УДК 533.72

ТЕЧЕНИЕ РАЗРЕЖЕННОГО ГАЗА МЕЖДУ ДВУМЯ КОАКСИАЛЬНЫМИ ЦИЛИНДРАМИ ПОД ДЕЙСТВИЕМ ГРАДИЕНТА ТЕМПЕРАТУРЫ В РАМКАХ ЗЕРКАЛЬНО-ДИФФУЗНОЙ МОДЕЛИ ОТРАЖЕНИЯ¹⁾

© 2019 г. О. В. Гермидер^{1,*}, В. Н. Попов^{1,**}

(1 163002 Архангельск, Набережная Северной Двины, 17, САФУим. М.В. Ломоносова, Россия)

*e-mail: o.germider@narfu.ru **e-mail: v.popov@narfu.ru Поступила в редакцию 25.02.2019 г. Переработанный вариант 01.04.2019 г. Принята к публикации 10.04.2019 г.

Проведено исследование медленного продольного течения разреженного газа между коаксиальными цилиндрами бесконечной длины под действием заданного градиента температуры. Задача формулируется для линеаризованной кинетической модели при использовании зеркально-диффузных граничных условий. Получены зависимости приведенных потоков тепла и массы газа через канал в виде функции от коэффициента аккомодации тангенциального импульса и числа Кнудсена для различных значений отношения радиусов внутреннего и внешнего цилиндров. Найдены значения этих потоков с использованием полиномов Чебышёва. Проведен анализ полученных выражений при переходе к свободномолекулярному и гидродинамическому режимам. Библ. 17. Фиг. 3. Табл. 2.

Ключевые слова: течение газа в канале, модельные кинетические уравнения, коэффициент аккомодации тангенциального импульса.

DOI: 10.1134/S0044466919080064

введение

Исследование течения разреженного газа в пространстве между коаксиальными цилиндрами представляет интерес как с прикладной, так и с теоретической точек зрения [1]. С одной стороны, такие конфигурации сечения канала имеют место в приложениях [2], а выбор зеркальнодиффузной модели отражения обусловливается размерами поперечного сечения наноканала. С другой стороны, построение решения модельного кинетического уравнения в рамках указанной модели отражения является важным с точки зрения вычислений. Рассматриваемое граничное условие вносит существенные коррективы в вычислительный алгоритм. В отличие от диффузной модели отражения, при использовании которой решение модельного кинетического уравнения Вильямса сводится к квазилинейному дифференциальному уравнению в частных производных первого порядка с однородным граничным условием [3] и [4], в рассматриваемом случае граничное условие не является однородным. Ранее, в [5] авторами построено решение неоднородной краевой задачи для цилиндрического канала. В [6]-[9] проведены исследования течения разреженного газа в цилиндрическом канале в рамках лиффузной молели отражения. Наличие внутреннего цилиндра порождает кусочное задание функции распределения в зависимости от значений угла между компонентами вектора молекулярной скорости и радиус-вектора молекул газа, которые принадлежат плоскости, перпендикулярной оси канала. В [1] изучено влияние внутреннего цилиндра на распределение скорости массового потока по радиусу при полной аккомодации молекул газа стенками канала под действием заданного градиента давления на основе модельного кинетического уравнения БГК. В отличие от [1] в представленной работе получен явный вид линеаризованной функции распределения при различных значениях коэффициента аккомодации тангенциального импульса и числа Кнудсена, а также выполнено

¹⁾Работа выполнена при финансовой поддержке РФФИ (код проекта 16-29-15116 офи_м).

ГЕРМИДЕР, ПОПОВ

построение профилей массовой скорости газа в канале и получены значения приведенных потоков массы через его поперечное сечение с использованием полиномов Чебышёва при действии постоянного градиента температуры. Предлагаемый подход основан на аппроксимации подынтегральной функции частичной суммой ряда Чебышёва и вычислении коэффициентов этого разложения с использованием в качестве интерполяционных узлов этой функции нулей полиномов.

