_____ ФУНКЦИОНАЛЬНЫЕ _____ ПОЛИМЕРЫ

УДК 541.64:547.333.1

СОПОЛИАМИДЫ НА ОСНОВЕ АНТРАЗОЛИНСОДЕРЖАЩИХ ДИАМИНОВ: СИНТЕЗ И СВОЙСТВА

© 2019 г. И. А. Валиева^{*a*,*}, М. Я. Гойхман^{*a*,*b*}, И. В. Подешво^{*a*}, Н. Л. Лорецян^{*a*}, И. В. Гофман^{*a*}, Р. Ю. Смыслов^{*a*}, Л. С. Литвинова^{*a*}, А. В. Якиманский^{*a*,*b*}

^аИнститут высокомолекулярных соединений Российской академии наук 199004 Санкт-Петербург, Большой пр., 31, Россия ^bСанкт-Петербургский государственный университет 198504 Санкт-Петербург, Петродворец, Университетский пр., 26, Россия * e-mail: valieva@hq.macro.ru Поступила в редакцию 16.01.2019 г. После доработки 21.01.2019 г. Принята к публикации 04.02.2019 г.

Синтезирован ряд новых замещенных пиридо[3,2-g]хинолин-3,7-диаминов и получены сополиамиды с антразолиновыми группами в основной цепи на их основе. Исследованы деформационнопрочностные, термические, молекулярно-массовые и люминесцентные характеристики. Все полимеры обладают высокими деформационно-прочностными свойствами и термостойкостью. Показано, что полученные антразолинсодержащие сополиамиды с карбоксильными группами в положениях 4 и 6 обладают интенсивной люминесценцией в области 590–620 нм.

DOI: 10.1134/S2308113919030161

ВВЕДЕНИЕ

Полимеры, содержащие люминофорные группы, находят широкое применение в таких областях, как фотовольтаика (сенсибилизированные хромофорами солнечные элементы [1, 2]), органические светоизлучающие устройства [3, 4], запись и хранение информации [5, 6]. Один из наиболее важных аспектов при синтезе таких соединений – дизайн и разработка высокопроизводительных экологически безопасных систем, требующих низкой энергии потребления. В этом плане наиболее привлекательны материалы, проявляющие оптическую активность в видимой области спектра. К преимуществам таких материалов по сравнению с ультрафиолетовым излучением следует отнести безопасность, высокую эффективность, низкую себестоимость и доступность. Следовательно, поиск и создание таких полимерных материалов является одной из наиболее важных задач современной макромолекулярной химии.

Среди большого числа хромофоров, люминесцирующих в видимой области спектра, особый интерес представляют азотсодержащие гетероциклы [7–9], в частности антразолины, или диазаантрацены [10–12], поскольку современные методы синтеза таких соединений позволяют не только формировать антразолиновые соединения различного химического строения, но и вводить в указанные гетероциклы функциональные группы, необходимые для получения высокомолекулярных соединений. Ранее нами были исследованы полимеры на основе антразолинсодержащих лиаминов, в которых аминогруппы находились в пара- или мета-положениях фениленовых заместителей антразолинового цикла [13]. Тонкую настройку оптических характеристик хромофорсодержащих полимеров можно осуществлять, изменяя положение функциональных групп, по которым идет рост полимерной цепи. В настояшей работе представлен синтез новых антразолиновых диаминов с аминогруппами, присоединенными непосредственно к антразолиновому циклу в положениях 3 и 7, сополиамидов на их основе и исследованы деформационно-прочностные, термические, молекулярные и оптические свойства этих полимеров.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Очистка исходных соединений и растворителей

Хлоральгидрат, гидроксиламин гидрохлорид, *м*-фенилендиамин дигидрохлорид, 2,6-диаминотолуол, серная кислота, едкий кали, 2-аминоацетофенон, соляная кислота, диэтиловый эфир, ванилиновая кислота, терефталевая кислота, порошок металлической меди, диметилсульфоксид, пропиленоксид – коммерческие продукты, их использовали без дополнительной очистки. Другие реагенты и растворители применяли после предварительной очистки. 4,4'-диаминодифениловый эфир очищали перекристаллизацией из этилового спирта ($T_{пл} = 190^{\circ}$ С), тионилхлорид — простой перегонкой ($T_{кип} = 78^{\circ}$ С); *N*-метилпирролидон ($T_{кип} = 202^{\circ}$ С, $n_D^{20} = 1.4692$) осушали гидридом кальция и перегоняли под вакуумом; пиридин

