ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

УДК 517.927.4

Светлой памяти Юрия Дмитриевича Шмыглевского посвящается

СИНГУЛЯРНЫЕ НЕЛИНЕЙНЫЕ ЗАДАЧИ ДЛЯ АВТОМОДЕЛЬНЫХ РЕШЕНИЙ УРАВНЕНИЙ ПОГРАНИЧНОГО СЛОЯ С НУЛЕВЫМ ГРАДИЕНТОМ ДАВЛЕНИЯ: АНАЛИЗ И ЧИСЛЕННОЕ РЕШЕНИЕ

© 2021 г. Н. Б. Конюхова^{1,*}, С. В. Курочкин^{1,**}

¹ 119333 Москва, ул. Вавилова, 40, ВЦ ФИЦ ИУ РАН, Россия

*e-mail: nadja@ccas.ru **e-mail: kuroch@ccas.ru Поступила в редакцию 28.05.2020 г. Переработанный вариант 16.03.2021 г. Принята к публикации 09.06.2021 г.

Для математически корректной постановки и исследования задач, указанных в названии, даются развитие и обоснование нового подхода, отличного от применявшегося ранее специалистами по механике жидкости и газа. Основная "начально-краевая" задача для нелинейного обыкновенного дифференциального уравнения (ОДУ) третьего порядка, определенного на всей вещественной оси, приближенно описывает автомодельные режимы течений вязкой несжимаемой жидкости в слое смешения (частный случай – задача о плоской "полуструе"). Сопутствующая сингулярная нелинейная краевая задача (КрЗ), определенная на неположительной вещественной полуоси, представляет самостоятельный математический интерес, а ее частные решения допускают известную физическую интерпретацию (задачи о "затопленной струе", о "пристеночной струе" и др.). Для обоснованной математической постановки этих задач, их детального анализа и численного решения применяются результаты по сингулярным нелинейным задачам Коши, гладким устойчивым начальным многообразиям решений и параметрическим экспоненциальным рядам Ляпунова, методы асимптотического анализа. Приводятся результаты численных экспериментов и обсуждается их физическая интерпретация. Библ. 25. Фиг. 15. Табл. 3.

Ключевые слова: двумерные уравнения пограничного слоя с нулевым градиентом давления, дифференциальное уравнение для функции тока, автомодельные решения, нелинейное автономное ОДУ третьего порядка, сингулярная нелинейная "начально-краевая" задача на всей вещественной прямой, сопутствующая сингулярная нелинейная КрЗ на неположительной полуоси, ограничения на "параметр автомодельности" для существования решений, двусторонние оценки решений, численные методы и результаты расчетов.

DOI: 10.31857/S0044466921100070

1. ВВЕДЕНИЕ. ПРЕДВАРИТЕЛЬНОЕ ОБСУЖДЕНИЕ ИЗУЧАЕМЫХ ЗАДАЧ

Для правильной постановки и изучения сингулярных задач, указанных в названии статьи, используется новый подход [1], [2] (отличный от применявшегося в [3], [4]) и дается его дальнейшее развитие. Наряду с новыми результатами, излагаются основные результаты [1], [2] в переработанном, расширенном и более обоснованном виде (опечатки и неточности, допущенные в [1], [2], здесь исправлены). (К сожалению, в [1] опечаток и неточностей немало, включая и некоторые ошибки в формулах.) Коротко представлен также сравнительный анализ методов и результатов [1], [2] и данной работы с приведенными в [3], [4].

Основная рассматриваемая задача возникает в динамике вязкой несжимаемой жидкости и приближенно описывает автомодельные режимы течений в слое смешения. В [3], [4] она сформулирована в виде

$$\Phi''' + \Phi \Phi'' - [(m-1)/m](\Phi')^2 = 0, \quad -\infty < \tau < \infty,$$
(1.1)

$$\lim_{\tau \to -\infty} \Phi'(\tau) = 0, \tag{1.2}$$

$$\Phi(0) = 0, \tag{1.3}$$

$$\lim_{\tau \to \infty} (\Phi(\tau) / \tau^m) = b, \tag{1.4}$$

где постоянные m > 0 (параметр автомодельности) и 0 < b – задаваемые величины.