1. ПОСТАНОВКА ЗАДАЧИ. ПОСТРОЕНИЕ ФУНКЦИИ РАСПРЕДЕЛЕНИЯ

Рассмотрим задачу о медленном стационарном течении разреженного газа в канале, образованном двумя коаксиальными цилиндрами радиусами R_1 и R_2 ($R_1 < R_2$). Считаем, что на поверхностях цилиндров коэффициенты аккомодации тангенциального импульса молекул газа совпадают и равны α , а течение газа обусловлено постоянным продольным градиентом температуры. В качестве основного уравнения, описывающего кинетику процессов переноса, будем использовать модельное уравнение Вильямса, которое в цилиндрической системе координат записывается в виде [4]

$$v_{\rho}\frac{\partial f}{\partial \rho'} + \frac{v_{\phi}}{\rho'}\frac{\partial f}{\partial \phi} + \frac{v_{\phi}^{2}}{\rho'}\frac{\partial f}{\partial v_{\rho}} - \frac{v_{\rho}v_{\phi}}{\rho'}\frac{\partial f}{\partial v_{\phi}} + v_{z}\frac{\partial f}{\partial z'} = \frac{\omega}{\gamma l_{g}}(f_{*} - f), \tag{1.1}$$

$$f_* = n_* \left(\frac{m}{2\pi k_B T_*}\right)^{3/2} \exp\left(-\frac{m}{2k_B T_*} (\mathbf{v} - \mathbf{u}_*)^2\right).$$
(1.2)

Здесь $f(\mathbf{r}', \mathbf{v}) - функция распределения молекул газа, <math>\mathbf{r}' = \mathbf{r}'(\rho', \varphi, z')$, $\rho', \varphi, z' - координаты моле$ кул газа в цилиндрической системе координат в конфигурационном пространстве, ось <math>Oz' совпадает с осью внутреннего цилиндра; $v_{\rho}, v_{\varphi}, v_{z}$ – проекции вектора скорости \mathbf{v} на оси цилиндрической системы координат; $\omega = |\mathbf{v} - \mathbf{u}(\mathbf{r}')|$, $\mathbf{u}(\mathbf{r}')$ – массовая скорость газа, m – масса молекул газа, l_{g} – средняя длина свободного пробега молекул газа, k_{B} – постоянная Больцмана, $\gamma = 5\sqrt{\pi}/4$. Параметры n_{*}, T^{*} и \mathbf{u}_{*} в функции (1.2) подбираются из условия, чтобы модельный интеграл столкновений удовлетворял законам сохранения числа частиц, импульса и энергии.

В качестве граничного условия на стенках канала используем модель зеркально-диффузного отражения Максвелла [10]:

$$f^{+}(\mathbf{r}'_{s},\mathbf{v}) = (1-\alpha)f^{-}(\mathbf{r}'_{s},\mathbf{v}-2\mathbf{n}(\mathbf{nv})) + \alpha f_{s}(\mathbf{r}'_{s},\mathbf{v}), \quad \mathbf{vn}_{i} > 0,$$
(1.3)

$$f_{s}(\mathbf{r}'_{s},\mathbf{v}) = n_{s}(z') \left(\frac{m}{2\pi k_{B}T_{s}(z')}\right)^{3/2} \exp\left(-\frac{m}{2k_{B}T_{s}(z')}\mathbf{v}^{2}\right), \quad i = 1, 2,$$
(1.4)

где $f^+(\mathbf{r}'_s, \mathbf{v})$ и $f^-(\mathbf{r}'_s, \mathbf{v})$ – функции распределения соответственно отраженных и падающих молекул газа на обтекаемую поверхность *s*, \mathbf{n}_1 и \mathbf{n}_2 – векторы нормалей к поверхностям цилиндров, направленные в сторону газа, $T_s(z')$, $n_s(z')$ – температура и концентрация газа на обтекаемой газом поверхности.

Предполагаем, что изменение температуры является малым:

$$G_T = \frac{1}{T_0} \frac{dT}{dz}, \quad |G_T| \ll 1, \tag{1.5}$$

где G_T — безразмерный градиент температуры, T_0 — температура в начале координат, а в качестве размерного масштаба длины выбрана величина R'_2 , т.е. $z = z'/R'_2$. Далее для безрамерных величин штрихи опускаем.

В пространстве скоростей перейдем к сферической системе координат: $C_{\rho} = C \cos \psi \sin \theta$, $C_{\phi} = C \sin \psi \sin \theta$, $C_z = C \cos \theta$, где $\mathbf{C} = \beta^{1/2} \mathbf{v}$. Функцию $f(\mathbf{r}, \mathbf{C})$ линеаризуем относительно локаль-

1402

но равновесной функции распределения (1.4). Учитывая, что $f(\mathbf{r}_s, \mathbf{C}) = f_0(C)(1 + G_T(C^2 - 5/2)z)$ [4], получаем

$$f(\mathbf{r}, \mathbf{C}) = f_0(C) \left(1 + G_T \left(C^2 - \frac{5}{2} \right) z + h(\rho, \mathbf{C}) \right),$$
(1.6)

$$h(\rho, \mathbf{C}) = \gamma \mathrm{Kn} \, G_T \left(C - \frac{5}{2C} \right) Z(\rho, \psi, \theta).$$
(1.7)