 $(T_{\text{кип}} = 115^{\circ}\text{C}, n_D^{20} = 1.5095)$ осушали над гранулированным едким кали, очищали простой перегонкой; этанол перегоняли ($T_{\text{кип}} = 78^{\circ}\text{C}$).

Синтез мономеров

Мономеры синтезировали по следующей схеме:

где R = Н или CH₃

Схема 1

Синтез N,N'-(1,3-фенилен)-бис-(2-(гидроксиимино)ацетамида) 1 и N,N'-(2-метил-1,3-фенилен)бис-(2-(гидроксиимино)ацетамида) 2. Готовили три раствора.

Раствор 1. В круглодонную трехгорлую колбу объемом 2 л, снабженную мешалкой и термометром, помещали 570 мл воды, 165.4 г (1.165 моля) безводного сульфата натрия и 27 г (0.163 моля) хлоральгидрата. Смесь перемешивали при 40°С до полного растворения компонентов.

Раствор 2. В стакан объемом 150 мл помещали 90 мл воды и 14.3 г (0.075 моля) солянокислого *м*-фенилендиамина. Смесь перемешивали до полного его растворения.

Раствор 3. В стакан объемом 250 мл помещали 150 мл воды и 33 г (0.475 моля) солянокислого гидроксиламина и перемешивали до полного его растворения.

При перемешивании при комнатной температуре к раствору 1 добавляли раствор 2, через ~1 мин добавляли раствор 3. Содержимое колбы нагревали до кипения и выдерживали при этой температуре 2 мин, после чего колбу охлаждали под струей воды и оставляли на ночь. Выпавший красно-желтый осадок отфильтровывали на воронке Бюхнера и промывали 750 мл воды. Продукт очищали перекристаллизацией из 1.5 л воды. Выход N,N'-(1,3-фенилен)-*бис*-(2-(гидроксиимино)ацетамида) составил 11.68 г (64%).

ЯМР ¹H (ДМСО-d₆), δ (м.д.): 7.21 (1H, т, $J = 7.8 \Gamma \mu$, $J = 8.3 \Gamma \mu$, C_{Ar}H); 7.44 (2H, д., $J = 8.1 \Gamma \mu$, C_{Ar}H); 7.75 (2H, c, CH); 8.2 (1H, c, C_{Ar}H); 10.3 (2H, c, NH), 12.3 (2H, c, NOH).

По аналогичной методике из 4.8 г солянокислого 2,6-диаминотолуола, предварительно полученного нагреванием 3 г 2,6-диаминотолуола в растворе 33.5 мл 3%-ной соляной кислоты, синтезировали N,N'-(2-метил-1,3-фенилен)-*бис*-(2-(гидроксиимино)ацетамид). Выход 3.65 г (57%).

ЯМР ¹H (ДМСО-d₆), δ (м.д.): 2.07 (3H, c, CH₃); 7.21 (1H, т, J = 7.8 Гц, J = 8.0 Гц, C_{Ar}H); 7.31 (2H, д., J = 7,8 Гц, C_{Ar}H); 7.69 (2H, c, CH); 9.69 (2H, c, NH), 12.20 (2H, c, NOH).

Синтез 2Н, 3Н, 5Н, 6Н-бензо[1,2-b:5,4b']дипиррол-2,3,5,6-тетраона 3 и 8-метилпирро-

том 61 № 3 2019

ло[3,2-f]индол-2,3,5,6(1H,7H)-тетраона 4. В круглодонную трехгорлую колбу объемом 100 мл. снабженную мешалкой и термометром, помещали 54.4 мл концентрированной серной кислоты, нагревали до 55°С и медленно добавляли 11.68 г (0.048 моля) тщательно высушенного и мелкоизмельченного порошка N,N'-(1,3-фенилен)-бис-(2-(гидроксиимино)ацетамида) так, чтобы температура реакционной смеси не поднималась выше 70°С. Затем температуру поднимали до 80°С, выдерживали при этой температуре 20 мин, после охлаждения раствора до комнатной температуры его выливали в керамический стакан с измельченным льдом (600 г). Выпавший красный осадок отфильтровывали, промывали водой до нейтральной реакции и сушили на воздухе при комнатной температуре. Выход бис-изатина составил 8.48 г (80%). Осадок перекристаллизовывали из 21 мл ДМСО. Выход после перекристаллизации составил 5.28 г (60%).

