УДК 546.72(575.2)(04)

КОНЦЕНТРАЦИОННОЕ РАСПРЕДЕЛЕНИЕ МОЛЕКУЛ И ЧАСТИЦ В МОДЕЛЬНОЙ СИСТЕМЕ: Fe–NaCl–Na₂S–H₂SO₄–H₂O ПРИ РАЗЛИЧНЫХ ТЕМПЕРАТУРАХ ПРОЦЕССА ЭЛЕКТРОКОАГУЛЯЦИИ

© 2023 г. З. К. Маймеков^{а,} *, Д. А. Самбаева^b, Ж. Б. Изаков^a, Н. Т. Шайкиева^a, М. Долаз^a, М. Кобья^a

^аКыргызско-Турецкий Университет "Манас", Бишкек, Кыргызская Республика ^bКыргызский государственный технический университет им. И. Раззакова, Бишкек, Кыргызская Республика

*e-mail: zarlyk.maymekov@manas.edu.kg Поступила в редакцию 27.01.2023 г. После доработки 30.01.2023 г. Принята к публикации 01.02.2023 г.

В практических условиях одним из возможных решений проблемы очистки сероводородсодержащих промышленных сточных вод является электрохимическое окисление сульфидов. С учетом этих обстоятельств, в работе рассмотрена модельная система Fe–NaCl–Na₂S–H₂SO₄–H₂O, собрана экспериментальная установка и изучен процесс электрокоагуляции в широких пределах изменения температуры (288–308 K) водного раствора сероводорода. Выявлены оптимальные соотношения исходных компонентов в системе. Определены экспериментальные и расчетные водородные показатели раствора (pH). Осуществлено термодинамическое моделирование системы при минимизации энергии Гиббса и установлено концентрационное распределение отдельных молекул и частиц (катионы, анионы) в растворе. Составлены возможные химические реакции, протекающие в системе Fe–NaCl–Na₂S–H₂SO₄–H₂O при электрокоагуляции сероводородсодержащей сточной воды. Построены диаграммы Eh–pH для сравнения величины окислительного-восстановительного потенциала системы: Fe–H₂O, Fe–H₂O–S и Fe–NaCl–Na₂S–H₂SO₄–H₂O на основе установленных концентраций железо и серосодержащих частиц в растворе. Получена расчетная формула для определения величины окислительного потенциала (*Eh*) системы.

Ключевые слова: вода, сероводород, железо, хлорид натрий, сульфид натрий, электрокоагуляция, частица, распределение

DOI: 10.31857/S0040357123020069, EDN: EIYWAT

введение

Сероводород (H₂S) токсичный, плохо растворимый газ в воде (4.47 г H_2S на 1 л H_2O или 0.13 моль/л), вопреки этому он обнаруживается в сточных водах многих промышленных производств [1-4]. Например, H_2S в сточных водах составляет (мг/л) [5, 6]: в заводах по переработке нефти – до 60000; в предприятиях цветной металлургии от 10 до1500; в черной металлургии при грануляции доменного шлака – 30; в производстве синтетических жирных кислот – 40: в производстве искусственного волокна – 20; в дренажных и пластовых вод при разработке серных руд, при выплавке серы от 50 до 200. Соответственно, требуется удаление из воды сероводорода на основе различных физикохимических методов путем осуществления химической диагностики и анализа концепций наилучших доступных технологий и зеленой химии [7]. Исходя из этих положений выявлено, что выделение из воды молекулярного сероводорода обусловлено за счет пленочной и вакуумной дегазации, а также термической деаэрации. При этом одним из возможных решений проблемы очистки серосодержащих вод в практических условиях является электрохимическое окисление сульфидов [4], научные основы которых приведены в работе Гаррелса и Криста [8], где рассмотрены растворы, минералы и их равновесные характеристики. В работе Биерната и Робинса [9] рассмотрены двух- и трехкомпонентные системы: железо-вода, железо-вода-сера в пределах изменения температуры от 298 до 673 К и построены их диаграммы в виде *Eh*-pH. Равновесное состояние многокомпонентных солевых систем, а также межфазное распределение ионов в массообменных процессах изучены в работах [10-18]. Отмечено, что концентрационное распределение молекул, простых и сложных ионов в пятикомпонентной системе: Fe-NaCl-Na₂S-H₂SO₄-H₂O обусловленная с протеканием процесса электрокоагуляции остаются открытыми.

Рис. 1. Экспериментальная установка для изучения модельной системы: Fe–NaCl–Na₂S–H₂SO₄–H₂O и осуществления электрокоагуляции сероводород-содержащей сточной воды: (а) – начальный период опыта; (б) – в момент электрокоагуляции раствора.

С учетом изложенных выше обстоятельств, в настоящей работе определены основные цели и задачи исследования: изучение процесса электрокоагуляции в модельной системе: Fe-NaCl- $Na_2S-H_2SO_4-H_2O$; экспериментальное определение оптимальных соотношений исходных компонентов и водородного показателя раствора: осуществление термодинамического моделирования системы при минимуме энергии Гиббса и расчет физико-химических и термодинамических параметров системы; установление концентрационного распределения молекул, катионов и анионов в сероводородсодержащем водном растворе; сравнение величины pH, Eh системы: Fe-NaCl-Na₂S-H₂SO₄-H₂O; Fe-H₂O и Fe-H₂O-S [9] по диаграмме *Eh*-рH.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

С целью изучения процесса электрокоагуляции в модельной системе: Fe-NaCl-Na₂S-H₂SO₄-H₂O собрана экспериментальная установка, которая состоит из электролитической ячейки (рис. 1). В качестве анода служила железная пластина, а катода – нержавеющая стальная пластина. Электролитическая ячейка (реактор) изготовлена из цилиндрического оргстекла высотой 0.11 м и диаметром 0.095 м. Расстояние между электродами для всех тестов составляло 0.015 м. Электроды подключены к источнику питания постоянного тока (GW Instek, модель SPS-606, 0-6 A, 0-60 В). Ячейка заполнена водным раствором сульфида натрия с концентрацией 500 млн⁻¹ приготовленного растворением Na₂S в ультра дистиллированной воде. Перемешивание раствора осуществлено магнитной мешалкой.