Подставляя (1.6) в (1.1) и (1.3), приходим к уравнению относительно *Z*(р, ψ, θ) [4]

$$\left(\frac{\partial Z}{\partial \rho}\cos\psi - \frac{\partial Z}{\partial \psi}\frac{\sin\psi}{\rho}\right)\gamma Kn\sin\theta + Z(\rho,\psi,\theta) + 1 = 0,$$
(1.8)

с граничным условием

$$Z(R_{i}, \psi_{i}, \theta) = (1 - \alpha)Z(R_{i}, \operatorname{sign}(\psi_{i})\pi - \psi_{i}, \theta), \quad (-1)^{i} \cos \psi_{i} < 0, \quad i = 1, 2.$$
(1.9)

Система уравнений характеристик для (1.8) и два ее первых интеграла имеют вид [4]

$$\frac{d\rho}{\gamma \operatorname{Kn} \cos \psi \sin \theta} = -\frac{\rho d\psi}{\gamma \operatorname{Kn} \sin \psi \sin \theta} = -\frac{dZ}{Z(\rho, \psi, \theta) + 1} = dt,$$

$$\rho |\sin \psi| = C_1, \quad (Z(\rho, \psi, \theta) + 1) \exp\left(\frac{\rho \cos \psi}{\gamma \operatorname{Kn} \sin \theta}\right) = C_2.$$
(1.10)

Для определения C_1 и C_2 в (1.10) рассмотрим три промежутка изменения угла ψ :

1) $-\psi_0 \le \psi \le \psi_0 - для$ молекул, которые летят к внешней поверхности, отразившись от внутренней, где угол ψ_0 определяется выражением $\psi_0 = \arcsin(R_1/\rho)$;

2) $\pi - \psi_0 \le \psi \le \pi$ или $-\pi \le \psi \le -\pi + \psi_0 - для$ молекул, которые отразились от внешней поверхности и летят к внутренней;

3) $\psi_0 < \psi < \pi - \psi_0$ или $-\pi + \psi_0 < \psi < -\psi_0 - для молекул, которые отразились от внешней поверхности и летят к ней.$

Выражаем функцию $Z(\rho, \psi, \theta)$ из второго интеграла (1.10) и подставляем ее в граничное условие (1.9). В результате для молекул с углом ψ из промежутка *i* (*i* = 1, 2) получаем

$$C_2^{(i)} \exp\left(-\frac{R_i \cos \psi_i}{\gamma \operatorname{Kn} \sin \theta}\right) - 1 = (1 - \alpha) \left(C_2^{(k)} \exp\left(\frac{R_i \cos \psi_i}{\gamma \operatorname{Kn} \sin \theta}\right) - 1\right),\tag{1.11}$$

где $k = i + (-1)^{i+1}$. Решая совместно уравнения (1.11), находим $C_2^{(i)}$:

$$C_{2}^{(i)} = \alpha \left((1 - \alpha) \exp\left(\frac{R_{i} \cos \psi_{i}}{\gamma \operatorname{Kn} \sin \theta}\right) + \exp\left(\frac{-R_{k} \cos \psi_{k}}{\gamma \operatorname{Kn} \sin \theta}\right) \right) \left(\exp\left(-\frac{R_{1} \cos \psi_{1} + R_{2} \cos \psi_{2}}{\gamma \operatorname{Kn} \sin \theta}\right) - (1 - \alpha)^{2} \exp\left(\frac{R_{1} \cos \psi_{1} + R_{2} \cos \psi_{2}}{\gamma \operatorname{Kn} \sin \theta}\right) \right)^{-1}, \quad k = i + (-1)^{i+1}, \quad i = 1, 2.$$

$$(1.12)$$

Для определения $\cos \psi_i$ в (1.12) воспользуемся первым независимым интегралом (1.10), учитывая при этом, что $(-1)^i \cos \psi_i < 0$, i = 1, 2. Подставив полученное таким образом выражение для $\cos \psi_i = (-1)^{i+1} \sqrt{R_i^2 - \rho^2 \sin^2 \psi} / R_i$ в (1.12), для промежутка i = 1, 2 имеем

$$Z(\rho, \psi, \theta) = w_i(\rho, \psi, \theta) - 1, \qquad (1.13)$$

$$w_i(\rho, \psi, \theta) = \alpha \exp\left(-\frac{\rho \cos \psi}{\gamma \operatorname{Kn} \sin \theta}\right) ((1 - \alpha)g_i(\rho, \psi, \theta) + g_k^{-1}(\rho, \psi, \theta)) \times$$
(1.14)

