УДК 519.633

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ТРОПИЧЕСКИХ ЦИКЛОНОВ НА ОСНОВЕ ОПИСАНИЯ ТРАЕКТОРИЙ ВЕТРА

© 2019 г. М. Аоуаоуда^{1,*}, А. Аяди^{1,**}, Х. Фуджита Яшима^{2,***}

(¹ Université d'Oum El Bouaghi, Algérie; ² École Normale Supérieure de Constantine, Algérie) *e-mail: meryem.aouaouda@gmail.com **e-mail: facmath@yahoo.fr ***e-mail: hisaofujitayashima@qq.com, hisaofujitayashima@yahoo.com Поступила в редакцию 15.03.2019 г. Переработанный вариант 16.04.2019 г. Принята к публикации 15.05.2019 г.

Рассмотрена математическая модель развития тропического циклона, состоящая из системы уравнений, полученных преобразованием уравнения движения газа (воздуха) без учета вязкости и теплопроводности в форму уравнений вдоль траекторий ветра с осевой симметрией в цилиндрической области. Результат численного расчета решения показал рост скорости ветра в соответствии с конденсацией водяного пара и нагреванием воздуха, а также стабилизацию скорости в соответствии с аккумуляцией паров воды или льдинок в воздухе. При этом трение о воздух таких частиц воды замедляет восходящее движение воздуха. Библ. 15. Фиг. 9. Табл. 2.

Ключевые слова: тропический циклон, траектории ветра, уравнения движения воздуха, конденсация водяного пара, метод конечных разностей.

DOI: 10.1134/S0044466919090047

1. ВВЕДЕНИЕ

Математическое моделирование тропических циклонов давно интересует многих исследователей. В этой связи укажем нескольких авторов, предложивших различные модели этого явления (см., например, [1]–[9]). Напомним, что, как объясняется в обширной литературе (в том числе в процитированных выше работах), рост и поддержание тропического циклона обусловлены, прежде всего, восходящим движением воздуха, вызванным выделением скрытой теплоты конденсации водяного пара. Этот механизм циклона сопровождается действием силы Кориолиса, которая порождает круговое движение воздуха, а также сопровождается трением капель воды (или кусочков льдинок) о воздух, которое замедляет восходящее движение воздуха.

Целью данной работы является выявление этого механизма путем численного моделирования на основе фундаментальных уравнений механики газа (см. [10]) без учета вязкости и теплопроводности. Для этого рассматриваются уравнения в цилиндрической области с осевой симметрией (см. ниже (3)–(7)). Поскольку исследуемая модель сводится к решению системы уравнений в частных производных первого порядка, то она преобразуется в семейство уравнений на траекториях (характеристиках), что позволяет эффективно вычислять искомое решение. Идея этого моделирования частично изложена в [11].

Для численного решения выбранной модели использована разностная схема, которая частично базируется на методах, разработанных в [12] и [13]. Однако в этих работах расчет производился только для вертикального потока воздуха. В настоящей работе разработан алгоритм вычисления радиальной и тангенциальной составляющих скорости.

В рамках принятых приближений (инвариантный радиус циклона, фиксированные траектории ветра, отсутствие вязкости и теплопроводности), результат моделирования данной работы явно показывает главные аспекты эволюции тропического циклона из-за конденсации водяного пара, создающей восходящее движение воздуха, и его стабилизации из-за трения капель о воздух.

2. ПРИНЦИПЫ МОДЕЛИРОВАНИЯ И ПРЕОБРАЗОВАНИЕ УРАВНЕНИЙ

Рассмотрим движение воздуха внутри тропического циклона, принимая во внимание осевую симметрию течения в фиксированной цилиндрической области. Точнее говоря, рассмотрим течение в области

$$\Omega = \{ (r, \vartheta, z) \in \mathbb{R}_+ \times [0, 2\pi \times \mathbb{R} | (r, z) \in \Gamma_{r, z}, 0 \le \vartheta < 2\pi \},$$
(1)

$$\Gamma_{r,z} = \{ (r,z) \in \mathbb{R}_+ \times \mathbb{R} \mid 0 < z < \overline{z}_1, \Lambda_0(z) < r < \Lambda_1 \}.$$
⁽²⁾

Здесь (r, ϑ, z) — цилиндрические координаты, а ось *z* совпадает с осью кругового движения воздуха. Область { $0 < z < \overline{z_1}, 0 \le r < \Lambda_0(z)$ } будет соответствовать зоне "глаза". Поскольку в "глазе" движение воздуха имеет несколько иные аспекты, чем в остальной части тропического циклона, то в настоящей работе мы исключаем его из нашего рассмотрения.

Если предположить, что все входящие в уравнения функции не зависят от ϑ и пренебречь вязкостью и теплопроводностью, то уравнения движения газа (воздуха) (см. [10]) в координатах (r, z), примут следующий вид:

$$\frac{\partial \varrho}{\partial t} + \frac{1}{r} \frac{\partial (r \varrho v_r)}{\partial r} + \frac{\partial (\varrho v_z)}{\partial z} = -H_{tr},$$
(3)

$$\varrho \left(\frac{\partial v_r}{\partial t} + v_r \frac{\partial v_r}{\partial r} - \frac{1}{r} v_{\vartheta}^2 + v_z \frac{\partial v_r}{\partial z} \right) = -R_1 \frac{\partial (\varrho T)}{\partial r} + f_0 \varrho v_{\vartheta} - \varepsilon_1(z) v_r, \tag{4}$$

$$\varrho\left(\frac{\partial v_{\vartheta}}{\partial t} + v_r \frac{\partial v_{\vartheta}}{\partial r} + \frac{1}{r} v_{\vartheta} v_r + v_z \frac{\partial v_{\vartheta}}{\partial z}\right) = -f_0 \varrho v_r - \varepsilon_1(z) v_{\vartheta},\tag{5}$$

$$\varrho \left(\frac{\partial v_z}{\partial t} + v_r \frac{\partial v_z}{\partial r} + v_z \frac{\partial v_z}{\partial z} \right) = -R_1 \frac{\partial (\varrho T)}{\partial z} - [\Sigma + \varrho]g, \tag{6}$$

$$\rho c_{v} \left(\frac{\partial T}{\partial t} + v_{r} \frac{\partial T}{\partial r} + v_{z} \frac{\partial T}{\partial z} \right) = -R_{l} \rho T \left(\frac{\partial v_{r}}{\partial r} + \frac{1}{r} v_{r} + \frac{\partial v_{z}}{\partial z} \right) + L_{tr} H_{tr}.$$
(7)

Здесь ϱ , T, v_r , v_ϑ и v_z – соответственно плотность, температура, радиальная, тангенциальная и вертикальная составляющая скорости, а давление представлено как $R_i \varrho T$ (R_i – постоянная). Кроме того, c_v – удельная теплоемкость воздуха, а $f_0 = 2 |\omega| \sin \varphi_0$ – коэффициент силы Кориолиса, определяемый угловой скоростью ω вращения Земли и географической широтой центра циклона φ_0 . Для силы Кориолиса в выбранной системе уравнений используем приближение, пренебрегающее его вертикальной составляющей и членами, связанными с вертикальной составляющей скорости. С другой стороны, эффект трения между воздухом и поверхностью моря представлен в виде $-\varepsilon_1(x_3)(v - (v \cdot e_3)e_3)$, где $\varepsilon_1(x_3)$ является функцией, которая строго положительна в окрестности $x_3 = 0$ и обращающейся в ноль при достаточно больших x_3 . При этом H_{tr} – масса водяного пара, переходящего в жидкое или твердое фазовое состоянии (в воздухе), L_{tr} – скрытая теплота перехода воды из газообразного в жидкое или твердое состояние.