Нелинейное ОДУ (1.1) получено из уравнения пограничного слоя для функции тока с нулевым градиентом давления, а вся задача (1.1)–(1.4), по утверждению автора, приближенно описывает автомодельный режим ламинарного течения в слое смешения, который возникает при взаимодействии двух потоков, верхний из которых движется, а нижний покоится. Однако в таком исходном виде задача (1.1)–(1.4) в [3], [4] не изучается, а физический смысл условий (1.2)–(1.4) не обсужлается. Лля ее изучения используются метолы понижения порялка ОЛУ (1.1), инвариантного относительно лвух групп преобразований полобия. В результате в фазовом пространстве новых "нефизических" переменных возникает двумерная нелинейная динамическая система с особенностями на так называемой "сфере Пуанкаре". (Понятие сферы Пуанкаре, а также принципы анализа заданных на ней нелинейных динамических систем второго порядка, правые части которых – многочлены, см., например, в [5, гл. VI].) Проводится довольно сложный качественный анализ поведения всех траекторий решений на этой сфере и описывается непростая процедура возврашения к решениям исходной задачи в физических переменных. (Тот же подход первоначально применялся в [6], [7] для изучения частных случаев задачи (1.1)–(1.4) – при некоторых конкретных значениях m, а также в более поздней работе [8]; никакие расчеты для этой задачи в [3], [4], [6]–[8] не осуществлялись, приведены только качественные иллюстрации поведения траекторий решений на сфере Пуанкаре.) Краткое обсуждение методов [3], [4] дано в [1] (некоторые замечания см. в подразд. 5.2 данной работы).

При другом подходе, подробно представленном в данной работе (и коротко в [1], [2]), применяются некоторые результаты классического труда Ляпунова [9], а также публикаций [10]–[12]. Подход связан с изучением задачи (1.1)–(1.4) в исходном виде и использует результаты по сингулярным нелинейным задачам Коши (3К), гладким устойчивым начальным многообразиям (УНМ) решений и параметрическим экспоненциальным рядам Ляпунова для автономных систем нелинейных ОДУ. В подразд. 2.1, 2.2 (по-видимому, впервые) дается математическое описание исходной физической модели на основе двумерных уравнений теории пограничного слоя. Модель описывает течение в слое смешения, возникающем в результате взаимодействия двух неограниченных слоев вязкой несжимаемой жидкости, верхний из которых движется (при степенной зависимости горизонтальной составляющей скорости течения от высоты), а нижний покоится. Для автомодельных режимов течений в такой модели возникает (по крайней мере, формально) сингулярная нелинейная задача (1.1)–(1.4). Эта задача, определенная на всей вещественной оси, нуждается в более строгой математической постановке и вытекающей из нее более точной трактовке.

Обратимся к условию (1.2), которое (как, в частности, уточняется в [8]) означает стремление решения при $\tau \to -\infty$ к стационарной точке ОДУ (1.1) (подробнее ссылку на [8] см. в конце утверждения 1). Учитывая понятие допустимых предельных условий на бесконечности для систем нелинейных автономных ОДУ (см. [10]–[12] и, дополнительно, [13]–[16]) и изучив стационарные точки ОДУ (1.1) в фазовом пространстве переменных (Φ , Φ' , Φ''), заменяем условие (1.2) на более точное предельное условие с неизвестным параметром a > 0:

$$\lim_{\tau \to -\infty} \exp(-\varepsilon\tau) \{ \Phi(\tau) + a, \Phi'(\tau), \Phi''(\tau) \} = \{ 0, 0, 0 \} \quad \forall \varepsilon : 0 < \varepsilon < a.$$
(1.5)