$$\times (g_1^{-1}(\rho, \psi, \theta)g_2^{-1}(\rho, \psi, \theta) - (1 - \alpha)^2 g_1(\rho, \psi, \theta)g_2(\rho, \psi, \theta))^{-1}, \quad k = i + (-1)^{i+1},$$

$$g_i(\rho, \psi, \theta) = \exp\left(\frac{(-1)^{i+1}\sqrt{R_i^2 - \rho^2 \sin^2 \psi}}{\gamma \text{Kn} \sin \theta}\right), \quad i = 1, 2.$$

$$(1.15)$$

Для молекул с углом ψ из промежутка 3 при подстановке выражения для $Z(\rho, \psi, \theta)$ из (1.10) в граничное условие (1.10) при i = 2 получаем

$$C_2^{(3)} \exp\left(-\frac{R_2 \cos \psi_2}{\gamma \operatorname{Kn} \sin \theta}\right) - 1 = (1 - \alpha) \left(C_2^{(3)} \exp\left(\frac{R_2 \cos \psi_2}{\gamma \operatorname{Kn} \sin \theta}\right) - 1\right),$$

где $\cos \psi_2 = -\sqrt{R_2^2 - \rho^2 \sin^2 \psi}/R_2$. Откуда следует, что функция $Z(\rho, \psi, \theta)$ в этом случае определяется выражением (13), в котором i = 3, а $w_3(\rho, \psi, \theta)$ имеет вид

$$w_3(\rho, \psi, \theta) = -\alpha \exp\left(-\frac{\rho \cos \psi}{\gamma K n \sin \theta}\right) ((1 - \alpha)g_2(\rho, \psi, \theta) - g_2^{-1}(\rho, \psi, \theta))^{-1}.$$
 (1.16)

Используя выражения (1.13)—(1.16), согласно (1.7) получаем явный вид функции распределения (1.6) для промежутка i ($i = \overline{1,3}$).

2. ВЫЧИСЛЕНИЕ ПОТОКОВ ТЕПЛА И МАССЫ В КАНАЛЕ

Отличные от нуля компоненты безразмерных векторов потока тепла $q_{T,z}(\rho)$ и массовой скорости $U_{T,z}(\rho)$ газа в канале определяются интегралами [4]

$$q_{T,z}(\rho) = \pi^{-3/2} \int \exp(-C^2) C_z^2 \left(C^2 - \frac{5}{2} \right) h(\rho, \mathbf{C}) d^3 \mathbf{C},$$
(2.1)

$$U_{T,z}(\rho) = \pi^{-3/2} \int \exp(-C^2) C_z^2 h(\rho, \mathbf{C}) d^3 \mathbf{C}.$$
 (2.2)

Приведенные потоки тепла и массы газа в канале в этом случае имеют вид

$$J_{T,M} = \frac{4}{R_2^2 - R_1^2} \int_{R_1}^{R_2} U_{T,z}(\rho) \rho d\rho = -\frac{2}{9} J_{T,Q}.$$
(2.3)

Подставляя (1.7) в (2.1) и (2.2), с учетом (1.13) получаем

$$U_{T,z}(\rho) = \frac{\gamma \text{Kn} G_T}{3\sqrt{\pi}} \left(1 - \frac{3}{2\pi} \sum_{i=1}^3 \int_0^{\pi} \cos^2 \theta \sin \theta \int_{\psi_{i,1}}^{\psi_{i,2}} w_i(\rho, \psi, \theta) d\psi d\theta \right) = -\frac{2}{9} q_{T,z}(\rho),$$
(2.4)

$$\Psi_{1,1} = 0, \quad \Psi_{1,2} = \Psi_{3,1} = \Psi_0, \quad \Psi_{2,1} = \Psi_{3,2} = \pi - \Psi_0, \quad \Psi_{2,2} = \pi, \quad \Psi_0(\rho) = \arcsin\left(\frac{R_1}{\rho}\right), \quad (2.5)$$

где функции $w_i(\rho, \psi, \theta), i = \overline{1, 3}$, определяются выражениями (1.14) и (1.16).

