—— ПОЛИМЕРИЗАЦИЯ **——**

УЛК 541.64:547.39:547.538.141:541.65

СОПОЛИМЕРИЗАЦИЯ МЕТИЛМЕТАКРИЛАТА И СТИРОЛА В ПРИСУТСТВИИ ЦИКЛОПЕНТАДИЕНИЛЬНЫХ КОМПЛЕКСОВ ЖЕЛЕЗА, ТИТАНА И МАРГАНЦА

© 2019 г. Н. Н. Сигаева^{а,*}, Л. В. Спирихин^а, Р. Р. Галимуллин^а, Е. А. Глухов^а, С. В. Колесов^а

^аУфимский институт химии Российской академии наук 450054 Уфа, ул. проспект Октября, 71, Россия
* e-mail: gip@anrb.ru
Поступила в редакцию 16.07.2018 г.
После доработки 20.11.2018 г.
Принята к публикации 04.12.2018 г.

Изучено влияние металлоценов ферроцена, дикарбонил димера циклопентадиенил железа, циклопентадиенил трикарбонил марганца и титаноцен дихлорида на сополимеризацию метилметакрилата и стирола, инициированную пероксидом бензоила. Показано, что в присутствии металлоценов изменяются значения констант сополимеризации мономеров и микроструктура сополимеров.

DOI: 10.1134/S2308113919020104

Изучение влияния металлокомплексов на процессы формирования макромолекул в условиях радикально инициированной полимеризации является актуальным в связи с востребованностью новых методов управления полимеризационными процессами и характеристиками образующихся полимеров. Особый интерес при этом вызывают реакции сополимеризации, значительно расширяющие свойства образующихся продуктов. Исследованию сополимеризации виниловых мономеров в присутствии металлокомплексов и металлоорганических соединений посвящен ряд работ [1-9], в которых описывается как наличие, так и отсутствие влияния последних на закономерности сополимеризации. Так, в ряде случаев кобальт порфирины не влияют на кинетические зависимости сополимеризации метилметакрилата (ММА) со стиролом и на состав полученных сополимеров [10]. Кроме того, согласно работе [11], при добавлении ацетокобальтового комплекса порфирина к той же мономерной паре изменяется реакционная способность мономеров и макрорадикалов. В ряде работ авторы ограничиваются только приведением значений констант относительной активности мономеров, не делая каких-либо выводов относительно механизма процесса [12]. В указанных работах влияние металлокомплексов на сополимеризацию связывают с процессами комплексообразования и, как следствие, с изменением реакционной способности мономеров и макрорадикалов. В работе [13] описан переход от одностороннего обогащения сополимера более активным мономером к строгому чередованию звеньев в сополимере ММА и метакриловой кислоты, полученном в присутствии триэтилсурьмы. Авторы полагают, что это обусловлено формированием циклического переходного комплекса при взаимодействии координационно-ненасыщенной добавки с метакриловой кислотой, макрорадикалом и вторым мономером. При сополимеризации метакриловой кислоты со стиролом в присутствии триэтилсурьмы скорость процесса увеличивается, однако состав сополимеров практически не изменяется [14].

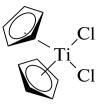
В ряду металлокомплексов особое внимание привлекают металлоцены в связи со значительными успехами их применения в ионно-координационной полимеризации олефинов и диеновых углеводородов [15—17]. В последние годы растет интерес к использованию металлоценов в радикальной полимеризации [18—24]. Изучена радикальная полимеризация виниловых мономеров в присутствии комплексов марганца и показано их влияние на протекание стадий инициирования и роста цепи [25—27]. Описана полимеризация несопряженных мономеров под действием полуметаллоценовых комплексов железа с карбонильными группами.

В радикальной сополимеризации стирола с изопреном ферроцен не оказывает влияния на процесс сополимеризации [28]. Напротив, в работе [9] сделан вывод о том, что ферроцен и цирконоцендихлорид участвуют в элементарных ста-

диях роста реакции сополимеризации стирола и ММА, что приводит к изменению констант сополимеризации. Изучено влияние ферроцена на радикальную сополимеризацию осполимеризацию осполиметилсилоксана со стиролом, инициированную ДАК [29]. Было обнаружено, что при введении в реакционную смесь эквимольного количества ферроцена по отношению к ДАК содержание привитого полистирола увеличивается до 50—55 мас. %.