Отмечено, что источником сероводорода в растворе служил сульфид натрия. Следует отметить, что в водах, где водородный показатель больше 8.5, сероводород встречается в виде сульфида и гидросульфида, поэтому с целью перевода его в H₂S с последующей его дегазации необходимо полкисление волы с технической кислотой. в частности соляной или серной. Поэтому, в модельную систему включена серная кислота. В процессе электрокоагуляции модельных сульфидных сточных вод водородный показатель (рН 7.5) регулярно контролировался на основе 0.1 н. раствора H₂SO₄ и 0.1 н. NaOH. Оптимальная концентрация фонового электролита достигнута при добавлении 3 г NaCl к 500 мл сероводородсодержащей сточной воды. Опыты проводились при комнатной температуре (298 К). Перед каждым экспериментом электроды тщательно очищались. Пробы отбирались из ячейки с интервалами 5 и 10 мин. В ходе эксперимента пробы, отобранные через определенные промежутки времени из реактора электрокоагуляции, фильтровали с помощью мембранного фильтра. Аналитическое определение сульфида в пробах проведено по стандартной йодометрической методике [19]. Эффективность удаления (R_{e} , %) сульфид-иона из сточной воды рассчитана по (1) формуле и составила 99%:

$$R_e = \frac{C_o - C}{C_o} \times 100,\tag{1}$$

где *C*_о и *C* – начальная (500 мг/л) и конечная (0.01 мг/л) концентрации сульфид-иона в растворе.

На основании экспериментальных данных определено оптимальное соотношение компонентов в 1 кг водном растворе, т.е. в химической матрице расчета системы содержались (г): Fe – 2.15; NaCl – 3.0; Na₂S – 2.62; H₂SO₄ – 3.99.

С использованием экспериментально определенной химической матрицы осуществлено термодинамическое моделирование системы. В расчетных экспериментах температура раствора изменялась в широких пределах от 288 до 308 K, а

$TDS = 8413.1 \text{ Mr/kr pactbope; Bec: } 99.73\% \text{ H}_2\text{O} + 0.27\% \text{ FeS npu } P = 0.1 \text{ MHa}$								
Т	Eh	pН	Ι	G	H	S	U	Ср
(K)	(<i>B</i>)	(-)	(-)	(мДж)	(мДж)	(мДж/К)	(мДж)	(гДж)
288	-0.238	8.10	0.1372	-13.20	-15.99	3.77	-15.78	997.04
293	-0.234	7.94	0.1371	-13.22	-15.97	3.84	-15.76	997.38
298	-0.229	7.77	0.1370	-13.24	-15.95	3.91	-15.74	998.82
303	-0.225	7.62	0.1369	-13.26	-15.93	3.98	-15.72	998.15
308	-0.221	7.47	0.1367	-13.26	-15.91	4.05	-15.70	998.34

Таблица 1. Физико-химические и термодинамические параметры системы: Fe–NaCl–Na₂S–H₂SO₄–H₂O при различных температурах процесса электрокоагуляции. Водный раствор: $V = 0.001 \text{ м}^3$, M = 1.0091 кг, $\rho = 1.01 \times 10^3 \text{ кг/m}^3$, TDS = 8413.1 мг/кг растворе; вес: 99.73% H₂O + 0.27% FeS при P = 0.1 МПа

давление составило 0.1 МПа. Равновесные концентрации молекул и частиц в системе рассчитаны при минимизации энергии Гиббса [20, 21], где сначала составлен банк термодинамических данных (H, S, U, G) для каждого вещества: Fe, NaCl, Na₂S, H₂SO₄, H₂O, катионов и анионов [22, 23] и для их возможных соединений в отдельных фазах исходя из: водного раствора (a_sprons98.DB); газа (g_sprons98.DB); жидкости (I_reid.DB); твердых частиц (s_sprons98.DB и s_Yokokawa.DB [15]). В расчетах использован программный комплекс "Селектор" [20, 21].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В экспериментальных исследованиях хлористый натрий использовался в качестве электролита, Na_2S для получения сероводорода, а серная кислота для регулирования рН раствора. Оптимальное соотношение компонентов в волном растворе (1 кг) при котором рН 7.5, как отмечено выше найдено экспериментальным путем и составило (г): Fe (2.15)-NaCl (3.0)-Na₂S (2.62)-H₂SO₄ (3.99)-Н₂О (1000). В процессе электрокоагуляции отмечено образование сульфида железа в виде осадка черного цвета (рис. 1б). Концентрационное распределение элементов в отдельных фазах и ионов (катионов, анионов) в растворе, а также величины физико-химических (V, M, o, Eh, I, TDS, C_p) и термодинамических параметров (G, H, S, U) рассчитаны при минимизации энергии Гиббса [20, 21, 24] в широких пределах изменения температуры (288-308 К) и давлении 0.1 МПа (табл. 1).