Вычислим значения $J_{T,M}$ в зависимости от α , R_1 и Kn с использованием полиномов Чебышева, где в качестве интерполяционных узлов подынтегральной функции выберем нули этих полиномов. Следует заметить, что в принятых безразмерных переменных $R_2 = 1$. Обозначение R_2 сохранено для симметрии записи соответствующих выражений. Вследствие того, что ортогональные многочлены Чебышёва I рода { $T_i(x)$ }, i = 0, 1, 2, ..., определены на отрезке [-1,1] [11]

$$T_i(x) = \cos i\theta, \quad x = \cos \theta, \quad \theta \in [0, \pi],$$

то область интегрирования в (2.3) приводим к кубу [-1,1]³ по формуле (см. [12])

$$\zeta(x, a_1, a_2) = \frac{x(a_2 - a_1) + (a_1 + a_2)}{2}, \quad x \in [-1, 1].$$
(2.6)

Подставляя (2.4) в (2.3) и применяя (2.6) к каждой переменной интегрирования, получаем

$$J_{T,M} = \frac{2\gamma \mathrm{Kn} G_T}{\pi^{3/2}} \Lambda, \quad \Lambda = \frac{\pi}{8(R_2 + R_1)} \int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} \sum_{i=1}^{3} f_i \Big(\zeta(\rho, R_1, R_2), \psi, \frac{\pi}{2}(\theta + 1) \Big) d\rho d\psi d\theta, \tag{2.7}$$

$$f_{i}(\rho, \psi, \theta) = (\psi_{i,2}(\rho) - \psi_{i,1}(\rho))f_{i}'(\rho, \zeta(\rho, \psi_{i,1}(\rho), \psi_{i,2}(\rho)), \theta),$$
(2.8)

$$f'_i(\rho, \psi, \theta) = w_i(\rho, \psi, \theta)\rho \cos^2 \theta \sin \theta.$$
(2.9)

ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ том 59 № 8 2019

1404

Для нахождения Λ в (2.7) при различных значениях α , R_1 и Kn, рассмотрим интеграл вида

$$I = \int_{[-1,1]^3} f(\mathbf{x}) d\mathbf{x}, \quad \mathbf{x} = (x^{(1)}, x^{(2)}, x^{(3)}).$$
(2.10)

Функцию $f(\mathbf{x})$ разложим в ряд по ортогональным многочленам Чебышёва I рода (см. [13])

$$f(\mathbf{x}) = \sum_{i_1=0}^{\infty} \dots \sum_{i_3=0}^{\infty} A_{\mathbf{i}} T_{i_1}(\mathbf{x}^{(1)}) \dots T_{i_3}(\mathbf{x}^{(3)}), \qquad (2.11)$$

где под \sum' понимаем сумму, в которой первое слагаемое умножается на 1/2, а **i** = (1, 2, 3).

Для определения $T_i(x)$ в разложении (2.11) воспользуемся рекуррентной формулой [11], [12]

$$T_0(x) = 1, \quad T_1(x) = x, \quad T_i(x) = 2xT_{i-1}(x) - T_{i-2}(x), \quad i \ge 2.$$
 (2.12)

Ограничиваясь в (2.11) членами с номерами $i_j \le n_j, \ j = \overline{1,3}$, имеем

$$f_{\mathbf{n}}(\mathbf{x}) = \sum_{i_1=0}^{n_1} \dots \sum_{i_3=0}^{n_3} a_{\mathbf{i}} T_{i_1}(\mathbf{x}^{(1)}) \dots T_{i_3}(\mathbf{x}^{(3)}).$$
(2.13)

Полагая в (2.13), что *n_i* – четное число (*j* = 1,3), и учитывая, что [12]

$$\int_{-1}^{1} T_{i}(x) dx = \begin{cases} \frac{2}{1-i^{2}}, & \text{если } i \text{ четное} \\ 0, & \text{если } i \text{ нечетное,} \end{cases}$$

получаем

$$I_{\mathbf{n}} = 2^{3} \sum_{i_{1}=0}^{n_{1}/2} \cdots \sum_{i_{3}=0}^{n_{3}/2} \frac{a_{2\mathbf{i}}}{(1-4i_{1}^{2})\dots(1-4i_{3}^{2})}.$$
(2.14)

Учитывая, что в нулях многочлена $T_{n_i+1}(x)$:

$$x_{k_j}^{(j)} = \cos\left(\frac{\pi(2(n_j - k_j) + 3)}{2(n_j + 1)}\right), \quad k_j = \overline{1, n_j + 1},$$
(2.15)

выполняется свойство [11]

$$\sum_{k_j=1}^{n_j+1} T_{i_j}(x_{k_j}^{(j)}) T_{l_j}(x_{k_j}^{(j)}) = \begin{cases} n_j+1, & i_j = l_j = 0, \\ 0, & i_j \neq l_j, \\ \frac{n_j+1}{2}, & 0 < i_j = l_j \le n_j, \end{cases}$$