Таким образом, выводы о влиянии металлоценов на радикально инициируемую сополимеризацию неоднозначны, поэтому исследование сополимеризации в присутствии металлоценовых каталитических систем остается актуальным. Настоящая работа посвящена исследованию радикально инициированной сополимеризации метилметакрилата и стирола в присутствии ряда металлоценов.

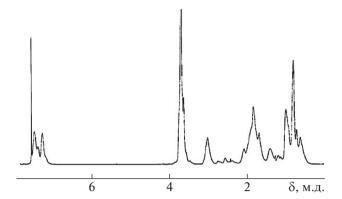
ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ


ММА и стирол фирмы "Fluka" перед полимеризацией очищали от стабилизатора (гидрохинона) и дважды перегоняли в вакууме. Использовали фракции ММА с $T_{\text{кип}} = 39^{\circ}\text{C}$ при p = 100 мм рт. ст. и стирол с $T_{\text{кип}} = 66^{\circ}\text{C}$ при p = 40 мм рт. ст. Чистоту мономеров контролировали рефрактометрически и методом ЯМР-спектроскопии. Пероксид бензоила дважды перекристаллизовывали из метанола и сушили при комнатной температуре в вакууме до постоянной массы; $T_{\text{пл}} = 108^{\circ}\text{C}$. Циклопентадиенильные металлокомплексы фирмы "Aldrich": ферроцен (ФЦ)

дикарбонил димера циклопентадиенил железа (**ЛЛЦЖ**)

циклопентадиенил трикарбонил марганца или цимантрен ($\mathbf{L}\mathbf{M}$)

и титаноцен дихлорид (ТЦ)


использовали без дополнительной очистки.

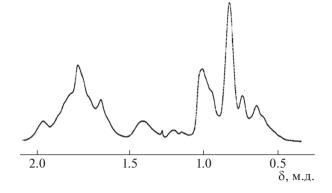
Сополимеризацию проводили в массе при концентрации металлоцена и пероксида бензоила 1.0×10^{-3} моль/л при 50 и 60° С. Кинетику процесса изучали на начальных степенях превращения гравиметрическим методом. Стеклянные ампулы заполняли мономерной смесью, добавляли инициирующую систему, замораживали в жидком азоте и дегазировали до остаточного давления 0.01 мм рт. ст. Операции замораживания и дегазации проводили трижды, после чего ампулу запаивали и помещали в термостат, температуру в котором поддерживали с точностью до ± 0.1 °C. После выдерживания в течение определенного времени в термостате и достижения нужной степени конверсии (не более 8%) ампулу быстро охлаждали и вскрывали.

Сополимеры выделяли трехкратным переосаждением в метанол. Очищенные сополимеры сушили в вакууме при комнатной температуре до постоянной массы.

Спектры ЯМР ¹Н и ЯМР ¹³С, а также двумерные ЯМР-спектры сополимеров регистрировали на приборе "Bruker AV 500" при 25°С в CDCl₃, в качестве внутреннего стандарта использовали тетраметилсилан. Для определения состава сополимеров использовали отношение интегральной интенсивности сигнала протонов метокси- и α -метильных групп к фенильным протонам (рис. 1). Содержание звеньев изо-, гетеро- и синдио-присоединения ММА (рис. 2) для сополимеров с мольным отношением ММА : стирол = 90 : 10 и 80 : 20 рассчитывали по интегральной интенсивности сигналов α -метильной группы (изо-, гетеро- и синдио- при 1.17, 0.98 и 0.79 м.д. соответственно) [30].

Спектры ЯМР ¹³С записывали в режимах с полным подавлением по протонам, в режимах dept — 135 и dept — 90, из которых находили области, относящиеся к сигналам четвертичных атомов углерода, метиновых, метиленовых и метильных групп. Сигналы, отвечающие углероду карбоксильных групп, лежат в области 175—176 м.д., углеродным атомам фенильной группы — 143—145 и 123—128 м.д. В области 50—54 м.д. находятся сигналы углеродных атомов метоксильной группы ММА и метиленовых групп основной цепи. Четвертичные углеродные атомы метилметакрилатного фрагмента занимают области 44—46 м.д., углеродные атомы метиновых групп сти-

Рис. 1. Спектр ЯМР 1 Н сополимера ММА и стирола, полученного на инициирующей системе [ДДЦЖ] = [пероксид бензоила] = 1×10^{-3} моль/л, $T_{\Pi M} = 60$ °C, ММА: стирол = 90:10 в CDCl₃.