Получена формула для расчета величины окислительного-восстановительного потенциала (*Eh*, B) системы: Fe–NaCl–Na₂S–H₂SO₄–H₂O в зависимости от водородного показателя раствора (pH) (табл. 1, рис. 2):

$$Eh = -0.0176 - 0.0272 \text{pH}.$$
 (2)

Из формулы (2) видно, что окислительно-восстановительный потенциал (*Eh*) системы: Fe– NaCl–Na₂S–H₂SO₄–H₂O имеет отрицательное

значение (Eh < 0) и с возрастанием температуры раствора от 288 до 308 К увеличивается от -0.238 В до -0.221 В. Среда реакции восстановительная (Eh < 0), и возможно образование сульфидов железо типа FeS и FeS₂ на основе восстановленной серы в растворе. Водородный показатель (рН) системы с увеличением температуры раствора от 288 до 308 К изменяется в пределах от 8.1 до 7.5. Среднее расчетное значение рН составляет 7.77 при оптимальных соотношениях исходных компонентов в растворе (г): Fe(2.15)-NaCl (3.0)-Na₂S (2.62)-H₂SO₄ (3.99)-H₂O (1000) и практически соответствует экспериментальным значениям рН 7.5. Разница рН_{ехр} и рН_{саlc} составляет 3.3%. Из характеристик фаз также следует эквивалентность (100%), где водный раствор составляет 99.73 вес. %, а количество сульфида железо равно 0.27%. Протекание и направление процесса электрокоагуляции в системе Fe-NaCl-Na₂S-H₂SO₄-H₂O под-

Рис. 2. Зависимости окислительного-восстановительного потенциала (*Eh*, B) от водородного показателя (pH) для системы: Fe–NaCl–Na₂S–H₂SO₄–H₂O при различных температурах процесса электрокоагуляции.

		-				
Элементы	Fe	Cl	Na	S	Н	0
Состав	0.038	0.051	0.118	0.074	111.09	55.67
кол. молей	1.61×10^{-2}	5.13×10^{-2}	1.18×10^{-1}	2.95×10^{-2}	8.06×10^{-3}	1.26×10^{-1}
мг/кг раствор	9×10^2	1.82×10^{3}	2.72×10^{3}	9.47×10^{2}	8.12	2.02×10^{3}

Таблица 2. Концентрационное распределение элементов в системе: Fe–NaCl–Na₂S–H₂SO₄–H₂O при различных температурах процесса электрокоагуляции. *P* = 0.1 МПа

Таблица 3. Концентрационное распределение анионов и катионов в водном растворе системы: Fe–NaCl–Na₂S– $H_2SO_4-H_2O$ при различных температурах процесса электрокоагуляции. *P* = 0.1 МПа

Анионы	Cl-	HFe ₂ O ⁻	HS ⁻		HSO ₃	HSO_4^-
кол.молей	5.07×10^{-2}	8.06×10^{-3}	8.09×10^{-8}		3.42×10^{-15}	7.27×10^{-9}
мг/кг раствора	1.8×10^{3}	1.04×10^{3}	2.67×10^{-3}		2.77×10^{-10}	7.05×10^{-4}
Анионы	$NaSO_4^-$	S_2^{2-}	$S_2O_3^{2-}$	SO_{3}^{2-}	HSO ₃	OH-
кол.молей	5.07×10^{-3}	1.04×10^{-16}	1.0×10^{-12}	5.67×10^{-14}	2.45×10^{-2}	6.4×10^{-7}
мг/кг раствора	6.03×10^{2}	6.65×10^{-12}	1.13×10^{-7}	4.54×10^{-9}	2.35×10^{3}	1.09×10^{-2}
Катионы	Fe ²⁺		FeOH ⁺	Na ⁺		H^+
кол.молей	9.0×10^{-12}		1.1×10^{-13}	1.1×10^{-1}		1.0×10^{-8}
мг/кг раствор	p 5.0×10^{-7}		8.5×10^{-9}	2.5×10^{3}		1.1×10^{-5}

тверждено знаками термодинамических величин, таких как энергия Гиббса (*G*), энтальпии (*H*) и внутренней энергии (*U*), где они отрицательные, и с увеличением температуры раствора от 288 до 308 К величина *H*, *U* растет, а G уменьшается; ионная сила раствора (*I*) незначительно уменьшается (табл. 1). Энтропия (*S*) и теплоемкость (C_p) с увеличением температуры растет (от 3.77 до 4.05 мДж/К и 997.04 до 998.34 гДж, соответственно). Концентрационное распределение элементов в системе (при P = 0.1 МПа): Fe–NaCl–Na₂S–H₂SO₄– H₂O при различных температурах процесса электрокоагуляции представлено в табл. 2.

Из табл. 2 видно, что содержание элементов в 1 кг раствора составляет (мг): Fe – 900; Cl – 1820; Na – 2720; S – 947; H – 8.12; O – 2020. Количество железа и серы достаточно для образования осадка в виде сульфидов в растворе (FeS, FeS₂) за счет окислительно-восстанавительных сред, обусловленный присутствием Cl, O и H. Концентрационное распределение: Fe, Na, S, H, O, Cl содержащих катионов и анионов представлено в табл. 3.

Из табл. 3 видно, что в растворе содержание серосодержащих анионов (HS⁻, HSO₃⁻, HSO₄⁻, NaSO₄⁻, S₂²⁻, S₂O₃²⁻, SO₃²⁻, SO₄²⁻) значительное. Из них SO₄²⁻ содержится 2.35×10^3 мг в кг растворе. Возможность протекания реакции типа: H₂S + O₂ + + H₂O = SO₄²⁻ + H⁺ наиболее вероятное. Результаты показали, что с ростом температуры от 288 до 308 К концентрация катионов и анионов остаются постоянными, т.е. влияние температуры не наблюдается. Напротив, концентрации отдельных молекул, в том числе газов: FeO, H_2 , H_2S , HCl, HFeO₂, NaCl, NaOH с ростом температуры в водном растворе изменяются значительно (табл. 4).

С ростом температуры (288-308 К) количество FeO, HFeO₂ значительно увеличивается, а H₂S меняется от 2.56 × 10^{-4} мг/кг (288 K) до 6.32 × 10^{-4} мг/кг (308 К). Результаты, приведенные в табл. 4 подтверждают образование сульфида железа в процессе электрокоагуляции сероводородсодержащей сточной воды. В процессе электрокоагуляции в системе Fe-NaCl-Na₂S-H₂SO₄-H₂O выделяется газовая фаза, состоящая из H2, H2S, O2, паров воды и диоксида серы (табл. 4). Парциальное давление газов с ростом температуры повышается, например, для диоксида серы от 6.07×10^{-22} до 1.19×10^{-19} МПа, что и обусловливает связывание Na₂S в FeS, FeS₂. Таким образом, концентрационное распределение молекул и частиц в системе Fe-NaCl-Na₂S-H₂SO₄-H₂O в процессе электрокоагуляции показали разложение Na₂S в водном растворе с образованием сероводорода (H₂S), и связывание Na₂S в виде FeS и FeS₂, затем в $Fe(OH)_3$ с выделением элементарной серы в среде кислорода и серной кислоты по реакции: $H_2S + NaOCI \rightarrow$ \rightarrow S⁰ + NaCl + H₂O, H₂S + 4NaOCl \rightarrow H₂SO₄ + NaCl, где в дальнейшем серу можно направить на утилизацию.