Отметим, что поскольку

$$\frac{1}{r}\frac{\partial(r\varrho v_r)}{\partial r} + \frac{\partial(\varrho v_z)}{\partial z} = \frac{\varrho v_r}{r} + v_r \frac{\partial \varrho}{\partial r} + v_z \frac{\partial \varrho}{\partial z} + \varrho \left(\frac{\partial v_r}{\partial r} + \frac{\partial v_z}{\partial z}\right),$$

то в каждом из уравнений (3)–(7) присутствует дифференциальный оператор переноса

$$v_r \frac{\partial}{\partial r} \cdot + v_z \frac{\partial}{\partial z}$$

Этот оператор определяет траектории ветра на плоскости (r, z), которые могут быть рассчитаны. Для того, чтобы подчеркнуть влияние процесса конденсации, нагревания воздуха и его восходящего движения, определяющего эволюцию тропического циклона, предположим, что определенные таким образом траектории на плоскости (r, z) являются гладкими и относительно устойчивыми. Выбирая соответствующим образом траектории на плоскости (r, z) предскости (r, z) водно семейство уравнений на траекториях.

Предполагая, что $v_r^2 + v_z^2 > 0$, положим

$$q_r = \frac{V_r}{\sqrt{v_r^2 + v_z^2}}, \quad q_z \frac{V_z}{\sqrt{v_r^2 + v_z^2}}.$$
(8)

Введем семейство функций $\gamma(s) = (\gamma_r(s), \gamma_z(s))$, определяемых соотношениями

$$\frac{d}{ds}\gamma_r(s) = q_r(\gamma(s)), \quad \frac{d}{ds}\gamma_z(s) = q_z(\gamma(s)). \tag{9}$$

Ясно, что в предположении регулярности ($q_r(r, z), q_z(r, z)$) семейство функций γ , которые проходят через каждую точку (r, z) из $\Gamma_{r,z}$ и удовлетворяют уравнениям (9), целиком заполнит область $\Gamma_{r,z}$.

Предположим, что семейство функций $\{\gamma\}$ определено и не зависит от *t*. Затем, используя со-отношение

$$v_r \frac{\partial}{\partial r} \varphi(t, r, z) + v_z \frac{\partial}{\partial z} \varphi(t, r, z) = v_\gamma \frac{\partial}{\partial s} \varphi(t, \gamma(s)) \equiv v_\gamma \frac{\partial}{\partial s} \varphi(t, s)$$

с $v_{\gamma} = \sqrt{v_r^2 + v_z^2}$, уравнения (3) и (5) преобразуются к виду

$$\frac{\partial \varrho}{\partial t} + \frac{\partial (\varrho v_{\gamma})}{\partial s} + \frac{\varrho v_r}{r} + \varrho v_{\gamma} \left(\frac{\partial q_r}{\partial r} + \frac{\partial q_z}{\partial z} \right) = -H_{tr}, \tag{10}$$

$$\frac{\partial v_{\vartheta}}{\partial t} + v_{\gamma} \frac{\partial v_{\vartheta}}{\partial s} + \frac{q_r v_{\gamma} v_{\vartheta}}{r} = -f_0 q_r v_{\gamma} - \frac{\varepsilon_1(z) v_{\vartheta}}{\varrho},\tag{11}$$

а используя равенство $\rho\left(\frac{\partial v_r}{\partial r} + \frac{1}{r}v_r + \frac{\partial v_z}{\partial z}\right) = -H_{tr} - \frac{\partial \rho}{\partial t} - v_\gamma \frac{\partial \rho}{\partial s}$, которое эквивалентно (3), уравнение (7) преобразуется к виду

$$\rho c_{\nu} \left(\frac{\partial T}{\partial t} + v_{\gamma} \frac{\partial T}{\partial s} \right) - R_{\rm l} T \left(\frac{\partial \rho}{\partial t} + v_{\gamma} \frac{\partial \rho}{\partial s} \right) = (R_{\rm l} T + L_{tr}) H_{tr}.$$
(12)

С другой стороны, умножив уравнение (4) на q_r и уравнение (6) на q_z и используя равенство

$$\frac{\partial q_r^2}{\partial s} + \frac{\partial q_z^2}{\partial s} = 0,$$

получим

$$\varrho \left(\frac{\partial v_{\gamma}}{\partial s} + v_{\gamma} \frac{\partial v_{\gamma}}{\partial s} - \frac{q_r}{r} v_{\vartheta}^2 \right) = -R_1 \frac{\partial(\varrho T)}{\partial s} + q_r \varrho f_0 v_{\vartheta} - [\varepsilon_1(z) q_r^2 v_{\gamma} - q_z g(\varrho + \Sigma)].$$
(13)

Для численного разрешения рассмотрим приближенную задачу для этой системы уравнений, полученную путем разделения между временной эволюцией и пространственной структурой для v_{γ} , ρ , T (как это было сделано в [12], [13]). Точнее говоря, положим

$$v_{\gamma}(t,s) = \alpha_{\gamma}(t)w(t,s) \tag{14}$$

на каждой траектории γ (поэтому $w(t, s) = w(\gamma, t, s))$ и предположим

$$\frac{\partial w}{\partial t} \approx 0, \quad \frac{\partial \varrho}{\partial t} \approx 0, \quad \frac{\partial T}{\partial t} \approx 0.$$
 (15)

С другой стороны, рассмотрим $v_{\vartheta}(t,s) = v_{\vartheta}(\gamma;t,s)$ на каждом γ как функцию от (t,s), т.е. для $v_{\vartheta}(t,s)$ не используем разделение между временной эволюцией и пространственной структурой. Действительно, ее эволюция не определяется как прямое следствие процесса конденсации пара и восходящего потока воздуха.

Для того, чтобы преобразовать уравнения (10)–(13) в приближенную задачу, используя введенное в (14)–(15) разделение между временной эволюцией и пространственной структурой, положим

$$D(t) = D_{\gamma}(t) = \frac{d}{dt} \alpha_{\gamma}(t), \tag{16}$$

ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ том 59 № 9 2019

1556

$$J(s) = J(\gamma, s) = \int_{0}^{s} \left(\frac{\partial q_r(r, z)}{\partial r} + \frac{\partial q_z(r, z)}{\partial z} \right)_{(r, z) = \gamma(s')} ds'.$$
(17)

Наконец, примем следующее выражение Н_{tr}:

$$H_{tr} = h_{tr} [v_z]^{\dagger} = h_{tr} [\alpha(t)q_z w]^{\dagger}, \quad h_{tr} = \overline{\pi}_{vs}(T) \frac{d}{dz} \log \varrho - \frac{d}{dz} \overline{\pi}_{vs}(T), \quad (18)$$