рольного фрагмента 38—40 м.д. и углеродные атомы метильных групп 17—20 м.д. Расчет констант скоростей сополимеризации ММА и стирола проводили графическим способом, используя методы Келена—Тюдоша, пересечений прямых Майо—Льюиса и наклонной прямой Файнемана—Росса [31].

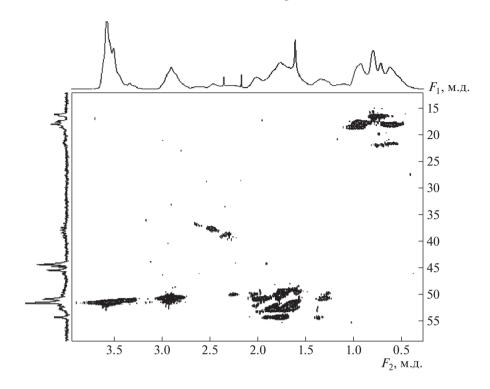
Молекулярно-массовые характеристики сополимеров определяли методом ГПХ в ТГФ на жидкостном хроматографе "Shimadzu LC-20AD System", оборудованном рефрактометрическим детектором "Shimadzu RID-10A", вискозиметром PSS ETA-2010 и колонками SDV с размером пор 10^3 , 10^5 и 10^7 Å, при скорости потока 0.5 мл/мин. Для расчета ММ использовали ПС-стандарты с $M_w/M_n \le 1.2$.

Все анализы выполнены на оборудовании Центра коллективного пользования приборами и оборудованием Уфимского Института химии Российской академии наук.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рис. 3 приведен двумерный спектр СН-корреляции HSQC, из анализа которого находили химические сдвиги протонов метильных групп (0.50—1.15 м.д.) и метиновых протонов стирольного фрагмента (1.9, 2.3, 2.45 и 2.6 м.д.), а также протонов метокси-групп (3.55, 3.3, 3.1, 2.8, 2.6 и 2.2 м.д.). Сигналы при 6.85—7.22 м.д. отвечают протонам фенильной группы. Для сополимеров с эквимолярным отношением исходных сомономеров в спектрах NOESY [30] отчетливо видны кросс-пики взаимодействия сигналов ароматических протонов с протонами пяти метокси-групп с химическими сдвигами 3.55, 3.3, 3.1, 2.8 и 2.6 м.д. Шестой сигнал групп ОСН₃ с 2.2 м.д. перекрывается с сигналом метинового фрагмента стирола.

Рис. 2. Спектр ЯМР 1 Н микроструктуры блоков ММА сополимера ММА и стирола, полученного на инициирующей системе: [ЦМ] = [пероксид бензоила] = 1×10^{-3} моль/л, $T_{\rm IIM} = 60$ °C, ММА: стирол = 90:10 в CDCl $_3$.


Спектр НМВС также подтверждает наличие метокси-групп, так как сигналы атомов карбоксильных групп $175-176\,$ м.д. имеют в спектре кросс-пики с группами протонов ОСН $_3$ 3.55, 3.3, 3.1, 2.8 и 2.6 м.д. и с сигналами протонов метильных групп $0.5-1.15\,$ м.д.

Анализ работы [30] позволил соотнести сигналы с соответствующими пентадами (табл. 1), где стирольные и метилметакрилатные звенья обозначены как S и M.

Фенильные кольца в соседнем (β) положении дают значительное экранирование протонов (попавших в конус анизотропии), т.е. химические сдвиги уменьшаются (сигналы сдвигаются в сильное поле). Химический сдвиг ОСН $_3$ протонов 2.2 м.д. свидетельствует о том, что два бензольных кольца находятся в β -положении, а метоксильная группа — в син-положении к ним, то есть это триада со-изо-структуры.

Для всех шести сигналов групп OCH_3 измерены интегральные интенсивности и найдено их отношение для различных соотношений MMA и стирола в составе полученных сополимеров. Необходимо отметить, что при выбранных условиях сополимеризации гомополимеры стирола или метилметакрилата не образуются.

Зависимости состава сополимера от состава исходной смеси мономеров при сополимеризации в присутствии металлоценов, представлены на рис. 4. Видно, что состав сополимеров, полученных с участием металлоценов в условиях избытка стирола в мономерной смеси, отличается от состава сополимеров, синтезированных в отсутствие металлоценов. Так, при избытке стирола в исходной смеси состав сополимера практически не отличается от состава исходной смеси мономеров. Напротив, с повышением содержания ММА вид диаграммы состава для сополимеров,

Рис. 3. Спектр HSQC сополимера MMA и стирола, полученного на инициирующей системе: [Φ Ц] = [пероксид бензо-ила] = 1×10^{-3} моль/л, $T_{\text{пм}} = 60$ °C, MMA : стирол = 80 : 20 в CDCl₃.