ЯМР ¹H (ДМСО-d₆), δ (м.д.): 6.38 (1H, c, C_{Ar}H); 7.19 (1H, c, C_{Ar}H); 11.6 (2H, c, NH).

По аналогичной методике из N,N'-(2-метил-1,3-фенилен)-*бис*-(2-(гидроксиимино)ацетамида) синтезировали 8-метилпирроло[3,2-f]индол-2,3,5,6(1H,7H)-тетраон. Выход 2.44 г (77%).

ЯМР ¹H (ДМСО-d₆), δ (м.д.): 2.06 (3H, c, CH₃); 7.49 (1H, c, C_{Ar}H); 11.70 (2H, c, NH).

Синтез дихлорангидрида терефталоил-бис(3метокси-4-оксибензойной) кислоты выполняли в соответствии с методикой, приведенной в работе [14].

Синтез 3,7-диамин-2,8-дифенилпиридо[3,2g]хинолин-4,6-дикарбоновой кислоты 5 и 3,7-диамин-2,8-дифенил-10-метилпиридо[3,2-g]хинолин-4,6-дикарбоновой кислоты 6. В одногорлую круглодонную колбу объемом 250 мл, снабженную обратным холодильником, помешали раствор 4.76 г гидроксида калия в 9.24 мл воды, затем присыпали 2.8 г (0.013 моля) бис-изатина, перемешивали при комнатной температуре до полного растворения, добавляли 7 г (0.052 моля) 2-аминоацетофенона, 28 мл этилового спирта и кипятили смесь в течение 14 ч. Выпавший осадок переносили в стакан, растворяли его в 300 мл воды, раствор дважды экстрагировали диэтиловым эфиром, водный слой после упаривания эфира подкисляли раствором соляной кислоты до рН 4. Выпавший осадок темно-красного цвета отфильтровывали и промывали водой до нейтральной реакции. При полном высыхании в кристаллизаторе осадок приобретал ярко-оранжевый цвет. Выход 4.97 г (85%).

ЯМР ¹H, ДМСО-d₆, δ, м.д.: 7.60 (6H, м, C_{Ar}H); 7.74 (4H, д.д, *J* = 1.7 Гц, *J* = 7.6 Гц, C_{Ar}H); 8.31 (1H, c, C_{Ar}H); 9.57 (1H, c, C_{Ar}H). По аналогичной методике из 8-метилпирроло[3,2-f]индол-2,3,5,6(1H,7H)-тетраона синтезировали 3,7-диамин-2,8-дифенил-10-метилпиридо[3,2-g]хинолин-4,6-дикарбоновую кислоту с выходом 81%.

ЯМР ¹Н, ДМСО-d₆, δ , м.д.: 3.06 (3H, c, CH₃); 7.59 (6H, м, C_{Ar}H); 7.79 (4H, д, J = 6,9 Гц, C_{Ar}H); 9.26 (1H, c, C_{Ar}H).

Синтез 2,8-дифенилпиридо[3,2-g]хинолин-3,7диамина 7 и 10-метил-2,8-дифенилпиридо[3,2g]хинолин-3,7-диамина 8. В одногорлую колбу, снабженную вводом для аргона вносили смесь, содержащую 1 г (0.0022 моля) 3,7-диамин-2,8-дифенилпиридо[3,2-g]хинолин-4,6-дикарбоновой кислоты и 0.05 г (5 мас. %) порошка металлической меди, пропускали аргон при комнатной температуре в течение 30 мин, после чего колбу помещали в сплав Вуда, разогретый до 300°С, выдерживали 20 мин (до прекращения выделения углекислого газа). После охлаждения полученный твердый продукт очищали сублимацией при температуре 290°С в вакууме в течение 2 ч. Выход 0.24 г (30%).