где ([·]⁺ обозначает положительную часть), обоснование которого найдено, например, в [12]. Таким образом, предположив, что $\varrho > 0$, w > 0, $q_z \ge 0$, и написав $\frac{dw}{ds}$, $\frac{d\varrho}{ds}$, $\frac{dT}{ds}$ вместо $\frac{\partial w}{\partial s}$, $\frac{\partial \varrho}{\partial s}$, $\frac{\partial T}{\partial s}$, на каждой траектории γ вместо (10)–(13) рассмотрим систему уравнений

$$\frac{d}{ds}(\varrho w) = -q_z w \left(\frac{\overline{\pi}_{vs}(T)}{\varrho} \frac{d\varrho}{dz} - \frac{d\overline{\pi}_{vs}(T)}{dT} \frac{dT}{dz} \right) - \frac{\varrho w}{rJ} \frac{d(rJ)}{ds},$$
(19)

$$\frac{1}{\alpha(t)w}\frac{\partial v_{\vartheta}}{\partial t} + \frac{\partial v_{\vartheta}}{\partial s} + \frac{q_r}{r}v_{\vartheta} = -f_0q_r - \frac{\varepsilon_1(z)}{\alpha(t)\varrho w}v_{\vartheta},$$
(20)

$$\varrho c_{v} \frac{dT}{ds} - R_{l}T \frac{d\varrho}{ds} = (R_{l}T + L_{u})q_{z} \left(\frac{\overline{\pi}_{vs}(T)}{\varrho} \frac{d\varrho}{dz} - \frac{d\overline{\pi}_{vs}(T)}{dT} \frac{dT}{dz}\right),$$
(21)

$$\varrho w D(t) + \varrho \left((\alpha(t))^2 w \frac{dw}{ds} - \frac{q_r}{r} v_{\vartheta}^2 \right) = -R_1 \frac{d}{ds} (\varrho T) + q_r \varrho f_0 v_{\vartheta} - [\varepsilon_1(z) \alpha q_r^2 w + q_z g(\varrho + \Sigma)].$$
(22)

Поскольку траектории перемещения жидкой или твердой воды отличаются от траекторий потока воздуха γ , то дадим практическое определение для вычисления массы жидкой или твердой воды на каждой траектории воздуха в разд. 4 после определения нашего выбора траекторий движения воздуха. В разд. 4 будет объяснена роль члена D(t) в уравнении (22), а также граничные условия для втекания и вытекания воздуха в уравнениях (19)–(22).

3. ВЫБОР ТРАЕКТОРИЙ

Как было показано выше, если зафиксировать траектории γ , то можно свести систему уравнений (3)–(7) для неизвестных ϱ , T, v_r , v_ϑ и v_z к системе четырех уравнений для четырех неизвестных ϱ , T, v_γ и v_ϑ , что позволяет эффективно выполнить необходимый расчет. Но траектории являются неизвестными, то для получения устойчивого результата моделирования тропического циклона его траектории также должны быть хорошими приближениями реальных траекторий. В этой связи напомним, что в литературе, описывающей физику тропических циклонов, принято считать, что в нижней части циклона воздух движется к центру, в области вблизи центра тайфуна он движется вверх, а в его верхней части воздух перемещается к периферии. Поэтому мы также примем эту общую схему потока воздуха.

Для того, чтобы выбор траекторий не приводил к искусственному результату, необходимо аккуратное решение вопроса о выборе траекторий. В частности, их важно выбрать так, чтобы семейство этих траекторий не нарушало закон сохранения массы. Иными словами, если $\overline{\varrho}$ представляет собой такую не зависимую от *t* функцию, что плотность ϱ должна быть близкой к $\overline{\varrho}$, а траектории определяются полем скорости \overline{v} (мы будем называть $\overline{\varrho}$ основной плотностью, а \overline{v} основным полем скорости), то величина $\nabla \cdot (\overline{\varrho v})$ должна оставаться достаточно маленькой. Даже если плотность ϱ неизвестна, то можно определить основную плотность $\overline{\varrho}$ по гидростатическому принципу, а основное поле скорости \overline{v} можно взять в соответствии с соотношением $\nabla \cdot (\overline{\varrho v}) \approx 0$, что согласуется со многими наблюдениями, сделанными на тропических циклонах.

При реализации численного алгоритма мы выбираем определенное число N траекторий и обозначаем их через γ_j , j = 1, ..., N. Теперь полагаем, согласно принятой схеме, что каждая траектория γ_j состоит из трех компонент: нижней части $\gamma_j^{[1]}$, где воздух движется почти горизонтально к центру, восходящей части $\gamma_j^{[2]}$, и верхней части $\gamma_j^{[3]}$, где воздух движется почти горизонтально к периферии. В настоящей работе для основной скорости \overline{v} в $\gamma_j^{[1]}$ и $\gamma_j^{[3]}$ примем приближение го-

1557

ризонтального потока, так что функция *w* будет иметь поведение $rw(r) \approx a_{j,1}$ на $\gamma_j^{[1]}$ и $rw(r) \approx a_{j,3}$ на $\gamma_j^{[3]}$ ($a_{j,1}$ и $a_{j,3}$ являются постоянными). Таким образом, потоки на компонентах $\gamma_j^{[1]}$ и $\gamma_j^{[3]}$ будут параллельны оси *r* на плоскости (*r*, *z*).

Далее положим

$$\gamma_{j} = \gamma_{j}^{[1]} \cup \gamma_{j}^{[2]} \cup \gamma_{j}^{[3]},$$

$$\gamma_{j}^{[1]} = \{(r, z) \in \Gamma_{r, z} | r_{j}(z_{j}^{-}) \le r \le \Lambda_{1}, z = z_{j}^{-}\},$$

$$\gamma_{j}^{[2]} = \{(r, z) \in \Gamma_{r, z} | r = r_{j}(z), z_{j}^{-} \le z \le z_{j}^{+}\},$$

$$\gamma_{1}^{[3]} = \{(r, z) \in \Gamma_{r, z} | r_{j}(z_{j}^{+}) \le r \le \Lambda_{1}, z = z_{j}^{+}\}.$$
(23)

Из этой структуры траектории видно, что γ_j имеет угол в точке $(r_j(z_j^-), z_j^-)$, соединяющей части $\gamma_j^{[1]}$ и $\gamma_j^{[2]}$, а также в точке $(r_j(z_j^+), z_j^+)$, соединяющей части $\gamma_j^{[2]}$ и $\gamma_j^{[3]}$. Наличие таких углов на траектории не является естественным. Однако в настоящей модели мы полагаем что такие углы не оказывают принципиального влияния на интегральный результат расчетов.

Для того, чтобы выбрать функции $r_j(z)$, которые появляются в определении $\gamma_j^{[2]}$, используем в качестве основной плотности $\overline{\varrho}$ гидростатическое распределение плотности влажного воздуха, и примем эмпирический критерий отношения между максимальным значением вертикальной составляющей \overline{v}_z и максимальным значением радиальной составляющей \overline{v}_r основной скорости \overline{v} . Примем также предположение, в соответствии с которым на величину $rw(r, z)|_{(r,z)\in\gamma_i^{[2]}}$ не влияет r.

Это предположение аналогично критерию, принятому выше для частей $\gamma_i^{[1]}$ и $\gamma_i^{[3]}$ траекторий.

