0.015	0.796	0.34
	c_{0,SO_4}	0.015	0.01	0.8	0.24
K3A2	$c_{0,Na}$ 1	0	0.04	0.776	0.82
	$\frac{1}{c_{0,Ca}} = \frac{1}{4}$	0.005	0.035	0.78	0.72
	$\frac{c_{0,Cl}}{c_{0,Cl}} = 4$	0.01	0.03	0.784	0.63
	c_{0,SO_4}	0.015	0.025	0.787	0.53
K3A3	$\frac{c_{0,Na}}{1} = \frac{1}{4}$	0	0.01	0.8	0.25
	$c_{0,Ca} = 4$	0.005	0.0005	0.8	0.15
	$\frac{c_{0,\rm C1}}{c_{0,\rm SO_4}} = \frac{1}{4}$	0.01	0	0.81	0.05

D

Таблица 4. Расчет значений критерия *Rc* по исходным составам растворов и при задаваемых параметрах $Q_N = 0.192$ для случаев, когда не реализуются СМП-процессы

тельных устройств для хранения реагентов и приготовления регенерационных растворов.

ОБОЗНАЧЕНИЯ

- *A*, *B* компоненты раствора, участвующие в ионном обмене
 BV колоночный объем
- (в наших примерах 0.196 м³)
- с концентрация в растворе (моль-экв/л)
- *c* концентрации в фазе ионита на объем слоя (моль-экв/л)
- cредняя концентрация *i*-ого компонента в
 сечении слоя катионита (моль-экв/л) (с уче-том жидкой и твердой фазы)

коэффициент диффузии (см²/с)

195

K концентрационная константа (коэффициент) равновесия ионного обмена степень концентрирования при разделении k_R, k_W на регенерационный раствор и опресненную воду L высота слоя катионита (см) N номер сорбционного цикла Q_N, Q_R объемные критерии концентрирования при фильтрации и опреснении селективность наномембраны по концен- $R_{N,i}R_{M,i}$ трациям и по массе критерий реализуемости СМП-процесса Rc S площадь сечения слоя катионита, (M^2) t время, мин (с, ч)

- *V* объемы на разных стадиях цикла (л)
- *v* линейная скорость, (см/мин)
- Х координата точки концентрационного фронта вдоль слоя катионита
- *х* координата по высоте колонны, отсчитываемая от точки входа раствора
- *W* объемная скорость раствора (м³/ч)
- *z* заряд иона
- є порозность (доля межзернового пространства в слое катионита)

ИНДЕКСЫ

- Br "проскоковая" концентрация
- і, ј ионные компоненты
- Σ суммарная концентрация в растворе или сорбенте (емкость сорбента);
- *PN* пермеат нанофильтрации
- *KN* концентрат нанофильтрации
- *S* сорбция (умягчение)
- *R* регенерация
- *W* потери натрия с опресненной водой

СПИСОК ЛИТЕРАТУРЫ

- Klein G., Vermeulen T. Cyclic performance of layered beds for binary ion exchange// AIChESymp. Ser. 1975. V. 71. № 152. P. 69.
- 2. Barba D., Brandani V., Foscolo P.U. A method based on equilibrium theory for a current choice of cationic resin in sea water softening // Desalination. 1983. V. 48. № 2. P. 133.
- Tokmachev M.G., Tikhonov N.A., Khamizov R.Kh. Investigation of cyclic self-sustaining ion exchange process for softening water solutions on the basis of mathematical modeling // React. Funct. Polym. 2008. V. 68. P. 1245.
- Хамизов Р.Х., Комарова И.В., Галкина Н.К., Прудковский А.Г. Самоподдерживающиеся процессы умягчения-опреснения воды. Простые двухкомпонентные системы // Теор. основы хим. технологии. 2020. Т. 54. № 5. С. 649.
- Muraviev D.N., Khamizov R.Kh., Tikhonov N.A., Morales J.G. Clean ("Green") IonExchangeTechnologies. IV. High-Ca-selectivityion-exchange material for self-sus-

taining decalcification of mineralized waters process // Ind. Eng. Chem. Res. 2004. V. 43. № 8. P. 1868.

- 6. US Patent Appl.Publ. 2011/0278225.Method for purifying water by cyclic ionic exchange // Boodo F., Publ. Nov. 17, 2011.
- Flodman H.R., Dvorak B.I. Brine reuse in ion-exchange softening: salt discharge, hardness leakage, and capacity tradeoffs // Water Environm.Res. 2012. V. 84. № 6. P. 535.
- 8. Патент РФ 2 686 147 Способ переработки природных солоноватых вод на ионитах с получением растворов сложных минеральных удобрений и установка для его осуществления (варианты) // Хамизов Р.Х., Хамизов С.Х. – опубл. 24.04.2019, Бюлл. № 12.
- 9. *Tang S., Brinchak L, Cohen Y., Lahav O.* Selective separation of divalent ions from seawater using an integrated ion-exchange/nanofiltration approach // Chem. Eng.Proc.-Proc.Inetens. 2018. V. 126. P. 8.
- Brinchak L., Keller O., Tang S., Fridman-Bishop N., Lahav O. A membrane-based recycling process for minimizing environmental effects inflicted by ion-exchange softening applications // Sep. Purific. Technol. 2019. V. 223. P. 23.
- 11. Safonyk A., Prysiazhniuk I., Prysiazhniuk O., Naumchuk O. Mathematical modeling singularly perturbed processes of water softening on sodium-cationite filters // IAPGOS. 2019. № 1. P. 37.
- Комарова И.В., Галкина Н.К., Прудковский А.Г. Вычислительный эксперимент как способ оценки эффективности работы водоподготовительных установок при поточной и противоточной регенерации ионообменных фильтров // Сорбц. Хроматограф. Процессы. 2018. Т. 18. № 5. С. 776.
- Лурье Ю.Ю. Справочник по аналитической химии. М.: Химия, 1989. С. 448.
- 14. Комарова И.В., Галкина Н.К., Прудковский А.Г., Хамизов Р.Х. Математическое моделирование и расчет процесса деминерализации воды в промышленном фильтре Сообщение 1. Гидродинамика регенерации и отмывки промышленного фильтра // Сорбционные и хроматографические процессы. 2017. Т. 17. № 1. С. 10.
- 15. *Amir Abbas Izadpanah*, Asghar Javidnia. The Abilityofa Nanofiltration Membraneto Remove Hardnessand Ionsfrom Diluted Seawater // Water. 2012. V. 4. P. 283.
- Bargeman G., Steensma M., ten Kate A., Westerink J.B., Demmer R.L.M., Bakkenes H., Manuhutu C.F.H. Nanofiltration as energy-efficient solution for sulfate waste in vacuum salt production // Desalination. 2009. V. 245. P. 460.

196