ЯМР ¹H, ДМСО-d₆, δ , м.д.: 5.34 (4H, c, NH₂); 7.39 (2H, c, C_{Ar}H); 7.55 (6H, м, C_{Ar}H); 7.79 (4H, д, $J = 6.8 \Gamma$ ц, C_{Ar}H); 7.84 (1H, c, C_{Ar}H); 8.32 (1H, c, C_{Ar}H).

По аналогичной методике из 3,7-диамин-2,8дифенил-10-метилпиридо[3,2-g]хинолин-4,6-дикарбоновой кислоты синтезировали 10-метил-2,8-дифенилпиридо[3,2-g]хинолин-3,7-диамин с выходом 34%.

ЯМР ¹H, ДМСО-d₆, δ, м.д.: 3.11 (1H, c, CH₃); 5.33 (4H, c, NH₂); 7.36 (2H, c, C_{Ar}H); 7.56 (6H, м, C_{Ar}H); 7.80 (1H, c, C_{Ar}H); 7.88 (4H, д, C_{Ar}H).

Синтез полимеров

В двугорлую круглодонную колбу, снабженную мешалкой, помещали 0.4 ммоля смеси антразолинсодержащего диамина с 4,4'-диаминодифениловым эфиром (в соотношении 10:90) и 2.5 мл N-метилпирролидона, перемешивали до полного растворения диаминов, после чего охлаждали раствор до -15°C. В охлажденный раствор добавляли 0.412 ммоля (0.2072 г) дихлорангидрида терефталоил-бис-(3-метокси-4-оксибензойной) кислоты. Суспензию перемешивали при -15°С в течение 30 мин, после чего снимали охлаждающую баню, добавляли 0.1 мл пропиленоксида и перемешивали при комнатной температуре в течение 2 ч до образования вязкого, прозрачного раствора, после чего перемешивание продолжали еще 4 ч.

Из полученных растворов полимеров на стеклянных подложках отливали пленки, которые сушили при температуре 100°С до постоянной массы. Толщина пленок 20 мкм.

Образец	$M_n \times 10^{-3}$	$M_w \times 10^{-3}$	M_w/M_n				
P1	77.9	150.5	1.93				
P2	62.4	108.9	1.75				
P3	70.8	116.7	1.65				
P4	60.7	85.3	1.41				

Таблица 1. Молекулярно-массовые характеристики пленок

Спектры ЯМР ¹Н синтезированных соединений регистрировали на спектрометре "Avance-400" ("Bruker", Германия) с рабочей частотой на ядрах ¹Н – 400 МГц, внутренний стандарт Me₆Si₂. Готовили растворы в ДМСО-d₆ с концентрацией 1%.

Среднюю молекулярную массу сополимеров определяли методом ВЭЖХ на хроматографе фирмы "Agilent Technologies 1260 Infinity" (The Agilent 1260 Infinity Multi-Detector GPC/SEC System), снабженном тремя детекторами: рефрактометрическим (DRI, Wavelength 660 нм), вискозиметрическим (VS) и детектором светорассеяния (LS: Rayleigh scattering angles 15° and 90°; Laser wavelength/power 660 нм/50 мВ). Температура детекторов 40°С. Использовали набор последовательно соединенных хроматографических колонок: предколонка PLgel 5 мкм Guard 50 × 7.5 мм и две колонки со стирогелем Agilent Technologies PLgel 5 мкм MIXED-C, 300 × 7.5 мм. Колонки термостатировали при 50°С. Подвижная фаза: 0.1М раствор LiBr в ДМФА. Скорость подвижной фазы 1.0 мл/мин. Ввод пробы осуществляли с помощью автосамплера, объем пробы 100 мкл.