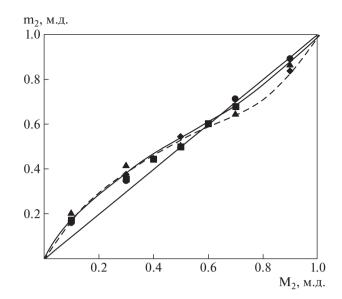
образующихся с участием и без участия металлоценов, совпадает. Можно предположить, что металлоцены влияют на стадию роста цепи и изменяют активность мономеров в сополимеризации.

В табл. 2 приведены рассчитанные значения констант сополимеризации для исследуемых систем. Имеющиеся в литературе данные по радикальной сополимеризации стирола и ММА [32] свидетельствуют о том, что стирол и ММА близки по своей активности. Введение металлоцена в

инициирующую систему приводит к изменению констант сополимеризации, а именно к увеличению активности стирола, которое проявляется сильнее при повышении температуры. Активность ММА при этом изменяется гораздо меньше. Влияние температуры на активность мономеров в радикальной сополимеризации мало характерно [32]. В присутствии металлоцена при изменении температуры на 10°С значения кон-

Таблица 1. Обозначение триад/пентадного состава в сополимерах стирола и метилметакрилата

Группы пентад и триад								
I	II	III	IV	V	VI			
MMMMM	SMMMM	MMMSS	MMSSS	SSMMS	SSMSS			
	MMSMM	MMSSM	SMMSS	SSMSS	SMSMS			
	MMSMM	MSMSM	SMSSM	co-h	SMSSM			
	co-	SMS	SSMSM		SSMSM			
	і(моно)	co-s			SMS			
					co- <i>i</i> (двойной)			
Химические сдвиги, м.д.								
3.55	3.30	3.10	2.80	2.60	2.20			


Примечание. S — стирол, M — MMA; со-i(моно) — со-изотактические пентады, находящиеся в сополимере раздельно, со-s — со-синдиотактические пентады, со-i(двойной) — двойные соизотактические пентады.

стант r_2 изменяются в ~ 1.4 раза для ЦМ, ДДЦЖ и ТЦ.

В работе [22] было показано, что в присутствии металлоцена изменение температуры приводит к значительному изменению вида кинетики гомополимеризации ММА и стирола вплоть до полного вырождения гель-эффекта. Таким образом, совокупность экспериментальных данных позволяет предполагать участие металлоцена не только в инициировании, но и в других элементарных актах полимеризации. Вероятно, в случае сополимеризации изменения значений констант сополимеризации обусловлено теми же причинами.

В табл. 3 приведено распределение триад-пентадных последовательностей звеньев в сополимерах. Видно, что на распределение пентадных последовательностей большое влияние оказывает состав сомономерной смеси. Естественно ожидать, что в случае превалирования содержания стирола в смеси мономеров в получаемом сополимере содержание пентад МММММ группы I (табл. 1) должно быть незначительным. Действительно, их доля колеблется от 2 до 11%. Повышение концентрации ММА в исходной смеси мономеров вызывает увеличение доли этих пентад. Изменение содержания пентад группы II (соизотактические пентады с одним стирольным фрагментом) и группы IV (три стирольных фрагмента) проходит через максимум, величина которого зависит от природы металлоцена. Содержание пентад группы III (со-синдиотактические пентады с двумя стирольными фрагментами) уменьшается с ростом доли ММА в исходной смеси, но в присутствии металлоцена в меньшей степени, чем в его отсутствие. Содержание пентад V (со-гетеро) и VI (со-изо двойные) групп различается в сополимерах, полученных в присутствии и отсутствие металлоценов.