находим неизвестные коэффициенты a_{2i} в (2.14)

$$a_{2\mathbf{i}} = \frac{2^3}{(n_1+1)^3} \sum_{k_1=1}^{n_1+1} \dots \sum_{k_3=1}^{n_3+1} f_{\mathbf{n}}(x_{k_1}^{(1)}, \dots, x_{k_3}^{(3)}) T_{2i_1}(x_{k_1}^{(1)}), \dots \cdot T_{2i_3}(x_{k_3}^{(3)}), \quad 0 \le 2i_j \le n_j, \quad j = \overline{1, 3}.$$
(2.16)

Подставляя (2.16) в (2.14), получаем

$$I_{\mathbf{n}} = \frac{4^{3}}{(n_{1}+1)^{3}} \sum_{k_{1}=1}^{n_{1}+1} \tau(x_{k_{1}}^{(1)}, n_{1}) \dots \sum_{k_{3}=1}^{n_{3}+1} \tau(x_{k_{3}}^{(3)}, n_{3}) f_{\mathbf{n}}(x_{k_{1}}^{(1)}, \dots, x_{k_{3}}^{(3)}), \quad \tau(x, n) = \sum_{i=0}^{n/2} \frac{T_{i}(x)}{1-4i^{2}}.$$
(2.17)

Для того чтобы оценить погрешность при численном интегрировании с использованием (2.17), воспользуемся формулой [14] и получим

$$E_{n}^{*} = |I_{n} - I_{n/2}|.$$
(2.18)

В табл. 1 и 2 приведены значения $J_{T,M}^{(n)}/G_T$, полученные по формуле (2.7) с использованием (2.17) и (2.15). Для всех указанных в табл. 1 и 2 значений α , R_1 и Кп оценка погрешности для Λ_n , вычисленные согласно (2.18) как $E_n^* = |\Lambda_n - \Lambda_{n/2}|$, не превышала 10^{-4} , а $|(J_{T,M}^{(C)} - J_{T,M}^{(n)})/G_T| < 10^{-5}$, где $J_{T,M}^{(C)}/G_T$ – величина приведенного потока массы (2.3), полученная методом CubaCubre [15] с точностью не менее 10^{-5} . Как следует из результатов, представленных в табл. 1 и 2, приведенный по-

Kn	$R_1 = R_1'/R_2'$								
	0	0.01	0.1	0.5	0.9				
0.001	0.0008	0.0008	0.0008	0.0008	0.0008				
0.010	0.0083	0.0083	0.0083	0.0082	0.0076				
0.100	0.0764	0.0764	0.0757	0.0698	0.0414				
0.500	0.2705	0.2695	0.2601	0.2014	0.0761				
1.000	0.3881	0.3862	0.3684	0.2660	0.0878				
2.000	0.4977	0.4948	0.4677	0.3208	0.0963				
5.000	0.6080	0.6040	0.5666	0.3724	0.1034				
10.00	0.6632	0.6586	0.6158	0.3970	0.1065				
100.0	0.7376	0.7321	0.6816	0.4290	0.1103				
1000	0.7502	0.7446	0.6927	0.4342	0.1108				

Таблица 1. Значения $J_{T,M}^{(n)}/G_T$ при $\alpha = 1$ в зависимости от R_1 и Кп

Таблица 2. Значения $J_{T,M}^{(n)}/G_T$ при $\alpha = 0.8, 0.9$ в зависимости от R_1 и Кп

Kn	$\alpha = 0.9, R_1 = R_1'/R_2'$			$\alpha = 0.8, R_1 = R_1'/R_2'$				
	0.01	0.1	0.5	0.9	0.01	0.1	0.5	0.9
0.001	0.0008	0.0008	0.0008	0.0008	0.0008	0.0008	0.0008	0.0008
0.010	0.0083	0.0083	0.0082	0.0077	0.0083	0.0083	0.0082	0.0078
0.100	0.0771	0.0765	0.0712	0.0442	0.0830	0.0800	0.0678	0.0574
0.500	0.2824	0.2735	0.2163	0.0862	0.2956	0.2872	0.2321	0.0977
1.000	0.4177	0.3997	0.2946	0.1017	0.4510	0.4332	0.3261	0.1179
2.000	0.5531	0.5243	0.3658	0.1135	0.6177	0.5873	0.4169	0.1341
5.000	0.7000	0.6579	0.4371	0.1239	0.8114	0.7642	0.5137	0.1488
10.00	0.7780	0.7284	0.4731	0.1286	0.9204	0.8628	0.5648	0.1558
100.0	0.8892	0.8281	0.5220	0.1344	1.0838	1.0096	0.6374	0.1647
1000	0.9091	0.8458	0.5303	0.1353	1.1146	1.0370	0.6503	0.1660

ток массы возрастает по абсолютной величине с увеличением значений Кn при фиксированном значении коэффициента аккомодации α . Аналогичное поведение $J_{T,M}^{(n)}/G_T$ наблюдаем с уменьшением α при фиксированных значениях R_1 и Kn, что подтверждается выводами, приведенными в [16] для цилиндрического канала.