Механические испытания пленок проводили при комнатной температуре в режиме одноосного растяжения с помощью универсальной испытательной установки AG-100 kN X Plus ("Shimadzu Corp", Japan). Пленочные образцы с размером рабочей части 20 × 2 мм тестировали со скоростью растяжения 10 мм/мин. В процессе испытаний определяли модуль упругости Е, предел вынужденной эластичности $\sigma_{\rm B}$ (как точку пересечения касательных к начальному линейному участку деформационной кривой и к участку развития вынужденно-эластической деформации), прочность ор и предельную деформацию до разрушения є_п. Указанные характеристики получены путем усреднения результатов испытания семи фрагментов материала каждого образца.

Термогравиметрический анализ образцов исследуемых материалов выполняли на фрагментах пленок массой ~5 мг с помощью термовесов DTG-60 ("Shimadzu", Japan). Образцы нагревали в воздушной атмосфере до 600°С со скоростью 5 град/мин. По результатам термогравиметрического анализа определяли показатели термостойкости материала τ_5 и τ_{10} — значения температуры, по достижении которых в процессе нагрева масса полимерного материала падала в результате термодеструкции на 5 и 10% соответственно.

Спектры люминесценции пленок сополиамидов получали на люминесцентном спектрофотометре LS-100 BASE ("PTI Lasers Inc.", Канада) в интервале длины волн 380-700 нм. Обратная величина линейной дисперсии дифракционных решеток прибора 4 нм/мм. Геометрическая ширина щелей на выходе монохроматора возбуждения 5 мм, на входе монохроматора флуоресценции – 4 мм. Выбор длины волны возбуждения 380 нм обусловлен спектрами поглощения сополиамидов, содержащих кислородные мостиковые группы и сложноэфирные группы в основной цепи. Сравнение интенсивности люминесценции Ілюм образцов проводили относительно лабораторного эталона и выражали в относительных единицах. Использовали усиление фотоэлектронного умножителя 800.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На начальном этапе работы перед нами стояла задача получения новых реакционноспособных диаминов антразолинового ряда, содержащих аминогруппы в положениях 3 и 7. Эта задача была решена с помощью реакции Пфитцингера, взаимодействием 2-аминоацетофенона с бис-изатинами 3 и 4.

В соответствии со схемой 1 синтез 3,7-диамин-2,8-дифенилпиридо[3,2-g]хинолин-4,6-дикарбоновой кислоты 5 и 3,7-диамин-2,8-дифенил-10метилпиридо[3,2-g]хинолин-4,6-дикарбоновой кислоты 6 из соответствующих *м*-фенилендиаминов проводили в две стадии: на первой стадии по реакции Зандмейера были получены N,N'-(1,3фенилен)-*бис*-(2-(гидроксиимино)ацетамида) 1 и N,N'-(2-метил-1,3-фенилен)-*бис*-(2-(гидроксиимино)ацетамида) 2, циклизацией которых в серной кислоте получили бис-изатины 3 и 4. На второй стадии по реакции Пфитцингера из бисизатинов 3 и 4 и 2-аминоацетофенона были синтезированы дикарбоновые кислоты 5 и 6 соответственно.

Для получения диаминов 7 и 8 дикарбоновые кислоты 5 и 6 были подвергнуты декарбоксилированию при 300°С в присутствии катализатора — порошка металлической меди.

На основе указанных диаминов (5–8), 4,4'-диаминодифенилового эфира и дихлорангидрида терефталоил-*бис*-(3-метокси-4-оксибензойной) кислоты методом низкотемпературной поликонденсации синтезировали четыре сополиамида P1–P4 (табл. 1), содержащих в основной цепи 10 мол. % антразолиновых групп:

Кроме того, с целью сравнения был синтезирован полиамид **P5**, не содержащий антразолиновых звеньев. Дихлорангидрид терефталоил*бис*-(3-метокси-4-оксибензойной) кислоты был выбран в качестве сомономера, поскольку, как было показано ранее, на его основе можно получать полиамиды с высокой характеристической вязкостью, пленки которых обладают хорошей термостойкостью и высокими механическими характеристиками [15].

Синтезировать полимеры с концентрацией антразолиновых групп выше 10% было нецелесообразным, так как интенсивность люминесценции пленок на основе таких полимеров резко падала вследствие концентрационного тушения.