		FeO			
Температура, К	288	293	298	303	308
кол.молей	3.84×10^{-17}	8.18×10^{-17}	1.72×10^{-16}	3.49×10^{-16}	6.82×10^{-16}
мг/кг раствора	2.76×10^{-12}	5.88×10^{-12}	1.24×10^{-11}	2.51×10^{-11}	4.90×10^{-11}
		H ₂			
кол.молей	7.12×10^{-12}	9.92×10^{-12}	1.36×10^{-11}	1.85×10^{-11}	2.51×10^{-11}
мг/кг раствора	1.44×10^{-8}	2.00×10^{-8}	2.74×10^{-8}	3.72×10^{-8}	5.07×10^{-6}
	•	H ₂ S			
кол.молей	7.51×10^{-9}	9.52×10^{-9}	1.19×10^{-8}	1.48×10^{-8}	1.86×10^{-8}
мг/кг раствора	2.56×10^{-4}	3.24×10^{-4}	4.04×10^{-4}	5.04×10^{-4}	6.32×10^{-4}
	1	HCl	L		
кол.молей	8.46×10^{-11}	1.14×10^{-10}	1.54×10^{-10}	2.05×10^{-10}	2.68×10^{-10}
мг/кг раствора	3.08×10^{-6}	4.15×10^{-6}	5.01×10^{-6}	7.46×10^{-6}	9.77×10^{-6}
	·	HFeO ₂			
кол.молей	3.91×10^{-18}	1.13×10^{-17}	3.15×10^{-17}	8.28×10^{-17}	2.05×10^{-16}
мг/кг раствора	3.47×10^{-13}	1.0×10^{-12}	2.80×10^{-12}	7.35×10^{-12}	1.82×10^{-11}
		NaCl			
кол.молей	5.84×10^{-4}	5.96×10^{-4}	6.09×10^{-4}	6.23×10^{-4}	6.39×10^{-4}
мг/кг раствора	3.41×10^{1}	3.48×10^{1}	3.56×10^{1}	3.64×10^{1}	3.73×10^{1}
	·	NaOH			
кол.молей	2.99×10^{-8}	3.06×10^{-8}	3.09×10^{-8}	3.13×10^{-8}	3.20×10^{-8}
мг/кг раствора	1.20×10^{-3}	1.22×10^{-3}	1.24×10^{-3}	1.25×10^{-3}	1.28×10^{-3}
	•	$\operatorname{FeS}_{2}(s)$			
кол.молей	-	2.24×10^{-2}	—	—	_
мг/кг раствора	_	100	_	_	—
		H_2			
Температура, К	288	293	298	303	308
Парциальное давление, МПа	8.52×10^{-9}	1.23×10^{-8}	—	—	—
		H_2S			
Парциальное давление, МПа	5.70×10^{-8}	8.30×10^{-8}	1.18×10^{-7}	1.66×10^{-7}	2.30×10^{-7}
	·	O ₂			
Парциальное давление, МПа	1.00×10^{-70}	1.04×10^{-69}	2.66×10^{-68}	6.10×10^{-67}	1.20×10^{-65}
		H ₂ O			
Парциальное давление, МПа	1.42×10^{-2}	1.94×10^{-2}	2.63×10^{-2}	3.52×10^{-2}	4.67×10^{-2}
		SO ₂	1	1	
Парциальное давление, МПа	6.07×10^{-22}	2.41×10^{-21}	9.31×10^{-21}	3.41×10^{-20}	1.10×10^{-19}

Таблица 4. Концентрационное распределение отдельных молекул и газов в водном растворе системы: Fe–NaCl–Na₂S–H₂SO₄–H₂O при различных температурах процесса электрокоагуляции. P = 0.1 МПа

Рис. 3. Диаграмма системы Fe–H₂O при T = 298 K [9] (линии: сплошные – с участием твердых частиц Fe; пунктирные – растворенные формы Fe; пунктирные с точкой – вода A и B); крестик – результаты настоящей работы при T = 298 K, pH 7.77, кружок – по формуле Eh = – 0.0176 – 0.0272 pH.

Рис. 4. Диаграмма системы Fe $-H_2O-S$ при T = 298 K [9] (линии: сплошные – с участием твердых частиц Fe; тонкие сплошные – система S $-H_2O$; пунктирные – растворенные формы Fe; пунктирные с точкой – вода A и B); кружок – результаты настоящей работы при T = 298 K, pH 7.77, квадрат – по формуле Eh = -0.0176 - 0.0272pH.

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ХИМИЧЕСКОЙ ТЕХНОЛОГИИ том 57 № 2 2023

МАЙМЕКОВ и др.