Профили распределения массовой скорости (2.4) газа в канале при $\alpha = 0.9$ для значений Kn = 0.1, 1, 10 и $R_1 = R'_1/R'_2 = 0.1, 0.9$ приведены на фиг. 1–3. Уменьшение значений Kn понижает профиль $U_{T,z}/G_T$ в целом, причем на внешнем цилиндре значение этой величины остается больше, чем на внутреннем.

3. АНАЛИЗ ПОЛУЧЕННЫХ РЕЗУЛЬТАТОВ

В свободномолекулярном режиме течения функции $w_i = w_i(\rho, \psi, \theta)$ в выражении для массовой скорости газа (2.4) представляем в виде ряда по малому параметру 1/Кп и ограничиваемся линейными членами этого ряда ($i = \overline{1, 3}$). В результате имеем

$$U_{T,z}(\rho) = \frac{G_T}{4\alpha\sqrt{\pi}} \left(\int_0^{\psi_0} \left((1-\alpha)\sqrt{R_2^2 - \rho^2 \sin^2 \psi} - \sqrt{R_1^2 - \rho^2 \sin^2 \psi} \right) d\psi + \int_{\pi-\psi_0}^{\pi} \left(\sqrt{R_2^2 - \rho^2 \sin^2 \psi} - (1-\alpha)\sqrt{R_1^2 - \rho^2 \sin^2 \psi} \right) d\psi + (2-\alpha) \int_{\psi_0}^{\pi-\psi_0} \sqrt{R_1^2 - \rho^2 \sin^2 \psi} d\psi \right).$$
(3.1)

Фиг. 1. Профиль массовой скорости газа $U_{T,z}/G_T$ в канале при $\alpha = 0.9$ для Kn = 0.1 и $R_l = 0.1$ и $R_l = 0.9$.

Фиг. 2. Профиль массовой скорости газа $U_{T,z}/G_T$ в канале при $\alpha = 0.9$ для Kn = 1.0 и $R_l = 0.1$ и $R_l = 0.9$.

Выражения (3.1) в этом случае совпадают с результатами, полученными из кинетического уравнения Больцмана в отсутствие межмолекулярных столкновений. При Kn = 100 значения $J_{T,M}^{(n)}$ из табл. 1 и 2 не более, чем на 3% меньше своего свободномолекулярного предела.

В случае полной аккомодации молекул газа стенками канала ($\alpha = 1$) выражение (2.4) принимает вид

$$U_{T,z}(\rho) = \frac{G_T \gamma \mathrm{Kn}}{3\sqrt{\pi}} \left(1 - \frac{3}{2\pi} \sum_{i=1}^2 \int_0^{\pi} \cos^2 \theta \sin \theta d\theta \int_{\psi_i}^{\psi'_{i+1}} \exp\left(-\frac{\rho \cos \psi}{\gamma \mathrm{Kn} \sin \theta}\right) g_i(\rho, \psi, \theta) d\psi \right) =$$

= $-\frac{2}{9} q_{T,z}(\rho), \quad \psi'_1 = 0, \quad \psi'_1 = \psi_0, \quad \psi'_3 = \pi,$ (3.2)

ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ том 59 № 8 2019

Фиг. 3. Профиль массовой скорости газа $U_{T,z}/G_T$ в канале при $\alpha = 0.9$ для Kn = 10 и R₁ = 0.1 и R₁ = 0.9.

и совпадает с выражениями из [3] и [4] при использовании диффузной модели отражения молекул газа от поверхности. Значения $J_{T,M}^{(n)}$ при $\alpha = 1$ и $R_l = 0$, приведенные в табл. 1, отличаются от аналогичных результатов, полученных в работе [7] в рамках S-модели кинетического уравнения Больцмана, менее чем на 7% для Kn ≥ 1 .