Из синтезированных полимеров удалось изготовить прочные, самонесущие, оптически прозрачные пленки, обладающие высокими механическими свойствами и хорошей термостойкостью (табл. 2).

При исследовании механических свойств полимеров установлено, что введение в полимерную цепь антразолиновых групп по положениям 3 и 7, т.е. непосредственно через антразолиновый цикл, приводит к значительному возрастанию модуля упругости и разрывной прочности по сравнению с синтезированными ранее сополиамидами, содержащими амидные группы в фениленовых заместителях антразолинового цикла в положениях 2 и 8 [13].

Сопоставление характеристик пленок исследованных сополимеров P1–P4 показало (рис. 1), что максимальную механическую жесткость имеют пленки сополимера РЗ, в антразолиновом цикле которого отсутствуют какие-либо заместители. Карбоксилирование, как и введение в структуру цикла метильной группы, приводит к снижению модуля упругости материала. Наиболее низкой жесткостью в группе исследованных сополимерных пленок характеризуется структура Р2, содержащая одновременно метильный и карбоксильные заместители. Отметим, что пленка РЗ, наряду с самым высоким модулем упругости имеет наивысшее значение предельной деформации до разрушения.

Интересно отметить, что максимальную жесткость проявляет материал с наименее плотной упаковкой антразолинового фрагмента. Действительно, ван-дер-ваальсова плотность циклической группировки сополиамида РЗ, в которой отсутствуют какие-либо заместители, рассчитанная методом атомных инкрементов [16], составляет 1.061 Да/А³, а по мере введения в структуру цикла заместителей эта величина растет и для цикла в сополимере Р2, содержащем максимальное коли-

Таблица 2. Механические характеристики и показатели термостойкости пленок

Образец	<i>Е</i> , ГПа	σ _в , МПа	σ _p , МПа	ε _p , %	τ ₅ , °C	τ ₁₀ , °C
P1	4.88	177	204	28	350	367
P2	4.08	166	169	26	334	348
P3	5.01	142	168	41	337	355
P4	4.81	120	162	37	329	349

Рис. 1. Деформационные кривые пленок сополиамидов P1–P4 и контрольного гомополиамида P5.

чество заместителей, составляет уже 1.183 Да/А³. Остается предположить, что менее плотно упакованная структура такой циклической группировки, в которой отсутствуют боковые фрагменты, наиболее выгодна для образования межмолекулярных связей, в частности – для формирования π-π-взаимодействий между антразолиновыми циклами соседних цепей. Существенная (если не определяющая) роль этих циклических структур в формировании механических свойств исследуемых материалов подтверждается при сравнении характеристик пленок сополимеров и гомополимера Р5, который вообще не содержит антразолиновых группировок (табл. 2). Последний характеризуется существенно более низкими значениями как модуля упругости, так и прочности по сравнению с пленками Р1-Р4.

Как видно из табл. 2, все синтезированные нами сополиамиды являются термостойкими, поскольку температура 5%-ной потери массы пленок полимеров превышает 300°С.

Исследование фотолюминесцентных свойств показало, что все синтезированные полимеры обладают значительной люминесценцией в красной области спектра (550–630 нм), причем интенсивность люминесценции сополиамидов, содержащих карбоксильные группы, значительно выше, чем у их декарбоксилированных аналогов. Этот эффект можно объяснить тем, что в сополимерах Р1 и Р2, в которых карбоксильные и амидные группы находятся в соседних положениях, имеется возможность образования водородных связей. Из литературы [15] известно, что наличие сильных водородных связей в молекуле люминофора приводит к существенному снижению энергии перехода из возбужденного состояния в основ-

Рис. 2. Спектры люминесценции пленок сополиамидов P1–P4.

ное, в результате чего повышается время жизни возбужденного состояния люминофора.

Следует отметить, что в исследованных ранее полимерах [13], в которых амидная связь находилась в фениленовых группах в положениях 2 и 8, а карбоксильные группы — в положениях 4 и 6 антразолинового звена, подобная возможность образования внутримолекулярной водородной связи отсутствовала, и в этом случае наблюдался противоположный эффект — декарбоксилирование вызывало некоторое возрастание интенсивности люминесценции.