Влияние металлоценов на микроструктуру получаемых гомополимеров было показано ранее [34]. Как следует из данных, представленных в табл. 4, металлоцены оказывают влияние на микроструктуру блоков ММА в синтезированных сополимерах. Например, при 90 и 80 мол. % ММА для различных инициирующих систем в спектрах ПМР можно надежно идентифицировать химические сдвиги сигналов всех метильных групп звеньев ММА разной конфигурации. Для синдио-фрагментов сигнал метильной группы наблюдается при 0.79 м.д., для гетеро-фрагментов при 0.98 м.д. и для изо-фрагментов — при 1.17 м.д. Сигналы отчетливо видны в полученных спектрах данных сополимеров (рис. 2), что позволяет оценить микроструктуру полимера в блоке ММА. Сигналы метильных групп с химическими сдвигами 0.65, 0.75 и 0.92 м.д. можно отнести к метильным группам ММА, находящимся вне блока.

Рис. 4. Зависимость мольных долей стирола (m_2) в сополимере от его содержания в исходной смеси (M_2). Условия сополимеризации: [металлоцен] = [пероксид бензоила] = 1×10^{-3} моль/л, металлоцен: ДДЦЖ, ТЦ, ФЦ, ЦМ. Пунктирная линия — в присутствии пероксида бензоила, сплошная линия — в присутствии металлоцена. $T_{\text{ПМ}} = 60$ °C.

При этом сигнал при 0.65 м.д. для метильных групп, находящихся в син-положении к двум β-фенильным группам стирола, заметно экранируется. Он соответствует со-синдио пентадам (сосиндио триадам). Со-гетеро пентадам (со-гетеро триадам) отвечает сигнал при 0.75 м.д.; он относится для метильных групп, в которых в β-положении расположена только одна син-фенильная группа стирола. Со-изо пентады (триады) характеризует сигнал при 0.92 м.д. (метильная группа ММА фрагмента с анти-расположением к фе-

Таблица 2. Константы сополимеризации ММА (r_1) и стирола (r_2) на иниицирующих системах [пероксид бензоила] = [металлоцен] = 1×10^{-3} моль/л

Металлоцен	$T_{\text{\tiny IIM}}$, °C	r_1	r_2
ФЦ	60	0.47 ± 0.02	0.58 ± 0.02
	50	0.40 ± 0.04	0.54 ± 0.03
ЦМ	60	0.51 ± 0.03	0.75 ± 0.04
	50	0.46 ± 0.02	0.55 ± 0.03
ДДЦЖ	60	0.38 ± 0.02	0.70 ± 0.04
	50	0.35 ± 0.02	0.54 ± 0.03
ТЦ	60	0.52 ± 0.02	0.89 ± 0.02
	50	0.49 ± 0.02	0.63 ± 0.03
_	60	0.46	0.52

Примечание. Данные, приведенные в последней строке, взяты из работы [32].

Таблица 3. Триадный/пентадный состав сополимеров, полученных на инициирующей системе [пероксид бензоила] = [металлоцен] = 1×10^{-3} моль/л, T = 60°C

Содержание ММА, мол. %		Доля пентад и триад, %						
Металлоцен	в мономерной смеси	в сополимере	I	II	III	IV	V	VI
ЦФ	10	12.3	12.4	20.8	0.9	18.2	32.8	14.9
	20	21.1	14.3	27.0	2.0	23.9	23.7	9.0
	30	30.1	11.7	21.6	8.2	26.1	19.2	13.2
	40	42.4	19.7	21.5	4.6	29.4	13.7	11.1
	50	45.4	30.7	17.2	2.4	29.3	11.6	8.7
	70	62.0	56.7	7.2	0.5	28.2	5.4	2.0
	80	70.9	68.0	4.0	0.2	24.1	2.7	1.0
	90	80.2	81.3	1.4	0.1	15.5	1.2	0.5
ЦМ	10	12.5	11.0	14.2	8.5	18.9	33.9	13.4
	20	20.0	11.1	19.3	1.1	22.8	24.2	12.6
	30	28.6	11.6	22.8	8.7	26.9	18.6	11.4
	40	39.1	21.9	20.6	4.3	31.8	11.6	9.8
	50	42.9	31.0	18.4	2.5	31.7	9.5	6.8
	70	56.5	53.7	7.6	0.5	32.1	3.2	2.9
	80	65.9	65.7	4.1	0.2	25.8	2.6	1.7
	90	70.2	79.2	1.5	0.3	16.0	1.8	1.1
ДДЦЖ	10	11.5	2.7	11.7	19.2	16.1	27.6	22.7
	30	29.1	11.6	21.7	8.4	26.5	19.8	12.0
	40	34.2	19.8	20.1	5.5	31.0	13.3	10.2
	50	43.8	30.9	17.8	2.7	32.5	9.4	6.7
	70	54.3	53.9	8.3	0.8	31.9	2.8	2.4
	80	69.0	65.3	3.7	0.6	25.9	2.7	1.9
	90	77.3	79.4	1.6	0.4	16.2	1.9	0.4
ТЦ	10	11.5	2.3	12.2	20.7	17.3	30.9	16.7
	20	20.0	5.6	18.8	13.3	21.9	24.8	15.6
	30	28.1	13.0	21.4	8.1	25.8	19.2	12.4
	40	33.3	19.9	21.7	4.8	32.1	12.3	9.1
	50	44.4	31.4	17.2	2.0	30.8	9.9	8.7
	60	53.2	42.8	12.5	1.0	31.4	8.1	4.1
	80	65.9	65.6	3.8	0.3	25.1	2.8	2.4
	90	80.8	78.7	1.3	0.3	15.8	1.8	2.3
Без металло-	20	29.4	5.9	16.2	13.0	21.0	22.9	20.8
цена,	50	44.0	31.2	20.4	2.5	31.8	12.2	1.9
пероксид бензоила	80	64.5	65.8	4.0	0.3	15.8	3.0	1.8