Это условие отвечает экспоненциальному стремлению решений ОДУ (1.1) при $\tau \to -\infty$ к неподвижной точке (-a, 0, 0) этого ОДУ типа псевдо-гиперболического седла. Условие (1.5) порождает локально сингулярную нелинейную ЗК (1.1), (1.5), которая при фиксированных значениях a > 0и $m \neq 0$ обладает однопараметрическим семейством решений. Значения этих решений, представимых однопараметрическим экспоненциальным рядом Ляпунова (см. в подразд. 2.3 утвержде-

ние 1), порождают в окрестности стационарной точки (-a, 0, 0) фазового пространства \mathbb{R}^3 переменных (Φ, Φ', Φ'') инвариантное относительно τ одномерное нелинейное УНМ (см. в подразд. 2.3 утверждение 2); это УНМ задается двумя нелинейными соотношениями, связывающими переменные Φ, Φ' и Φ'' . Тогда в конечной точке $\tau = -T, T \ge 1$, получаются два нелинейных условия для значений $\Phi(-T), \Phi'(-T)$ и $\Phi''(-T)$. Таким образом, для достаточно больших конечных значе-

ний $|\tau|$, $\tau < 0$, предельное условие (1.5) эквивалентно двум нелинейным соотношениям, определяющим устойчивую сепаратрису седла, так что задача (1.1), (1.5), (1.3) — двухточечная краевая.

В итоге получаем, что на интервале $-\infty < \tau \le 0$ определена сингулярная нелинейная КрЗ (1.1), (1.5), (1.3) (а на отрезке [-T, 0] – эквивалентная ей регулярная двухточечная КрЗ) с положительными параметрами *a* и *m*. Исследование вспомогательной КрЗ (1.1), (1.5), (1.3), определенной на \mathbb{R}_- , проводится в разд. 3: показано, что при фиксированных a > 0 и $m \ge 1/3$ решение $\Phi_m(\tau, a)$ этой задачи существует и единственно и получены его двусторонние оценки, причем при заданном $m \ge 1/2$ решение неограниченно продолжается вправо, а при $m : 1/3 \le m < 1/2$, оно сингулярно – имеет особенность типа полюса на \mathbb{R}_+ (см. подразд. 3.3). При $m : m \in \{1/3, 1/2, \infty\}$, КрЗ (1.1), (1.5), (1.3) имеет аналитические решения, допускающие известную физическую интерпретацию (см. подразд. 3.2).

Для всей исходной задачи (1.1)-(1.4) значение параметра *а* не является произвольным: a = a(b) находится из требования (1.4), если такое поведение решений КрЗ (1.1), (1.5), (1.3), прололженных вправо, справелливо, В результате, при фиксированном значении параметра m > 0. задача (1.1)–(1.4) разбивается на две – сингулярную двухточечную КрЗ с параметром, заданную на неположительной вещественной полуоси, и ЗК на положительной полуоси, определяющую продолжение решения КрЗ на ℝ₁. В разд. 4 формулируются окончательные ограничения на параметр автомодельности $m: 1/2 < m < \infty$, гарантирующие существование и единственность решения исходной задачи (1.1)–(1.4), которую по указанным выше причинам называем далее "начально-краевой" (НКЗ). В [3], [4] задача (1.1)–(1.4) ошибочно трактуется как трехточечная краевая. Впервые на эту неточную трактовку залачи (1.1)–(1.4) было указано в работе [12], одним из рецензентов которой был В.Н. Диесперов; рецензент согласился с более точной постановкой этой НКЗ и последующими пояснениями и формулами. В.Н. Диесперов был также рецензентом работы [1]. Даются двусторонние оценки решения и исследуются его свойства для различных значений параметра автомодельности. Для значений $m : 0 < m \le 1/2$, HK3 (1.1)–(1.4) решений не имеет. (Аналитическая функция $\Phi_{1/2}(\tau, a)$ (аналитическая функция $\Phi_{\infty}(\tau, a)$) как решение Кр3 (1.1), (1.5), (1.3), продолженное на \mathbb{R}_{+} , является для НКЗ (1.1)–(1.4) верхним (нижним) решением на \mathbb{R}_{-} и нижним (верхним) решением на \mathbb{R}_{+} .)