Наличие заместителей в антразолиновом цикле оказывает влияние на интенсивность люминесценции только в том случае, если в полимере присутствует водородная связь между амидной и карбоксильной группами (рис. 2). Так, в полимерах P3 и P4, не содержащих карбоксильные группы, введение метильной группы в положение 10 антразолинового звена не оказывает заметного влияния на люминесцентные свойства, в то время, как в полимере Р2 донорный эффект, которым обладает метильная группа, вызывает перераспределение электронной плотности в системе, что приводит к ослаблению внутримолекулярной водородной связи и, как следствие, к уменьшению интенсивности люминесценции полимера Р2 по сравнению с полимером Р1.

ЗАКЛЮЧЕНИЕ

В работе синтезированы четыре новых полимера с антразолиновыми группами в основной цепи и исследованы их молекулярные, термические, деформационно-прочностные и оптические свойства. Показано, что интенсивность люминесценции синтезированных полимеров определяется возможностью образования внутримолекулярной водородной связи между амидными и карбоксильными группами, а также наличием заместителей в антразолиновом цикле. Полимеры на основе 3,7-диамин-2,8-дифенилпиридо[3,2-g]хинолин-4,6-дикарбоновой кислоты и 3,7-диамин-2,8-дифенил-10-метилпиридо[3,2-g]хинолин-4,6-дикарбоновой кислоты обладают интенсивной люминесценцией в области 550–630 нм. Проведенные исследования позволят в дальнейшем разработать принципы моделирования полимеров с оптимальными характеристиками.

СПИСОК ЛИТЕРАТУРЫ

- 1. Saricifici N.S., Braun D., Zhang C., Srdanov V.I., Heeger A.J., Stucky G., Wudl F. // Appl. Phys. Lett. 1993. V. 62. № 6. P. 585.
- Stabb H., Punkka E., Paloheimo J. // Mater. Sci. Eng. 1993. V.10. № 3. P.85.
- 3. *Lin H.-Y., Sher Ch.-W., Lin Ch.-H., Tu H.-H. et all.* // Appl. Mater. Interfaces. 2017. V. 9. № 40. P. 35279.
- Burroughes J.H., Bradley D.D.C., Brown A.R., Marks R.N., Mackay K., Friend R.H., Burns P.L., Holmes A.B. // Nature. 1990. V. 347. № 6293. P. 539.

- Huang W., Xie L. // Faming Zhuanli Shenqing. Pat. CN 101161698 A 20080416. 2008.
- 6. *Eunkyoung K.* // Kobunja Kwahak Kwa Kisul. 2000. V. 11. № 2. P. 200.
- Hung J.Y., Chiu Y.C., Chi Y. // Org. Electron. 2010. V. 11. P. 412.
- Kwon T.W., Kulkarni A.P., Jenekhe S.A. // Synth. Met. 2008. V. 158. P. 292.
- Huang B., Li J., Jiang Z., Qin J., Yu G., Liu Y. // Macromolecules. 2005. V. 38. P. 6915.
- 10. Zhu H., Li Y., Liu S. et all. // Pat. CN 101337961. 2009.
- 11. *Agrawal A.K., Jenekhe S.A.* // Chem. Mater. 1996. V. 8. P. 579.
- 12. Zhou M., Wang P., Zhang Z. // Pat. CN 1034504450. 2013.
- Goikhman M.Ya., Valieva I.A., Podeshvo I.V., Gofman I.V., Smyslov R.Yu., Litvinova L.S., Yakimansky A.V. // Luminescence. 2018. V. 33. P. 559.
- Goikhman M.Ya., Yevlampieva N.P., Kamanina N.V., Podeshvo I.V., Gofman I.V., Mil'tsov S.A., Khurchak A.P., Yakimansky A.V. // Polymer Science A. 2011. V. 53. № 6. P. 457.
- Du X., Fan R., Wang X., Qiang L., Wang P., Gao S., Zhang H., Yang Y., Wang Y. // Cryst. Growth Des. 2015. V. 15. № 5. P. 2402.
- Askadskii A.A. // Computational Materials Science of Polymers. Cambridge: Cambridge Int. Sci. Publ., 2005.