нильным группам). По отношению суммарной интегральной интенсивности первых трех сигналов, принадлежащих блокам ММА, и остальных трех сигналов метильных групп, находящихся вне блока ММА, была рассчитана блочность сополимера (табл. 4). Видно, что сополимеры, полученные в присутствии металлоценов, отличаются более вы-

соким содержанием синдио- и изотактических структур и меньшим содержанием гетеротактических структур, чем сополимеры, полученные только в присутствии пероксида бензоила.

Молекулярно-массовые характеристики сополимеров зависят от природы и строения используемого металлоцена (табл. 5). В целом, ММ со-

Инициирующая система	T, °C	Содержание ММА, мол. %	Содержание звеньев, %			Содержание α-CH _{3, %}	
типициирующил система			синдио-	изо-	гетеро-	в блоке	вне блока
ФЦ-пероксид бензоила	60	90	58.7	4.8	36.5	59.0	41.0
	50	90	65.8	5.7	28.5	56.7	43.3
	60	80	58.5	5.2	36.3	44.6	55.4
ЦМ-пероксид бензоила	60	90	63.9	10.2	25.9	60.0	40.0
	50	90	67.6	5.6	26.8	53.5	46.5
	60	80	62.0	5.6	32.4	41.7	58.3
ДДЦЖ-пероксид бензоила	60	90	67.8	6.3	25.9	55.5	45.5
	50	90	67.5	7.6	24.9	56.7	43.3
	60	80	59.2	5.1	35.7	43.7	56.3
ТЦ-пероксид бензоила	60	90	69.3	5.6	25.1	56.3	43.7
	50	90	67.9	5.5	26.6	56.0	44.0
	60	80	59.1	5.4	35.5	43.9	56.1
	I	1		l	1	1	I

56.0

2.0

Таблица 4. Микроструктура фрагментов ММА и α -СН $_3$ групп в блоке и вне блока в сополимерах ММА и стирола, полученных в присутствии и отсутствие металлоцена

полимеров оказывается ниже, а ММР шире для сополимеров, синтезированных с участием металлоценов на начальных конверсиях по сравнению с полимеризацией, инициированной пероксидом бензоила [11].

60

80

Пероксид бензоила

Полученные результаты можно объяснить, если предположить, что в исследуемых системах происходит дополнительная координация металлоцена с растущим центром и/или с мономером, что влияет как на реакционную способность активных центров, так и на стереоспецифичность полимеризации. Такое предположение основано на предыдущих данных изучения ММР продуктов гомополимеризации

стирола в присутствии ферроцена, титаноцендихлорида и цирконоцендихлорида [35], квантовохимического моделирования элементарных стадий полимеризации в присутствии металлоценов [33]. Расчеты показывают, что ферроцен может присоединять радикал R по циклопентадиенильному (Cp) кольцу и образовывать аддукт CpFe * (C $_{5}$ H $_{5}$ R). Далее этот аддукт может взаимодействовать с MMA и радикалами ПММА и формировать комплексные центры полимеризации. Последовательность таких превращений представлена ниже.