Далее, чтобы определить использованную здесь основную плотность $\overline{\varrho}$, рассмотрим систему уравнений гидростатического распределения воздуха, который может быть влажным:

$$\varrho c_{v} \frac{dT}{dz} - R_{l}T \frac{d\varrho}{dz} = \vartheta(z)(R_{l}T + L_{tr})(\overline{\pi}_{vs}(T)\frac{d}{dz}\log\varrho - \frac{d}{dz}\overline{\pi}_{vs}(T)), \qquad (24)$$

$$R_1 \frac{d}{dz}(\varrho T) = -g\varrho, \tag{25}$$

где $0 \le \vartheta(z) \le 1$ (для существования и единственности решения этой системы уравнений, см. [13]). Случай $\vartheta(z) = 0$ соответствует состоянию полностью сухого воздуха, а случай $\vartheta(z) = 1 -$ случаю насыщенного влажного воздуха. Во втором из этих случаев температура распределена так, что происходит постоянная конденсация влаги. Выберем в качестве $\overline{\varrho}$ решение этой системы уравнений с $\vartheta(z) = 1$.

Что касается отношения максимального значения вертикальной составляющей скорости ветра к максимальному значению ее радиальной составляющей, то в моделях разных авторов эта величина различна. В нашей модели, следуя основным ее положениям [7], примем критерий

максимальное значение
$$v_z$$
 на $\gamma_j^{[2]} \approx \frac{1}{3}$. (26)
максимальное значение $|v_r|$ на $\gamma_j^{[1]} \approx \frac{1}{3}$.

Начнем выбор траекторий с определения функции $\Lambda_0(z)$, которая представляет собой внешнюю границу "глаза" (см. (2)). Положим

$$\Lambda_0(z) = \Lambda_0(0) \sqrt{\frac{\underline{\rho}(0)}{\underline{\rho}(z)}}.$$
(27)

Действительно, если в области "глаза" { $0 < z < \overline{z_1}, 0 \le r < \Lambda_0(z)$ } с $\Lambda_0(z)$, определенной (27), воздух движется со скоростью $\overline{v_0}$, имеющей не зависимую от *z* вертикальную составляющую, то справедливо $\nabla \cdot (\overline{\rho v_0}) = 0$. Это означает, что выбор $\Lambda_0(z)$ не будет влиять на возможное движение воздуха в "глазе" тайфуна.

Для того, чтобы определить $\gamma_{j}^{[2]}$ в соответствии с принятыми критериями, предположим

$$rw(r,z)|_{(r,z)\in\gamma_{i}^{[2]}} = a_{j,2}Q,$$
(28)

где $a_{i,2}$ – постоянная, а

$$Q = \frac{1}{\sqrt{9q_z^2 + q_r^2}} = \frac{1}{\sqrt{1 + 8q_z^2}} = \frac{1}{\sqrt{9 - 8q_r^2}}.$$
(29)

Поскольку Q является зависимой только от $\frac{q_r}{q_z}$ функцией, согласно предположению (28) величина $rw(r,z)|_{(r,z)\in\gamma_j^{[2]}}$ определяется отношением $\frac{q_r}{q_z}$. С другой стороны, если $(q_r,q_z) = (0,1)$, то $Q = \frac{1}{3}$, а если $(q_r,q_z) = (1,0)$, то Q = 1, в соответствии с критерием (26).

Так как согласно предположению (15) выполнено $\frac{\partial \varrho}{\partial t} \approx 0$, а H_{tr} относительно небольшое, то заменяя $v_r = \alpha_{\gamma_j} q_r w$ и $v_z = \alpha_{\gamma_j} q_z w$ в (3) и считая α_{γ_j} не зависимым от r и z в области, представленной траекториями γ_j , получаем

$$\frac{\partial (rw\varrho q_r)}{\partial r} + \frac{\partial (rw\varrho q_z)}{\partial z} \approx 0.$$
(30)

Далее, заменяя $rw = a_{j,2}Q$ и $\varrho = \overline{\varrho}(z)$ в (30), получаем

$$\frac{\partial (Q\overline{\varrho}(z)q_r)}{\partial r} + \frac{\partial (Q\overline{\varrho}(z)q_z)}{\partial z} = 0$$

Так как $\frac{\partial}{\partial r}\overline{\varrho}(z) = 0$, из этого равенства следует

$$-(q_z Q) \frac{d}{dz} \overline{\varrho}(z) = \overline{\varrho} \left(\frac{\partial (Qq_r)}{\partial r} + \frac{\partial (Qq_z)}{\partial z} \right).$$
(31)

Перепишем (31) в виде

$$-(q_z Q)\frac{1}{\varrho}\frac{d}{dz}\overline{\varrho} = q_r\frac{\partial Q}{\partial r} + q_z\frac{\partial Q}{\partial z} + Q\left(\frac{\partial q_r}{\partial r} + \frac{\partial q_z}{\partial z}\right).$$
(32)

Далее, из выражения (29) следует

$$\frac{\partial Q}{\partial r} = \frac{\partial}{\partial r} \frac{1}{\sqrt{9 - 8q_r^2}} = \frac{8q_r}{(9 - 8q_r^2)^{3/2}} \frac{\partial q_r}{\partial r} = 8q_r Q^3 \frac{\partial q_r}{\partial r},$$
(33)

$$\frac{\partial Q}{\partial z} = \frac{\partial}{\partial z} \frac{1}{\sqrt{1 + 8q_z^2}} = \frac{-8q_z}{(1 + 8q_z^2)^{3/2}} \frac{\partial q_z}{\partial z} = -8q_z Q^3 \frac{\partial q_z}{\partial z}.$$
(34)

Теперь заменим (33) и (34) в (32) и используем равенства

$$1 + 8q_r^2 Q^2 = \frac{9}{9 - 8q_r^2} = 9Q^2, \quad 1 - 8q_z^2 Q^2 = \frac{1}{1 + 8q_z^2} = Q^2$$

которые следуют из (29); в итоге получим

$$\frac{\partial q_r}{\partial r} = \frac{1}{9Q^2} \left(-Q^2 \frac{\partial q_z}{\partial z} - q_z \frac{1}{\varrho} \frac{d}{dz} \overline{\varrho} \right).$$
(35)

Теперь построим $\gamma_j^{[2]}$, j = 1, ..., N, последовательно определяя r_j друг за другом (полагаем $r_0(z) = \Lambda_0(z)$). Для этого используем аппроксимацию

$$\frac{d}{dz}(r_j(z) - r_{j-1}(z)) = (r_j(z) - r_{j-1}(z))\frac{1}{q_z}\frac{\partial q_r}{\partial r} + o(|r_j(z) - r_{j-1}(z)|).$$
(36)

ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ том 59 № 9 2019

Если заменить $\frac{\partial q_r}{\partial r}$ выражением правой части (35) и пренебречь слагаемым $o(|r_j(z) - r_{j-1}(z)|)$, то получим

$$\frac{dr_j(z)}{dz} + \frac{1}{9q_z Q^2} \left(Q^2 \frac{\partial q_z}{\partial z} + q_z \frac{1}{\varrho} \frac{d}{dz} \overline{\varrho} \right) r_j(z) = \frac{1}{9q_z Q^2} \left(Q^2 \frac{\partial q_z}{\partial z} + q_z \frac{1}{\varrho} \frac{d}{dz} \overline{\varrho} \right) r_{j-1}(z).$$
(37)

Если положить q_z и $\frac{\partial q_z}{\partial z}$ в (37) равными их значениями на $\gamma_{j-1}^{[2]}$, то (37) будет линейным дифференциальным уравнением для неизвестной функции $r_j(z)$. Таким образом, решив уравнение (37), получим $r_j(z)$ (и $\gamma_j^{[2]}$), j = 1, ..., N, которые удовлетворяют принятым в модели критериям.