FeOH	$^{-} = 8.5 \times 10^{-9}; H^{+} = 1.1 \times 10^{-3}; FeO = 1.24 \times 10^{-3}$	0^{-11} ; HFeO ₂ = 2.8 × 10 ⁻¹²	
N⁰	Химическая реакция	Формула	Eh, B
6a	$FeO + 2H^+ + 2e^- \rightarrow Fe + H_2O$	Eh = -0.045 - 0.0591pH	-0.504
6b	$\mathrm{Fe_3O_4} + 8\mathrm{H^+} + 8\mathrm{e^-} \rightarrow 3\mathrm{Fe} + 4\mathrm{H_2O}$	Eh = -0.086 - 0.0591 pH	-0.545
6c	$\mathrm{Fe_2O_3} + 6\mathrm{H^+} + 6\mathrm{e^-} \rightarrow 2\mathrm{Fe} + 3\mathrm{H_2O}$	Eh = -0.053 - 0.0591 pH	-0.512
7a	$\mathrm{Fe_3O_4} + 2\mathrm{H^+} + 2\mathrm{e^-} \rightarrow 3\mathrm{FeO} + \mathrm{H_2O}$	Eh = -0.212 - 0.0591 pH	-0.671
7b	$Fe_2O_3 + 2H^+ + 2e^- \rightarrow 2FeO + H_2O$	Eh = -0.069 - 0.0591 pH	-0.528
7c	$3Fe_2O_3 + 2H^+ + 2e^- \rightarrow 2Fe_3O_4 + H_2O$	Eh = 0.214 - 0.0591 pH	-0.245
8a	$Fe(OH)_2 + 2H^+ + 2e^- \rightarrow Fe + 2H_2O$	Eh = -0.063 - 0.0591pH	-0.522
8б	$FeOOH + 3H^+ + 3e^- \rightarrow Fe + 2H_2O$	Eh = -0.052 - 0.0591 pH	-0.511
8c	$Fe(OH)_3 + 3H^+ + 3e^- \rightarrow Fe + 3H_2O$	Eh = 0.051 - 0.0591 pH	-0.408
9a	$FeOOH + H^+ + e^- \rightarrow Fe(OH)_2$	Eh = -0.030 - 0.0591 pH	-0.489
9b	$Fe(OH)_3 + H^+ + e^- \rightarrow Fe(OH)_3 + H_2O$	Eh = 0.281 - 0.0591 pH	-0.178
10a	$3FeOOH + H^+ + e^- \rightarrow Fe_3O_4 + 2H_2O$	Eh = 0.220 - 0.0591 pH	-0.239
10b	3 Fe(OH) ₃ + H ⁺ + e ⁻ \rightarrow Fe ₃ O ₄ + 5H ₂ O	Eh = 1.155 - 0.0591 pH	0.695
15b	$FeOH^+ + H^+ + 2e^- \rightarrow Fe + H_2O$	$Eh = -0.213 - 0.0296 \text{pH} + 0.0296 \text{lg}[\text{FeOH}^+]$	-0.546
16a	$Fe_3O_4 + 8H^+ + 2e^- 3Fe^{2+} + 4H_2O$	$Eh = 0.880 - 0.2365 \text{pH} - 0.02961 \text{g} [\text{Fe}^{2+}]^3$	-0.715
16b	$Fe_3O_4 + 5H^+ + 2e^- \rightarrow 3FeOH^+ + H_2O$	$Eh = 0.292 - 0.148 \text{pH} - 0.02921 \text{g} [\text{FeOH}^+]^3$	-0.551
16d	$Fe_2O_3 + 6H^+ + 2e^- \rightarrow 2Fe^{2+} + 3H_2O$	$Eh = 0.658 - 0.177 \text{pH} - 0.02961 \text{g}([\text{Fe}^{2+}]^2)$	-0.555
16e	$Fe_2O_3 + 4H^+ + 2e^- \rightarrow 2FeOH^+ + H_2O$	$Eh = 0.266 - 0.118 \text{pH} - 0.0296 \log[\text{FeOH}^+]^2$	-0.444
17a	$\mathrm{Fe(OH)}_3 + 3\mathrm{H}^+ + \mathrm{e}^- \rightarrow \mathrm{Fe}^{2+} + 3\mathrm{H}_2\mathrm{O}$	Eh = 0.972 - 0.177pH $- 0.0591$ lg [Fe ²⁺]	-0.242
17b	$Fe(OH)_3 + 2H^+ + e^- \rightarrow FeOH^+ + 2H_2O$	Eh = 0.580 - 0.118pH 0.0591 lg[FeOH ⁺]	-0.130
17d	$FeOOH + 3H^+ + e^- \rightarrow Fe^{2+} + 2H_2O$	$Eh = 0.660 - 0.177 \text{pH} - 0.0591 \log[\text{Fe}^{2+}]$	-0.554
17e	$FeOOH + 2H^+ + e^- \rightarrow FeOH^+ + H_2O$	$Eh = 0.268 - 0.118 \text{pH} - 0.05911 \text{g}[\text{FeOH}^+]$	-0.442
*	Fe–NaCl–Na ₂ S–H ₂ SO ₄ –H ₂ O	Eh = -0.0176 - 0.0272 pH	-0.222

Таблица 5. Система Fe-H₂O [9]. Расчет *Eh* при T = 298 K, pH 7.77, концентрации (мг/кг): Fe²⁺ = 5.0×10^{-7} ; FeOH⁺ = 8.5×10^{-9} ; H⁺ = 1.1×10^{-5} ; FeO = 1.24×10^{-11} ; HFeO₂ = 2.8×10^{-12}