44 0

43 7

56.3

$$CpFe^{\bullet}(C_{5}H_{5}R) + R^{\bullet} \xrightarrow{(1)} CpFe(C_{5}H_{5}R)(R)$$

$$CpFe(C_{5}H_{5}R)(R) + MMA \xrightarrow{(2)} C_{5}H_{5}R + CpFe(MMA)(R)$$

$$H_{2}C \xrightarrow{C} CH_{3} \qquad H_{2}C \xrightarrow{C} CH_{3} \qquad H_{2}C \xrightarrow{C} CH_{3} \qquad CCC$$

$$H_{3}CO \xrightarrow{C} CH_{3} \qquad H_{2}C \xrightarrow{C} CH_{3} \qquad CCC$$

$$CCH_{3} \qquad H_{2}C \xrightarrow{C} CH_{3} \qquad CCC$$

$$CCH_{3} \qquad CCC$$

$$CCCH_{3} \qquad CCC$$

$$CCCH_{3} \qquad CCC$$

$$CCCC$$

$$CCCCC$$

$$CCCCCC$$

$$CCCCCC$$

$$CCCCCC$$

$$CCCCCC$$

$$CCCCCC$$

$$CCCCCC$$

$$CCCCCC$$

$$CCCCCC$$

$$CCCCCC$$

$$CCCCC$$

$$CCCC$$

$$CCCCC$$

$$CCCC$$

$$CCC$$

(под стрелками — тепловые эффекты реакции в кДж/моль [33]). Согласно расчетам, энергия активации реакции присоединения ММА к данному активному центру составляет 15 кДж/моль.

На основании квантово-химического моделирования было предложено строение активных центров для титаноцен- и цирконоцендихлоридов [33]:

Энергия активации реакции присоединения ММА к активным центрам составляет 21 кДж/моль (титаноцен) и 28 кДж/моль (цирконоцен).

Аналогичные расчеты были проведены для стирола и ферроцена [33].

Проведенные расчеты позволяют сделать вывод о влиянии природы металлоцена на строение и реакционную способность комплексных активных центров. Следовательно, в случае сополимеризации ММА и стирола

строение и активность подобных активных центров может изменяться. В результате состав сополимера действительно может отличаться от состава сополимера, полученного в отсутствие металлоцена.

Металлоцен	Содержание ММА в мономерной смеси, мол. %	$M_n \times 10^{-5}$	M_w/M_n
ΦЦ	10	0.30	5.0
	50	0.39	5.6
	90	0.77	3.8
ЦМ	10	2.68	1.9
	50	2.56	1.9
	80	2.66	2.1
ДДЦЖ	10	0.53	2.0
	50	0.90	2.0
	90	0.96	1.9
ТЦ	10	1.10	1.9
	50	0.73	2.1
	90	0.98	1.9

Таблица 5. Молекулярно-массовые характеристики сополимеров MMA и стирола, полученных на инициирующей системе [пероксид бензоила] = [металлоцен] = 1×10^{-3} моль/л, T = 60°C

Работа выполнена по программе ФНИ государственных академий на 2013—2020 гг. (Гос. задание № AAAA-A17-117011910026-3).

СПИСОК ЛИТЕРАТУРЫ

- Zubov V.P., Valuev L.I., Kabanov V.A., Kargin V.A. // J. Polym. Sci. A. 1971. V. 9. № 4. P. 833.
- 2. *Гришин Д.Ф.* // Успехи химии. 1993. Т. 62. № 10. С. 1007.
- 3. Chernikova E.V., Yulusov V.V., Garina E.S., Kostina Yu.V., Bondarenko G.N., Nikolaev A.Yu. // Polymer Science B. 2013. V. 55. № 3–4. P. 176.
- 4. Vishnevetskii D.V., Plutalova A.V., Yulusov V.V., Zotova O.S., Chernikova E.V., Zaitsev S.D. // Polymer Science B. 2015. V. 57. № 3. P. 197.
- Grishin D.F., Semenycheva L.L., Kolyakina E.V., Polyanskova V.V. // Polymer Science A. 2003, V. 45. № 2. P. 99.
- 6. *Grishin D.F.* // Polymer Science A. 2008. V. 50. № 3. P. 221.
- Гришин Д.Ф. // Химия и химическая технология. 1998. Т. 48. № 1. С. 69.
- 8. *Brar A.S.* // J. Polym. Sci., Polym. Chem. 2006. V. 44. № 6. P. 2076.
- 9. Yumagulova R.Kh., Kolesov S.V., Monakov Yu.B. // J. Appl. Chem. 2005. V. 78. № 2. P. 291.
- 10. Исламова Р.М., Назарова С.В., Асеева Т.А., Романенко Ю.В., Койфман О.И. // Докл. РАН. 2012. Т. 446. № 3. С. 294.
- 11. Насретдинова Р.Н., Исламова Р.М., Ионова И.А., Монаков Ю.Б. // Вестн. БашГУ. 2006. № 4. С. 26.
- 12. Haddleton D.M., Crossman M.C., Hunt K.H., Topping C., Waterson C., Suddaby K.G. // Macromolecules. 1997. V. 30. № 14. P. 3992.
- 13. *Гришин Д.Ф.*, *Семенычева Л.Л.* // Успехи химии. 2001. Т. 70. № 5. С. 486.
- 14. *Гришин Д.Ф., Мойкин А.А.* // Докл. РАН. 1997. Т. 356. № 6. С. 766.
- 15. *Kaminsky W.* // J. Polym. Sci., Polym. Chem. 2004. V. 42. № 16. P. 3911.
- 16. Kaminsky W., Kupler K., Brintzinger H.H., Wild F.R. // Angew Chem. Int. Ed. Engl. 1985. V. 24. P. 507.
- 17. *Resconi L., Cavallo L., Fait A., Piemontesi F.* // Chem. Rev. 2000. V. 100. № 4. P. 1253.