4. ДРУГИЕ УСЛОВИЯ И ОПРЕДЕЛЕНИЯ ДЛЯ ВЫЧИСЛИТЕЛЬНОГО МОДЕЛИРОВАНИЯ

Построив траектории $\gamma_j = \{\gamma_j(s) | 0 \le s \le \overline{s_j}^{-1}\}, j = 1, ..., N$, мы теперь можем задать граничные условия для неизвестных функций ϱ , v_{ϑ} , T, w в точке входа $\gamma_j(0) = (\Lambda, z_j^-)$ каждой траектории γ_j . Кроме того, наличие неизвестной величины D(t) в уравнении (22) позволяет задать одно условие в точке выхода $\gamma_j(\overline{s_j}^1) = (\Lambda, z_j^+)$ каждой траектории. Значит, мы задаем четыре условия входа

$$\varrho(\gamma_j;t,0) = \overline{\varrho}_j^0, \quad v_{\vartheta}(\gamma_j;t,0) = \overline{v}_{\vartheta,j}^0, \quad T(\gamma_j;t,0) = \overline{T}_j^0, \quad w(\gamma_j;t,0) = \overline{w}_j^0$$

и одно условие выхода

$$\varrho(\gamma_j; t, \overline{s}_j^1) T(\gamma_j; t, \overline{s}_j^1) = \overline{p}_{*,j}^1$$

Здесь $\rho(\gamma_j; t, s)$ означает плотность ρ в момент времени *t* в точке $\gamma_j(s)$, $0 \le s \le \overline{s}_j^1$. Аналогичные обозначения использованы для $T(\gamma_j; t, s)$, $v_{\vartheta}(\gamma_j; t, s)$, $w(\gamma_j; t, s)$.

Исходя из принятой физической модели, условия в точке входа $\gamma_j(0) = (\Lambda, z_j^-)$ и в точке выхода $\gamma_j(\overline{s}_j^{-1}) = (\Lambda, z_j^+)$ должны соответствовать условиям вне тропического циклона, поэтому предположим знание плотности $\varrho_{ex}(z)$ и температуры $T_{ex}(z)$ вне циклона, которые являются функциями от *z*, и запишем

$$\overline{\varrho}_j^0 = \varrho_{ex}(\overline{z_j}), \quad \overline{T}_j^0 = T_{ex}(\overline{z_j}), \quad \overline{p}_{*,j}^1 = \varrho_{ex}(\overline{z_j})T_{ex}(\overline{z_j}).$$

Что касается $\overline{v}_{\vartheta,j}^0$, то для независимости эволюции v_ϑ , от выбора произвольного граничного значения на входе траектории, выберем достаточно малое значение $\overline{v}_{\vartheta,j}^0$. С другой стороны, так как *w* представляет собой нормированную скорость (см. (14)), то выберем для \overline{w}_j^0 не зависимую от *j* постоянную. Таким образом, мы имеем следующие условия:

$$\varrho(\gamma_j; t, 0) = \varrho_{ex}(z_j^-), \tag{38}$$

$$w_{\vartheta}(\gamma_i; t, 0) = \overline{v}_{\vartheta}^0, \tag{39}$$

$$T(\gamma_i; t, 0) = T_{ex}(z_i^{-}), \tag{40}$$

$$w(\gamma_i; t, 0) = \overline{w}^0, \tag{41}$$

$$\varrho(\gamma_j; t, {}^{-1}_{S_j})T(\gamma_j; t, {}^{-1}_{S_j}) = \varrho_{ex}(z_j^+)T_{ex}(z_j^+).$$
(42)

Что касается массы воды Σ в жидком и твердом агрегатных состояниях в уравнении (22), то отметим, что она значима только в той части $\gamma_j^{(2)}$, где воздух поднимается вверх. Поэтому, учитывая, что траектории $\gamma_j^{(2)}$ наклонены и лежат одна над другой, используем следующее приближение:

$$\Sigma_{j}(t) = \frac{1}{[\tilde{\gamma}_{j}^{+}]} \int_{0}^{t} \varphi_{j}(t-s) \int_{[\tilde{\gamma}_{j}^{+}]} \left(\overline{\pi}_{vs}(T) \frac{d}{dz} \log \varrho - \frac{d}{dz} \overline{\pi}_{vs}(T) \right) wq_{z} dz ds + \beta_{j} \frac{[\tilde{\gamma}_{j}^{+}]}{[\tilde{\gamma}_{j-1}^{+}]} \Sigma_{j-1}(t), \tag{43}$$

где

$$[\tilde{\gamma}_{j}^{+}] = z_{j}^{+} - z_{j}^{-}$$
 (= высота $\gamma_{j}^{[2]}$),

а $\varphi(\tau)$ представляет собой вероятность того, что капля (или льдинка) останется в воздухе после времени τ , прошедшего с момента ее образования, и β_j – коэффициент, описывающий количество жидкой или твердой воды, переносимой от траектории γ_{j-1} к траектории γ_j .

Для численных расчетов был использован метод конечных разностей. Обозначим через $\{t_k\}$ дискретные моменты времени, а через $\{s_{i,i}\}$ – координаты на траектории γ_i , т.е.

$$0 = t_0 < t_1 < \dots < t_k < t_{k+1} < \dots,$$

$$0 = s_{j,0} < s_{j,1} < \dots < s_{j,i} < s_{j,i+1} < \dots < s_{j,N_i} = \overline{s}_j^1.$$

Здесь положения s_j расположены в направлении течения воздуха так, что $0 = s_{j,0}$ и $s_{j,N_j} = s_j^{-1}$ соответствуют положениям входа и выхода потока воздуха вдоль траектории γ_j . Здесь примем равномерный шаг по времени $t_{k+1} - t_k = \delta_i$ с постоянной δ_i , а для положений $s_{j,i}$ нам удобно выбрать шаги, зависящие от (j,i), т.е. $s_{j,i+1} - s_{j,i} = \delta_s(j,i)$. Это позволит лучше описать структуру траекторий γ_j , а зависимость пространственного шага сетки от (j,i) принципиально не повлияет на результаты численной схемы.

Численное решение построим с помощью явной схемы конечных разностей. Если имеется решение ($\alpha, \varrho, v_{\vartheta}, T, w$) для $t_0, ..., t_{k-1}$ на всех траекториях, то можно вычислить ($\alpha, \varrho, v_{\vartheta}, T, w$) для t_k следующим образом.