КОНЦЕНТРАЦИОННОЕ РАСПРЕДЕЛЕНИЕ МОЛЕКУЛ

пз –	$2.07 \times 10^{-7}, \text{HSO}_4 = 7.03 \times 10^{-7}, \text{SO}_4 = 2.33 \times 10^{-7}, \text{HSO}_4 = 2.33 \times 10^{-7}, HS$	$10, 10 = 5.0 \times 10$	
N⁰	Химическая реакция	Формула	Eh, B
20a	$FeS + 2H^+ + 2e^- \rightarrow Fe + H_2S$	$Eh = -0.376 - 0.059 \text{pH} - 0.0296 \log[\text{H}_2\text{S}_{(\text{aq})}]$	-0.791
20b	$FeS + H^+ + 2e^- \rightarrow Fe + HS^-$	$Eh = -0.583 - 0.0296 \text{pH} - 0.0296 \text{lg}[\text{HS}^-]$	0.386
21a	$\mathrm{Fe_3O_4} + 3\mathrm{H_2S} + 2\mathrm{H^+} + 2\mathrm{e^-} \rightarrow 3\mathrm{FeS} + 4\mathrm{H_2O}$	$Eh = 0.782 - 0.059 \text{pH} + 0.0296 \text{lg} [\text{H}_2\text{S}_{(\text{aq})}]^3$	0.197
21b	$\mathrm{Fe_{3}O_{4}+3HS+5H^{+}+2e^{-}\rightarrow 3FeS+4H_{2}O}$	$Eh = 1.402 - 0.148 \text{pH} + 0.0296 \log[\text{HS}^-]^3$	0.164
22a	$\text{FeS}_2 + 2\text{H}^+ + 2\text{e}^- \rightarrow \text{FeS} + \text{H}_2\text{S}$	$Eh = 0.165 - 0.059 \text{pH} - 0.0296 \log[\text{H}_2\text{S}_{(\text{aq})}]$	-0.333
22b	$\text{FeS}_2 + \text{H}^+ + 2\text{e}^- \rightarrow \text{FeS} + \text{HS}^-$	$Eh = -0.372 - 0.029 \text{pH} - 0.0296 \text{lg[HS^-]}$	-0.562
23a	$\operatorname{FeS}_2 + 4\operatorname{H}^+ + 2e^- \rightarrow \operatorname{Fe}^{2+} + 2\operatorname{H}_2\operatorname{S}$	$Eh = -0.133 - 0.118 \text{pH} - 0.0296 \log([\text{Fe}^{2+}][\text{H}_2\text{S}_{(\text{aq})}]^2)$	-0.349
24a	$\mathrm{Fe}^{2+} + 2\mathrm{S} + 2\mathrm{e}^- \rightarrow \mathrm{FeS}_2$	$Eh = 0.421 + 0.0296 \lg[Fe^{2+}]$	0.340
25a	$Fe^{2+} + 2SO_4^{2-} + 16H^+ + 14e^- \rightarrow FeS_2 + 8H_2O$	$Eh = 0.362 - 0.068 \text{ pH} + 0.00421 \text{g}([\text{Fe}^{2+}][\text{SO}_4^{2-}]^2)$	-0.161
25c	$\mathrm{Fe}^{2+} + 2\mathrm{HSO}_{4}^{-} + 14\mathrm{H}^{+} + 14\mathrm{e}^{-} \rightarrow \mathrm{FeS}_{2} + 8\mathrm{H}_{2}\mathrm{O}$	$Eh = 0.345 - 0.059 \text{pH} + 0.0042 \text{lg}([\text{Fe}^{2+}][\text{HSO}_4^-]^2)$	-0.136
25e	$Fe(OH)_2 + 2SO_4^{2-} + 18H^+ + 14e^- \rightarrow FeS_2 + 10H_2O$	$Eh = 0.412 - 0.076 \text{pH} + 0.0042 \lg[\text{SO}_4^{2-}]^2$	-0.190
25f	$Fe(OH)_2 + 2HSO_4^- + 16H^+ + 14e^- \rightarrow FeS_2 + 10H_2O$	$Eh = 0.395 - 0.068 \text{pH} + 0.00421 \text{g}[\text{HSO}_4^-]^2$	-0.145
26a	$Fe_{3}O_{4} + 6HSO_{4}^{-} + 50H^{+} + 44e^{-} \rightarrow 3FeS_{2} + 28H_{2}O$	$Eh = 0.386 - 0.075 \text{pH} + 0.0013 \log[\text{SO}_4^{2-}]^6$	-0.185
26b	$Fe_{3}O_{4} + 6SO_{4}^{2-} + 56H^{+} + 44e^{-} \rightarrow 3FeS_{2} + 28H_{2}O$	$Eh = 0.370 - 0.067 \text{ pH} + 0.0013 \log[\text{HSO}_4^-]^6$	-0.161
26c	$Fe(OH)_3 + 2SO_4^{2-} + 19H^+ + 15e^- \rightarrow FeS_2 + 11H_2O$	$Eh = 0.403 - 0.075 \text{ pH} + 0.0039 \log[\text{SO}_4^{2-}]^2$	-0.168
26d	$\operatorname{Fe}(\operatorname{OH})_3 + \operatorname{HSO}_4^- + 17\operatorname{H}^+ + 15\operatorname{e}^- \to \operatorname{FeS}_2 + 11\operatorname{H}_2\operatorname{O}$	$Eh = 0.387 - 0.067 \text{ pH} + 0.0039 \text{ lg} ([\text{HSO}_4^-]^2)$	-0.144
26e	$Fe_2O_3 + 4SO_4^{2-} + 38H^+ + 30e^- \rightarrow FeS_2 + 19H_2O$	$Eh = 0.383 - 0.075 \text{ pH} + 0.0020 \log[\text{SO}_4^{2-}]^4$	-0.188
26f	$Fe_{3}O_{4} + 4HSO_{4}^{-} + 34H^{+} + 30e^{-} \rightarrow 2FeS_{2} + 19H_{2}O$	$Eh = 0.367 - 0.067 \text{ pH} + 0.0020 \log[\text{HSO}_4^-]^4$	-0.164
26g	$FeOOH + 2_{SO_4^{2-}} + 19H^+ + 15e^- \rightarrow FeS_2 + 10H_2O$	$Eh = 0.382 - 0.075 \text{ pH} + 0.0039 \log[\text{SO}_4^{2-}]^2$	-0.189
26h	$FeOOH + 2HSO_4^- + 17H^+ + 15e^- \rightarrow FeS_2 + 10H_2O$	$Eh = 0.367 - 0.067 \text{pH} + 0.00391 \text{g} [\text{HSO}_{4}^{-}]^{2}$	-0.164
*	Fe-NaCl-Na ₂ S-H ₂ SO ₄ -H ₂ O	Eh = -0.0176 - 0.0272 pH	-0.222

Таблица 6. Система Fe-H₂O-S [9]. Расчет *Eh* при T = 298 K, pH = 7.77, концентрации (мг/кг): H₂S_(aq) = 4.04 × 10⁻⁴; HS⁻= 2.67 × 10⁻³; HSO⁻₄ = 7.05 × 10⁻⁴; SO²₄ = 2.35 × 10³; Fe²⁺ = 5.0 × 10⁻⁷

(*) Расчетная формула, полученная в настоящей работе.