- 18. Matyjaszewski K., Wei M., Xia J., McDermott N.E. // Macromolecules. 1997. V. 30. № 26. P. 8161.
- Outsu T., Yang-Un M. // J. Macromol. Sci. A. 1977.
 V. 11. №. 10. P. 1783.
- 20. *Da-Keng Y., Gui-Hua L., Dao-Yu L.* // Polym. Commun. 1984. № 2. P. 139.
- 21. *Grishin D.F., Shchepalov A.A., Telegina E.V., Ignatov S.K., Razuvaev A.G., Semenycheva L.L.* // Polymer Science A. 2005. V. 47. № 6. P. 574.
- 22. Sigaeva N.N., Friesen A.K., Nasibullin I.I., Kolesov S.V., Ermolaev N.L. // Kinetics and Catalysis. 2012. V. 53. № 4. P. 470.
- 23. Kolesov S.V., Nasibullin I.I., Frizen A.K., Sigaeva N.N., Galkin E.G. // Polymer Science B. 2015. V. 57. № 2. P. 71.
- 24. Колесов С.В., Сигаева Н.Н., Глухов Е.А., Насибуллин И.И., Фризен А.К. // Успехи современного естествознания. 2016. № 3. С. 33.
- Jian C., Chen J., Zhang K. // J. Polym. Sci., Polym. Chem. 2005. V. 43. P. 2625.
- 26. *Koumura K., Satoh K., Kamigaito M.* // Macromolecules. 2008. V. 41. № 20. P. 7359.
- Котлова Е.С., Павловская М.В., Гришин Д.Ф. // Химия и хим. технология. 2012. Т. 55. № 8. С. 78.
- 28. Баженова И.Р., Глухов Е.А., Спирихин Л.В., Мустафин А.Г., Монаков Ю.Б. // Промышленное производство и использование эластомеров. 2011. № 2. С. 14.
- Маслобородова Э.А., Каганова Е.В., Гусакова Н.С., Агибалова Л.В., Маретина Е.Ю., Баранец И.В., Исламова Р.М. // Журн. общ. химии. 2017. Т. 87. № 5. С. 851
- 30. *Aerdts A.M.*, *De Haan J.W., German A.L.* // Macromolecules. 1991. V. 24. № 7. P. 1473.
- 31. *Берлин А.А., Вольфсон С.А., Ениколопян Н.С.* Кинетика полимеризационных процессов. М.: Мир. 1978.
- 32. Lewis F.M., Malling C., Cummongs W., Briggs E.R., Mayo F.R. // J. Am. Chem. Soc. 1948. V. 70. P. 1519.
- 33. *Фризен А.К.* Дис... д-ра. хим. наук. Уфа.: УфИХ РАН, 2016.
- 34. Islamova R.M., Puzin Yu.I., Yumagulova R.Kh., Fatykhov A.A., Parfenova L.V., Dzhemilev U.M., Monakov Yu.B. // Polymer Science A. 2006. V. 48. № 7. P. 712.
- 35. Sigaeva N.N., Kolesov S.V., Abdulgalimova A.U., Garifullina R.N., Prokudina E. M., Spivak S.I., Budtov V P., Monakov Yu.B. // Polymer Science A. 2004. V. 46. № 8. P. 784.