Для режимов течения, близких к гидродинамическому (Kn ≪ 1), анализ выражений (2.3) и (2.4) приводит к следующим результатам:

$$J_{T,M} = \frac{5G_T \mathrm{Kn}}{6}, \quad J_{T,Q} = -\frac{15G_T \mathrm{Kn}}{4}.$$
(3.3)

Таким образом, для значений Kn \ll 1 приведенные потоки тепла и массы не зависят от отношения α и R_1 . Последнее утверждение подтверждается результатами, представленными в табл. 1 и 2 для Kn < 0.01. Согласно [17] в гидродинамическом режиме (Kn = 0) поток массы в отсутствие действия градиента давления равен нулю, что также следует из (3.3) и анализа значений $J_{TM}^{(n)}$,

деиствия градиента давления равен нулю, что также следует из (5.5) и анализа значении $J_{T,M}$, приведенных в табл. 1 и 2.

ЗАКЛЮЧЕНИЕ

В рамках кинетического подхода построено решение модельного кинетического уравнения для осесимметричной линеаризованной задачи о медленном продольном течении разреженного газа между коаксиальными цилиндрами бесконечной длины под действием градиента температуры. При различных значениях отношения радиусов цилиндров построен профиль распределения массовой скорости разреженного газа в зависимости от коэффициента аккомодации тангенциального импульса. Показано, что приведенные потоки тепла и массы существенно зависят от коэффициента аккомодации тангенциального импульса.

СПИСОК ЛИТЕРАТУРЫ

- 1. Шахов Е.М. Течение разреженного газа между коаксиальными цилиндрами под действием градиента давления // Ж. вычисл. матем. и матем. физ. 2003. Т. 43. № 7. С. 1107–1116.
- 2. *Pantazis S., Valougeorgis D.* Heat transfer through rarefied gases between coaxial cylindrical surfaces with arbitrary temperature difference // European Journal of Mechanics B/Fluids. 2010. V. 29. № 6. P. 494–509.
- 3. *Гермидер О.В., Попов В.Н., Юшканов А.А.* Аналитическое решение задачи о переносе тепла в разреженном газе между двумя коаксиальными цилиндрами // Прикл. механ. и техн. физ. 2017. Т. 58. № 2 (342). С. 115–121.

- 4. *Гермидер О.В., Попов В.Н.* Решение линеаризованной задачи о переносе тепла и массы газа в канале между двумя цилиндрическими поверхностями при наличии продольного градиента температуры // Ж. вычисл. матем. и матем. физ. 2018. Т. 58. № 10. С. 1668–1676.
- 5. *Гермидер О.В., Попов В.Н.* Математическое моделирование процессов тепло- и массопереноса в цилиндрическом канале в зависимости от коэффициента аккомодации тангенциального импульса // Ж. техн. физ. 2017. Т. 87. № 11. С. 1603–1608.
- 6. *Kamphorst C.H., Rodrigues P., Barichello L.B.* A closed-form solution of a kinetic integral equation for rarefied gas flow in a cylindrical duct // Appl. Math. 2014. V. 5. P. 1516–1527.
- 7. *Siewert C.E., Valougeorgis D.* An analytical discrete-ordinates solution of the S-model kinetic equations for flow in a cylindrical tube // J. Quant. Spectrosc. Radiat. Transf. 2002. V. 72. P. 531–550.
- 8. Шахов Е.М. Течение разреженного газа в трубе конечной длины // Ж. вычисл. матем. и матем. физ. 2000. Т. 40. № 4. С. 647–655.
- 9. *Germider O.V., Popov V.N., Yushkanov A.A.* Computation of the heat flux in a cylindrical duct within the framework of the kinetic approach // J. Eng. Phys. Thermophy. 2016. V. 89. № 5. P. 1338–1343.
- 10. Коган М.Н. Динамика разреженного газа. Кинетическая теория. М.: Наука, 1967.
- 11. Handscomb D.C., Mason J.C. Modern developments in gas dynamics. Florida: CRC Press, 2003.
- 12. *Clenshaw C.W., Curtis A.R.* A method for numerical integration on an automatic computer // Num. Math. 1960. V. 2. P. 197–205.
- 13. *Lloyd N. Trefethen* Multivariate polynomial approximation in the hypercube // American Math. Society. 2017. V. 145. № 11. P. 4837–4844.
- 14. *Genz A., Kass R.E.* Subregion adaptive integration of functions having a dominant peak // Carnegie Mellon University, Dept. of Statistics. technical rept. 1993. P. 1–19.
- 15. *Hahn T*. Cuba a library for multidimensional numerical integration // Comput. Phys. Communicat. 2007. V. 176. № 11–12. P. 712–713.
- 16. Кошмаров Ю.А., Рыжов Ю.А. Прикладная динамика разреженного газа. М.: Машиностр., 1977.
- 17. *Шарипов Ф.М., Селезнев В.Д.* Движение разреженных газов в каналах и микроканалах. Екатеринбург: УрО РАН, 2008.