Результаты проведенных исследований позволяют прогнозировать концентрационное распределение катионов и анионов, отдельных молекул и твердых частиц образующиеся в процессе электрокоагуляции сложной системы, включающие серусодержащих веществ типа: Fe–NaCl–Na₂S–H₂SO₄–H₂O. Установлено, что оптимальной концентрацией серной кислоты, которая поддерживает водородный показатель раствора в пределах pH 7.77, является 0.081 н, т.е. 3.99 г в системе Fe–NaCl–Na₂S–H₂SO₄–H₂O.

Концентрации частиц и молекул (мг/кг): $Fe^{2+} = 5.0 \times 10^{-7}$; $FeOH^+ = 8.5 \times 10^{-9}$; $H^+ = 1.1 \times 10^{-5}$;

FeO = 1.24×10^{-11} ; HFeO₂ = 2.8×10^{-12} ; H₂S_(aq) = 4.04×10^{-4} ; HS⁻ = 2.67×10^{-3} ; HSO₄⁻ = 7.05×10^{-4} ; SO₄²⁻ = 2.35×10^{3} полученные в системе Fe–Na-Cl–Na₂S–H₂SO₄–H₂O при T = 298 K, pH 7.77 в дальнейшем использованы для расчета и сравнения окислительного-восстановительного потенциала (*Eh*, B) системы Fe–H₂O (табл. 5) и Fe–H₂O–S (табл. 6) по диаграмме *Eh*–pH [9]. Здесь следует отметить, что в табл. 5 и 6 приведены номера расчетов (6а–26h), уравнение химических реакций и формулы в соответствии с данными работы Биерната и Робинса [9]. В процессах сравнения: в формулы 6а–26h [9] поставлены значения:

М

 Fe^{2+} ; $FeOH^+$; H^+ ; FeO; $HFeO_2$; $H_2S_{(aq)}$; HS^- ; HSO_4^- ;

 SO_4^{2-} ; Fe²⁺ полученные в настоящей работе и вычислены значение окислительного-восстановительного потенциала (*Eh*) при T = 298 K, pH 7.77 с последующим нанесением их на диаграмму ЕhрН (рис. 3 и 4).

Результаты представленные в табл. 5 и 6 свидетельствуют о протекании сложных окислительновосстановительных реакций в системе Fe-NaCl-Na₂S-H₂SO₄-H₂O с образованием сульфидов железа.

Таким образом, результаты исследований системы: Fe–NaCl–Na₂S–H₂SO₄–H₂O методом минимизации свободной энергии Гиббса и полученные концентрационные распределения молекул и частиц (мг/кг): $Fe^{2+} = 5.0 \times 10^{-7}$; $FeOH^+ = 8.5 \times 10^{-9}$; $H^+ = 1.1 \times 10^{-5}$; $FeO = 1.24 \times 10^{-11}$; $HFeO_2 = 2.8 \times 10^{-12}$; $H_2S_{(aq)} = 4.04 \times 10^{-4}$; $HS^- =$ $= 2.67 \times 10^{-3}$; HSO₄⁻ = 7.05 × 10⁻⁴; SO₄²⁻ = 2.35 × 10³ и рассчитанные на их основе Е и рН (табл. 5 и 6) согласуются с литературными данными, в частности работы [8, 9].

ЗАКЛЮЧЕНИЕ

Процесс электрокоагуляции в многокомпонентной модельной системе: Fe-NaCl-Na₂S-H₂SO₄-H₂O протекает сложным концентрационным распределением железо и серосодержащих молекул и частиц в растворе: Fe²⁺, FeOH⁺, H⁺, FeO, HFeO₂, H₂S, HS⁻, HSO₄, SO₄²⁻, cootBetctBehно с увеличением температуры раствора величины окислительного-восстановительного потенциала (*Eh*) растет от -0.238 до -0.221 В. При этом среда реакции восстановительная (Eh < 0), и возможно образование сульфидов железо типа FeS и FeS₂, которые могут перейти в Fe(OH)₃ с образованием элементарной серы в среде кислорода и серной кислоты, что и позволило утилизировать серы из сточной воды. Подчеркнуто, что термодинамическое моделирование при минимизации энергии Гиббса, позволило определить распределение молекул и ионов в растворе, и тем самым исключено использование в аналитических целях метода ионной хроматографии в процессе электрокоагуляции.

ОБОЗНАЧЕНИЯ

 $C_{\rm p}$ теплоемкость, Дж/К

- Eh окислительно-восстановительный потенциал. В
- G энергия Гиббса, Дж
- Η энтальпия, Дж/кг
- I ионная сила раствора

масса. кг

Р	давление, Па
pН	водородный показатель раствора
R _e	эффективность удаления сульфид иона, %

 r^2 величина достоверности аппроксимации

S энтропия, Дж/К

Т температура, К

- TDS общее количество растворенных веществ в растворе, мг/кг
- U внутренняя энергия, Дж