Во-первых, решим уравнение (20), написанное в следующем виде:

$$\frac{v_{\vartheta}(t_{k}, s_{j,i}) - v_{\vartheta}(t_{k-1}, s_{j,i})}{\delta_{t}\alpha(t_{k-1})w(t_{k-1}, s_{i,j})} + \frac{v_{\vartheta}(t_{k}, s_{j,i}) - v_{\vartheta}(t_{k}, s_{j,i-1})}{\delta_{s}(j,i)} = F(v_{\vartheta}, \alpha, \varrho, w)$$

или

$$(\delta_{s}(j,i) + \delta_{t}\alpha(t_{k-1})w(t_{k-1},s_{i,j}))v_{\vartheta}(t_{k},s_{j,i}) = \delta_{s}(j,i)v_{\vartheta}(t_{k-1},s_{j,i}) + \delta_{t}\alpha(t_{k-1})w(t_{k-1},s_{i,j})v_{\vartheta}(t_{k},s_{j,i-1}) + \delta_{s}(j,i)\delta_{t}\alpha(t_{k-1})w(t_{k-1},s_{i,j})F(v_{\vartheta},\alpha,\varrho,w),$$
(44)

и определим $v_{\vartheta}(t_k, s_{j,i})$ для $i = 0, ..., N_j$ на каждой траектории γ_j . Действительно, условие $v_{\vartheta}(t_k, s_{j,0}) = \overline{v}_{\vartheta}^0$ (см. (39)) и уравнения (44) для $i = 1, ..., N_j$ определят $v_{\vartheta}(t_k, s_{j,i})$ для $i = 0, ..., N_j$.

Далее нам необходимо определить ($\varrho(t_k, s_{j,i}), T(t_k, s_{j,i}), w(t_k, s_{j,i})$) для $i = 0, ..., N_j$ и $D(t_k) = D_j(t_k)$ на каждой траектории γ_j . Если заданы α , v_{ϑ} и Σ и если мы используем предварительное значение $D^{(m)}$ для $D(t_k) = D_j(t_k)$, то уравнения (19), (21), (22) на каждой траектории γ_j образуют систему обыкновенных дифференциальных уравнений для неизвестных функций ϱ , T и w, которые при начальных условиях (38), (40), (41), можно явно решить с помощью метода конечных разностей. Поскольку это решение зависит от предварительного значения $D^{(m)}$, заданного для $D(t_k) = D_j(t_k)$, то значение произведения $\varrho(\gamma_j; t_k, \overline{s_j})T(\gamma_j; t_k, \overline{s_j}) = \varrho(t_k, s_{j,N_j})T(t_k, s_{j,N_j})$, которое мы обозначим $\varrho^{(m)}(t_k, \overline{s_j})T^{(m)}(t_k, \overline{s_j})$, также зависит от $D^{(m)}$. Однако, поскольку между $D^{(m)}$ и $\varrho^{(m)}(t_k, \overline{s_j})T^{(m)}(t_k, \overline{s_j})$ имеется сильная корреляция, физически обоснованная и подтвержденная численными вычислениями, то можно построить последовательность $\{D^{(m)}\}$, которая быстро сходится к такому значению $D^{(m_0)}$, что $\varrho^{(m_0)}(t_k, \frac{-1}{S_j})T^{(m_0)}(t_k, \frac{-1}{S_j})$ удовлетворяет условию (42) с нужной точностью.

Третий и последний этап — определить $\alpha(t_k) = \alpha_i(t_k)$ из простого соотношения

$$\alpha_j(t_k) = \alpha_j(t_{k-1}) + D_j(t_k)\delta_t.$$
(45)

Отметим здесь, что если заменить D(t) производной $\frac{d}{dt}\alpha(t)$ (см. (16)), то из (14)–(15) мы полу- ∂v_{t}

чаем $\rho w D(t) = \rho \frac{\partial v_{\gamma}}{\partial t}$. Это позволяет интерпретировать член $\rho w D(t)$ в уравнении (22), ответственным за эффект, который следует из равенства давления внутри и снаружи в точке входа $\gamma(0)$ и в точке выхода $\gamma(\overline{s_1})$ для линии тока воздуха с внутренним выделением скрытой теплоты конденсации водяного пара. Этот эффект аналогичен действию силы толкающей воздух вверх и, возможно, противодействующей трению водяных капель (или льдинок), которое препятствует такому подъему воздуха.

5. ВЫБОР ФИЗИЧЕСКИХ ПАРАМЕТРОВ МОДЕЛИ

Дадим пример численного решения предложенной модели эволюции тропического циклона, состоящей из уравнений (16), (19)–(22) и условий (38)–(42). Для численной реализации в соответствии с известными физическими законами (см., например, [14], [15]), необходимо прежде всего задать физические параметры:

$$g = 9.8 \text{ m/s}^2$$
, $R_1 = \frac{R_0}{\mu_a}$, $c_v \frac{5}{2} \frac{R}{\mu_a}$,
 $R_0 = 8.314 \text{ J/mol}$, $\mu_a = 28.96 \text{ g/mol}$

 $(R_0 и \mu_a - \text{соответственно универсальная постоянная газов и молярная масса воздуха) и определить функцию плотности насыщенного водяного пара$

$$\overline{\pi}_{vs}(T) = \frac{\mu_h}{R_o T} E_0 \times 10^{\frac{7.63(T-273.15)}{T-31.25}}, \quad E_0 = 6.107 \text{ mbar}, \quad \mu_h = 18.01 \text{ g/mol}$$
(46)

 $(\mu_{h} - MORM)$ масса воды), а также скрытую теплоту парообразования

$$L_{tr}(T) = (3244 - 2.72T) \times 10^3 \text{ (J/kg)}.$$
(47)

Так как разность плотности насыщенного пара на поверхности воды и на поверхности льда, как и скрытая теплота перехода воды из жидкого состояния в твердое, невелика, то в этой модели мы пренебрежем этими различиями и используем значения, заданные в (46), (47), которые соответствуют фазовому переходу H_2O из газообразного в жидкое состояние (и обратно).

В качестве параметра силы Кориолиса выберем фиксированное значение 3×10^{-5} с⁻¹, которое соответствует его значению на широте 12*N*.

Для того, чтобы определить область Ω (или $\Gamma_{r,z}$), заданную в (1) (или (2)), выберем $\Lambda_1 = 200$ км, $\overline{z}_1 = 12$ км. Выберем также $\Lambda_0(0) = 10$ км и тем самым определим функцию $\Lambda_0(z)$ по формуле (27). Это соответствует модели тропического циклона средней мощности.

Приведем расчеты для 8 траекторий γ_j , j = 1,...,8. Разумеется, для детального расчета области $\Gamma_{r,z}$ и построения семейства траекторий { γ_j } число траекторий 8 слишком мало, но для иллюстрации поведения воздушного потока вдоль расчетных траекторий, по-нашему мнению, этого числа будет достаточно, чтобы оценить основные этапы эволюции воздушного потока и всего тропического циклона.