Предложены численные методы и приведены результаты расчетов. Наряду с численным моделированием функции тока (как функции автомодельной переменной), впервые приводятся некоторые результаты расчетов траекторий частиц в плоскости течений.

Дополнительно в разд. 5, для полноты изложения, изучаются семейства сингулярных ("взрывающихся") решений нелинейного ОДУ (1.1), а также обсуждаются некоторые следствия из подхода [3], [4] к этому ОДУ для нахождения его частных решений.

В [12], [13], [15], [16] даны корректные постановки и более сложных сингулярных задач для автономных систем нелинейных ОДУ, возникающих в моделях гидродинамики (в [15], [16] приведены также примеры расчетов), но без их строгого математического анализа.

При описании необходимых сведений из теории пограничного слоя и механики жидкости и газа, в том числе для обсуждаемых здесь некоторых известных задач, используются монографии [17]–[20].

В заключение этого раздела заметим, что работы [3], [4], [6]–[8], в которых используются непростые идеи А. Пуанкаре, написаны известным специалистом по механике жидкости и газа и содержат целый ряд (по-видимому, новых) формул, результатов и выводов. Однако, на наш взгляд, как исходная физическая модель, так и сопутствующие сингулярные нелинейные задачи для ОДУ заслуживают более детального математического и численного анализа. Альтернативный подход данной работы, тесно связанный с идеями другого гениального ученого А.М. Ляпунова, позволяет дать более полные ответы на многие вопросы, что является довольно редкой возможностью в случае сингулярных нелинейных задач. С другой стороны, проведенные исследования показывают, что задачи гидродинамики уже для автомодельных решений достаточно сложны и требуют тщательного анализа.

Данная работа является итоговой по теме, указанной в ее названии.

2. ПОСТАНОВКА ОСНОВНОЙ СИНГУЛЯРНОЙ НЕЛИНЕЙНОЙ ЗАДАЧИ И ЕЕ ОБОСНОВАНИЕ КАК НАЧАЛЬНО-КРАЕВОЙ

2.1. Математическое описание исходной физической модели на основе двумерных уравнений пограничного слоя

Рассматривается математическая модель течения в слое смешения, возникающего в результате взаимодействия двух неограниченных слоев вязкой несжимаемой жидкости, верхний из которых движется (со степенной зависимостью горизонтальной составляющей скорости течения от высоты), а нижний покоится. Для описания модели используются двумерные уравнения пограничного слоя для установившегося плоскопараллельного ламинарного течения с нулевым градиентом давления:

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = v\frac{\partial^2 u}{\partial y^2}, \quad x > 0, \quad y \in \mathbb{R},$$
(2.1)

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0, \quad x > 0, \quad y \in \mathbb{R}$$
(2.2)

(см., например, [17, гл. IX] и [20, гл. I]). Здесь (2.1) – уравнение Прандтля, а (2.2) – уравнение неразрывности (несжимаемости); ось *x* направлена вдоль потока и совпадает со свободной линией тока, *и* и *v* – компоненты скорости течения вдоль и поперек потока соответственно, 0 < v – кинематический коэффициент вязкости (в безразмерных переменных v = 1; см. [20, с. 14] и здесь замечание 2).

Учитывая физическую интерпретацию модели, определение свободной линии тока и цель изучения автомодельных режимов течений, получаем, что для функций u(x, y) и v(x, y) должны выполняться следующие условия $\forall x > 0$:

$$\lim_{x \to 0} u(x, y) = 0,$$
 (2.3)

$$v(x,0) = 0,$$
 (2.4)

$$\lim_{y \to \infty} [u(x, y)/y^{m-1}] = U_0, \quad \lim_{y \to \infty} v(x, y) = 0.$$
(2.5)

Здесь *m* и U_0 – задаваемые величины, 0 < m – числовой параметр, $0 < U_0$ – размерная величина, так что первое условие в (2.5) задает поведение u(x, y) в верхнем слое,

$$u(x, y) \sim U_0 y^{m-1}, \quad x > 0, \quad y \ge 1,$$
 (2.6)

а второе — отсутствие далеко в верхнем слое вертикальной составляющей скорости течения.