Vобъем, м³

ρ плотность. кг/м³

ИНДЕКСЫ

начальное время 0 водный раствор

aq

calc расчет

exp эксперимент

СПИСОК ЛИТЕРАТУРЫ

- 1. Lin H.W., Kustermans C., Vaiopoulou E., Prevoteau A., Rabaey Yuan K., Pikaar I. Electrochemical oxidation of iron and alkalinity generation for efficient sulfide control in sewers // Water Res. 2017. V. 118. P. 114.
- 2. Murugananthan M., Raju G.B., Prabhakar S. Removal of sulfide, sulfate and sulfite ions by electrocoagulation // J. Hazard. Mater. 2004. V. 109. № 1-3. P. 37.
- 3. Pikaar I., Rozendal R.A., Yuan Z., Keller J., Rabaey K. Electrochemical sulfide removal from synthetic and real domestic wastewater at high current densities // Water Res. 2011. V. 45. № 6. P. 2281.
- 4. Omwene P.I., Celen M., Oncel M.S., Kobya M. Arsenic removal from naturally arsenic contaminated ground water by packed-bed electrocoagulator using Al and Fe scrap anodes // Process Saf. Environ. Prot. 2019. V. 121. P. 20.
- 5. Фесенко Л.Н., Черкесов А.Ю., Игнатенко С.И. Методы удаления сероводорода из производственных сточных вод и пути их развития // Вода Magazine. 2016. T. 102. № 2. C. 22.
- 6. Фесенко Л.Н. Очистка воды от сероводорода с использованием электрохимических процессов. Ростов-на-Дону: СКНЦ ВШ, 2001.
- 7. Meshalkin V.P. Current Theoretical and Applied Research on Energy- and Resource-Saving Highly Reliable Chemical Process Systems Engineering // Theor. Found. Chem. Eng. 2021. V. 55. № 4. P. 563. [Mewanкин В.П. Актуальные теоретические и прикладные исследования по инжинирингу энергоресурсосберегаюших высоконалежных химико-технологических систем // Теор. осн. хим. технол. 2021. Т. 55. № 4. C. 399]
- 8. Garrels R.M., Christ C.L. Solutions, minerals, and equilibria. New York: Harper & Row, 1965.

- 9. *Biernat R.J., Robins R.G.* High-temperature potential/pH diagrams for the iron-water and iron-water-sulphur systems // Electrochim. Acta. 1972. V. 17. № 7. P. 1261.
- 10. *Wilhelm E., Battino R.* Enthalpy and Internal Energy: Liquids, Solutions and Vapours / Eds. Wilhelm E., Letcher T.M. Royal Society of Chemistry, 2017.
- Чудненко К.В. Теория и программное обеспечение метода минимизации термодинамических потенциалов для решения геохимических задач. Дис. ... докт. геол.-мин. наук. – Иркутск: Инст. геохимии им А.П. Виноградова СО РАН, 2007.
- Чудненко К.В. Термодинамическое моделирование в геохимии: теория, алгоритмы, программное обеспечение, приложения / Под ред. Шарапова В.Н. Новосибирск: Академ. Изд. Гео, 2010
- 13. Авченко О.В., Чудненко К.В., Александров И.А. Физико-химическое моделирование минеральных систем: монография. Москва: Юрайт, 2018.
- Musov O., Savchenko M., Levchuk I., Frolova L. Thermodynamic modeling of oxygen dissolvation in water // Proc. of ONPU. 2022. V. 65. № 1. P. 90.
- Yokokawa H. Tables of thermodynamic properties of inorganic compounds // J. Natl. Chem. Lab. Ind. 1988. V. 305. P. 27.
- Thermodderm. Thermochemical and Mineralogical Tables for Geochemical Modeling. Available online: https://thermoddem.brgm.fr (accessed on 1 July 2020).
- Palyanova G.A., Chudnenko K.V., Zhuravkova T.V. Thermodynamic properties of solid solutions in the Ag₂S-Ag₂Se system // Thermochim. Acta. 2014. V. 575. P 90.
- Zinov'eva I.V., Kozhevnikova A.V., Milevskii N.A., Zakhodyaev Yu.A., Voshkin A.A. Liquid–Liquid Equilibrium And Extraction Capacity of the PPG 425–NaNO₃– H₂O System // Theor. Found. Chem. Eng. 2022. V. 56.

№ 4. Р.417. [Зиновьева И.В., Кожевникова А.В., Милевский Н.А., Заходяева Ю.А., Вошкин А.А. Равновесие жидкость—жидкость и экстракционная способность системы ППГ425–NaNO₃–H₂O // Теор. осн. хим. технол. 2022. Т. 56. № 4. С. 410]

- Standard Methods for the Examination of Water and Wastewater. 21st Edition / Eds. Eaton A.D., Clesceri L.S., Rice E.W., Greenberg A.E., Franson M.A.H. Washington DC: Amer. Public. Health Assn. 2005.
- 20. *Karpov I.K., Chudnenko K.V., Kulik D.A., Bychinski V.A.* The convex programming minimization of five thermodynamic potentials other than Gibbs energy in geochemical modeling // Am. J. Sci. 2002. V. 302. № 4. P. 281.
- 21. *Karpov I.K., Chudnenko K.V., Kulik D.A.* Modeling chemical mass transfer in geochemical processes; thermodynamic relations, conditions of equilibria and numerical algorithms // Am. J. Sci. 1997. V. 297. № 8. P. 767.
- 22. *Kulov N.N., Ochkin A.V.* Method for Calculating the Density of Mixed Solutions of Strong Electrolytes // Theor. Found. Chem. Eng. 2020. V. 54. № 6. Р. 1223. [*Кулов Н.Н., Очкин А.В.* Метод расчета плотности смешанных растворов сильных электролитов // Теор. осн. хим. технол. 2020. Т. 54. № 6. С. 714]
- 23. Ochkin A.V., Kulov N.N. Comparison of the Molar Volumes of Some Electrolytes // Theor. Found. Chem. Eng. 2022. V. 56. № 5. Р. 644. [Очкин А.В., Кулов Н.Н. Сравнение мольных объемов некоторых электролитов // Теор. осн. хим. технол. 2022. Т. 56. № 5. С. 512].
- Sambaeva D., Izakov J., Maymekov T., Kemelov K., Shaykieva N., Ukeleeva A., Maymekov Z. The Impact of road salts on groundwater and estimation of the chlorine ions by hydrogen index // Pol. J. Environ. Stud. 2022. V. 31. № 2. P. 1327.