Для того, чтобы выбрать траектории γ_j , j = 1,...,8, предположим, что воздух, который втекает в область циклона Ω , имеет влажность 50%, а воздух, который вытекает из Ω , имеет влажность 100%. Тогда определим распределение плотности $\tilde{\varrho}_i(z)$ как решение уравнений (24)–(25) с

$$\vartheta(z) = \begin{cases} 1/2 & \operatorname{при} & 0 \le z \le \zeta_M, \\ 1 & \operatorname{прu} & \overline{\zeta}_M < z \le \overline{z}_1, \end{cases}$$
(48)

γ_j	z_j^- (km)	z_j^+ (km)
γ_1	$z_1^- = 0.23$	$z_1^+ = 11.71$
γ_2	$z_2^- = 0.70$	$z_2^+ = 10.77$
γ ₃	$z_3^- = 1.20$	$z_3^+ = 9.01$
γ_4	$z_4^- = 1.72$	$z_4^+ = 7.91$
γ_5	$z_5^- = 2.28$	$z_5^+ = 6.94$
γ_6	$z_6^- = 2.86$	$z_6^+ = 6.05$
γ_7	$z_7^- = 3.48$	$z_7^+ = 5.25$
γ_8	$z_{8}^{-} = 4.25$	$z_8^+ = 4.50$

Таблица 1

где $\overline{\zeta}_M$ выбрана так, чтобы $\{r = \Lambda_1, 0 < z < \overline{\zeta}_M\}$ была границей втекания $(v_r < 0)$, а $\{r = \Lambda_1, \overline{\zeta}_M < z < \overline{z}_1\}$ – границей вытекания $(v_r > 0)$. Формальное определение $\overline{\zeta}_M$ не так однозначно, но его численная аппроксимация может быть построена. Используя эту функцию $\tilde{\varrho}_l(z)$, положим

$$M_{\varrho} = \int_{0}^{\overline{z}_{1}} \tilde{\varrho}_{1}(z) dz, \tag{49}$$

и определим z_j^- и z_j^+ (см. (23)) соотношениями

$$\int_{0}^{z_{j}} \tilde{\varrho}_{1}(z')dz' = \frac{4j-2}{61}M_{\varrho}, \quad j = 1,...,8,$$
(50)

$$\int_{0}^{z_{j}} \tilde{\varrho}_{1}(z')dz' = \frac{4(16-j)+2}{61}M_{\varrho}, \quad j = 3,...,8,$$
(51)

$$\int_{0}^{z_{2}^{*}} \tilde{\varrho}_{1}(z') dz' = \frac{57.5}{61} M_{\varrho}, \tag{52}$$

$$\int_{0}^{z_{1}} \tilde{\varrho}_{1}(z') dz' = \frac{60}{61} M_{\varrho}.$$
(53)

Определенные таким образом значения z_j^- и z_j^+ приведены в табл. 1.

Фиг. 2. Эволюция коэффициентов интенсивности $\alpha_i(t)$ за 24 ч.

Траектории, построенные с помощью уравнения (36) по этим значениям z_j^- и z_j^+ , приведены в фиг. 1.

В условиях (38), (40), (42) мы используем значения плотности $\varrho_{ex}(z)$ и температуры $T_{ex}(z)$ вне зоны циклона. В качестве функций $\varrho_{ex}(z)$ и $T_{ex}(z)$ возьмем решение системы уравнений (24), (25) с выбором

$$\vartheta(z) = \begin{cases} 1/3 & \text{при} \quad 0 \le z \le \overline{\zeta}_M, \\ 2/3 & \text{при} \quad \overline{\zeta}_M < z \le \overline{z}_1. \end{cases}$$
(54)

Заметим, что условие (48) соответствует промежуточной влажности между условием (54) и полной влажностью $\vartheta(z) \equiv 1$, которая соответствует $\overline{\varrho}$.

В качестве функции $\phi_j(\tau)$, использованной в выражении Σ_j (см. (43)), возьмем функцию

$$\varphi_j(\tau) = \exp\left(\frac{\pi\tau^2}{4b_j^2}\right) \tag{55}$$

с условием

$$b_{j} = \begin{cases} 600 \text{ c} (= 10 \text{ мин}) & \text{для} & \gamma_{j}, \quad j = 1, 2, 3, 4, 5, \\ 480 \text{ c} (= 8 \text{ мин}) & \text{для} & \gamma_{6}, \\ 300 \text{ c} (= 5 \text{ мин}) & \text{для} & \gamma_{7}, \\ 120 \text{ c} (= 2 \text{ мин}) & \text{для} & \gamma_{8}. \end{cases}$$
(56)

Напомним, что

$$\int_{0}^{\infty} \varphi_j(\tau) dr = b_j,$$

т.е. b_j – средняя продолжительность времени, в котором капля (или льдинка) остается в воздухе после ее образования. С другой стороны, для коэффициентов β_j , использованных также в выражении Σ_j (см. (43)), мы выберем условие

$$\beta_{j} = \begin{cases} \frac{1}{2} & \text{для} & \gamma_{j}, \quad j = 2, 3, 4, \\ \frac{2}{3} & \text{для} & \gamma_{j}, \quad j = 5, 6, 7, \\ \frac{1}{3} & \text{для} & \gamma_{8}. \end{cases}$$
(57)

Фиг. 3. Эволюция массы воды в жидком и твердом состояниях $\Sigma_i(t)$ за 24 ч.

Фиг. 4. Составляющая v_{γ} в направлении γ скорости ветра в нижней части γ_1 и γ_2 через 24 ч.

Для функции $\varepsilon_1(z)$, представляющей действие трения между воздухом и поверхностью океана, положим

$$\varepsilon_{1}(z) = \begin{cases} 8 \times 10^{-5} & \text{Ha } \gamma_{1}, \\ 0 & \text{Ha } & \gamma_{j}, \quad j = 2, \dots, 8. \end{cases}$$
(58)

6. РЕЗУЛЬТАТ ЧИСЛЕННОГО РАСЧЕТА

Приведем результат реализованного вычисления. На фиг. 2 показана эволюция коэффициентов интенсивности $\alpha_j(t)$ на траекториях γ_j , j = 1,...,8. Расчет был проведен шагом по времени 50 с.

Развитию скорости потока воздуха вдоль траекторий γ_j сопутствует увеличение массы воды в жидком и твердом агрегатных состояниях $\Sigma_j(t)$, как показано на фиг. 3. Видно, что существует очень сильная корреляция между $\alpha_i(t)$ и $\Sigma_i(t)$.

Кроме того, заметим, что в этой модели развитие циклона оказывается довольно быстрым: менее чем за 24 ч он достигает своей зрелой структуры. Покажем профиль составляющей v_{γ} скорости ветра вдоль траекторий в ее нижней части γ_1 и γ_2 через 24 ч (фиг. 4) и тангенциальной составляющей v_{ϑ} скорости ветра в нижней части траекторий γ_1 и γ_2 через 24 ч (фиг. 5). Размерность скорости дана в единицах *m/s*. Заметим, что тангенциальная составляющая на части γ_2 больше,

Фиг. 5. Тангенциальная составляющая v_{ϑ} скорости ветра в нижней части γ_1 и γ_2 через 24 ч.

Фиг. 6. Тангенциальная составляющая v_{ϑ} скорости ветра в верхней части γ_1 и γ_2 через 24 ч.

Фиг. 7. Давление $p = R_1 \rho T$ в нижней части γ_1 через 24 ч.

чем на γ_1 . Это наводит на мысль о влиянии трения на поверхности океана, тормозящего течение воздуха вблизи границы океан—атмосфера. Фиг. 6 показывает, что в верхней части тангенциальная составляющая ветра на γ_2 имеет то же направление, что и в нижней части, а тангенциальная составляющая ветра на γ_1 в периферической части тайфуна имеет противоположное направление. Это различие объясняется, по нашему мнению, тем фактом, что на траектории γ_2 влияние трения с поверхностью океана очень слабое и, таким образом, сила Кориолиса имеет такое же влияние в нижней части тайфуна, как и в его верхней части. С другой стороны, в нижней части γ_1 трение с поверхностью океана тормозит также v_ϑ , а в верхней части этого трения нет, и таким об-

Фиг. 8. Эволюция коэффициентов интенсивности $\alpha_i(t)$ за 5 дней.

Фиг. 9. Эволюция массы воды в жидком или твердом состоянии $\Sigma_i(t)$ за 5 дней.

разом в верхней части компонента v_{ϑ} на γ_l благодаря силой Кориолиса выталкивается в противоположном направлении. Тот факт, что эффект трения с поверхностью океана менее очевиден в результате расчета для составляющей скорости в направлении траектории, можно интерпретировать как следствие использования при расчете фиксированных траекторий.

γ_j	α_j	Σ_j
γ ₁	15.3434	0.0131
γ_2	13.4317	0.0153
γ_3	12.1234	0.0160
γ_4	10.8862	0.0143
γ_5	9.3652	0.0115
γ_6	8.0594	0.0080
γ_7	6.2224	0.0037
γ_8	0.4936	0.000457

Таблица 2

Что касается давления $p = R_1 \rho T$, то его профиль на нижней части γ_1 (230 м над уровнем моря) после расчета через 24 ч проведен в фиг. 7.

Фигуры 4, 5, 6, 7 показывают, что модель, предложенная в настоящей работе, разумным образом воспроизводит структуру тропического циклона.

Представим также эволюцию коэффициентов интенсивности $\alpha_j(t)$ и массы воды в жидком или твердом состоянии $\Sigma_j(t)$ за 5 дней. Как видно на фиг. 8 и фиг. 9, значения $\alpha_j(t)$ и $\Sigma_j(t)$ приблизительно стабилизируются. Отметим здесь, что вдоль траекторий с большой массой воды в жидком или твердом состоянии стабилизация оказывается весьма быстрой, а вдоль траекторий с малой $\Sigma_j(t)$ такая стабилизация происходит медленно. На фиг. 8 и фиг. 9 не представлена эволюция $\alpha_8(t)$ и $\Sigma_8(t)$, поскольку на траектории γ_8 в некоторые моменты времени численные значения $\alpha_8(t)$ и $\Sigma_8(t)$ становятся отрицательными, что теряет физический смысл.

Для предложенной модели тропического циклона существует также стационарное решение. Значения коэффициентов интенсивности α_j и массы воды Σ_j в жидком или твердом состоянии для стационарного решения показаны в следующей табл. 2. Видно, что, когда Σ_j велико, то возникает быстрая сходимость $\alpha_j(t)$ и $\Sigma_j(t)$ к соответствующим значениям стационарного решения. Отметим также, что масса воды в жидком или твердом состоянии на γ_8 очень мала по сравнению с другими значениями Σ_j , j = 1,...,7. Это, по нашему мнению, вызывает относительную неустойчивость решения на γ_8 .

7. ЗАКЛЮЧЕНИЕ И ПЕРСПЕКТИВЫ ИССЛЕДОВАНИЙ

В настоящей работе предложена система уравнений, которая в предположении осевой симметрии описывает движение воздуха вдоль семейства траекторий. Результат численного расчета выявил основные аспекты эволюции движения воздуха, вызванной конденсацией влаги с учетом скрытой теплоты парообразования, а также с учетом трения капель и льдинок, которое замедляет восходящий поток. Распределение скорости ветра и давления через 24 ч после начала расчета, полученное с помощью численного расчета, совпадает с общими характеристиками тропического циклона средней мощности. Мы интерпретируем полученную скорость роста модельного численного расчета, которая заметно превосходит данные наблюдений как следствие отличия нашей модельной постановки от реальности, в которой, помимо основного механизма тайфуна, участвуют также и другие факторы.

Использованная модель основана на описании фиксированных траекторий (на плоскости (r, z)), что облегчало численное решение. Однако ясно, что траектории должны сами определяться самосогласованным движением воздуха. В частности, необходимо принять во внимание следующие важные механизмы при описании циклона.

1. Эффект роста тангенциальной составляющей скорости, порождающей центробежную силу и посредством этого выталкивающей вверх воздух в нижней части траекторий.

- 2. Расширение зоны циклона в процессе самой эволюции циклона.
- 3. Эффект турбулентного движения потока воздуха.

С учетом сказанного нашей следующей задачей будет являться улучшение модели с включением вышеупомянутых факторов. Следует также учитывать перемещение самого тропического циклона. Однако моделирование этого явления в такой постановке потребует разработки нового метода.

Авторы выражают благодарность проф. О. Диаз Родригез из Института Метеорологии Гаваны (Куба) за выяснение физических аспектов тропических циклонов и доктору Д. Ремаун Бурега из Университета науки и технологии Орана (Алжир) за помощь в численном расчете. Мы благодарны также С.Л. Скороходову из ВЦ ФИЦ ИУ РАН за помощь в написании текста.

СПИСОК ЛИТЕРАТУРЫ

- 1. Хаин А.П. Математическое моделирование тропических циклонов. Ленинград: Гидрометеоиздат, 1984.
- 2. Cotton W., Bryan G., van den Heever S. Storm and cloud dynamics (II ed.). Academic Press, 2011.
- Katsuyuki V. Ooyama. Conceptual evolution of the tropical cyclone // J. Meteor. Soc. Japan. 1981. V. 60. P. 369–379.

- Emanuel K.A. An air-sea interaction theory for tropical cyclones: Part I: Steady-state maintenance // J. Atmos. Sci. 1986. V. 43. P. 585–604.
- 5. *Rotunno R., Emanuel K.A.* An air-sea interaction theory for tropical cyclones: Part II: Evolutionary study using a non-hydrostatic axisymmetric numerical model // J. Atmos. Sci. 1987. V. 44. P. 542–561.
- 6. Holland G.J. The maximum potential intensity of tropical cyclones // J. Atmos. Sci. 1997. V. 54. P. 2519-2541.
- Camp J.P., Montgomery M.T. Hurricane maximum intensity: past and present // Monthly Weather Rev. 2001. V. 129. P. 1704–1717.
- 8. *Vlasov V.I., Skorokhodov S.L., Fujita Yashima H.* Simulation of air flow in a typhoon lower layer // Russ. J. Num. Anal. Math. Mod. 2011. V. 26. P. 85–111.
- 9. *Montgomery M.T., Smith R.K.* Recent developments in the fluid dynamics of tropical cyclones // Trop. Cycl. Res. Rep. 2016. V. 1. P. 1–24.
- 10. Ландау Л.Д., Лифшиц Е.М. Гидродинамика (Теоретическая физика, т. 6) (3-е изд.). М.: Наука, 1986.
- 11. *Фуджита Яшима Х*. Моделирование внутренней структуры тропических циклонов: уравнение потока на траектории ветра. Итоги Науки и Тех., Совр. Мат. Прил., Тематические обзоры. 2017. Т. 137. С. 118–130.
- 12. *Ghomrani S., Marín Antuña J., Fujita Yashima H.* Un modelo de la subida del aire ocasionada por la condensación del vapor y su cálculo numérico // Rev. Cuba Fís. 2015. V. 32. P. 3–8.
- 13. *Remaoun Bourega D., Aouaouda M., Fujita Yashima H.* Oscillation de la pluie dans un modèle mathématique de l'orage // Ann. Math. Afr. 2018. V. 7. P. 19–35.
- 14. Кикоин А.К., Кикоин И.К. Молекулярная физика. М.: Наука, 1976.
- 15. Матвеев Л.Т. Основы общей метеорологии. Физика атмосферы. Гидрометеоиздат, Ленинград-С. Петербург, 1965, 1984, 2000.