Заметим, что в (2.1)–(2.5) рассматриваются значения x > 0 и никакие условия при x = 0 не задаются, так как при изучении установившихся автомодельных режимов течений, не зависящих от "предыстории", задание произвольного профиля скоростей в некотором "начальном" сечении потока становится невозможным (см. об этом подробнее [19, с. 518]).

Для упрощения этой задачи вводится, как обычно, функция тока $\Psi(x, y)$, чтобы удовлетворить уравнению неразрывности (2.2). Тогда, учитывая еще, что ось *x* совпадает со свободной линией тока, получаем соотношения:

$$u(x,y) = \frac{\partial \Psi}{\partial y}(x,y), \quad v(x,y) = -\frac{\partial \Psi}{\partial x}(x,y), \quad \Psi(x,0) = 0 \quad \forall x > 0.$$
(2.7)

Для $\psi(x, y)$ получаем сингулярную задачу в бесконечной правой полуплоскости:

$$\frac{\partial \Psi}{\partial y} \frac{\partial^2 \Psi}{\partial x \partial y} - \frac{\partial \Psi}{\partial x} \frac{\partial^2 \Psi}{\partial y^2} = \nu \frac{\partial^3 \Psi}{\partial y^3}, \quad x > 0, \quad y \in \mathbb{R},$$
(2.8)

$$\lim_{y \to -\infty} \frac{\partial \psi(x, y)}{\partial y} = 0 \quad \forall x > 0,$$
(2.9)

$$\Psi(x,0) = 0 \quad \forall x > 0, \tag{2.10}$$

$$\lim_{y \to \infty} \left(\frac{\partial \psi(x, y)}{\partial y} / y^{m-1} \right) = U_0, \quad \lim_{y \to \infty} \frac{\partial \psi(x, y)}{\partial x} = 0 \quad \forall x > 0.$$
(2.11)

Отметим, что постановка исходной задачи в виде (2.1)–(2.5) для компонент скорости течения (или, как следствие, в виде (2.8)–(2.11) для функции тока) ранее не приводилась (во всяком случае, в [3], [4] отсутствуют какая-либо постановка исходной задачи или ссылки на нее в литературе). На необходимость постановки исходной задачи было ранее указано В.Н. Самохиным одному из авторов (Н.Б.К.) на докладе по данной проблеме (XX Intern. Conf. "Mathematics. Economics. Education." 2012, Rostov-na-Donu, Russia).

2.2. Переход к задаче для автомодельных функций

В [3], [4] основная НКЗ (1.1)–(1.4) получена из следующих соображений. Сразу утверждается, что течение в слое смешения в первом приближении хорошо описывается уравнением пограничного слоя для функции тока с нулевым градиентом давления, т.е. уравнением (2.8). В классе автомодельных функций решения (2.8) представляются в виде

$$\Psi(x, y) = \omega^{-1/2} x^{\nu \omega} \Phi(\tau),$$
 (2.12)

$$\tau = \omega^{1/2} y / x^{1/(m+1)}, \quad \omega > 0, \quad m > 0, \quad v \omega = m/(m+1).$$
 (2.13)

Для определения $\Phi(\tau)$ получается нелинейное ОДУ (1.1). Далее, при описании автомодельного режима течения в слое смешения, возникающем при взаимодействии двух потоков, верхний из которых движется, а нижний покоится, ОДУ (1.1) дополняется условиями (1.2)–(1.4), смысл ко-

торых в [3], [4] не поясняется (условие (1.4) там записано в виде $\Phi(\tau) = b\tau^m + ..., b > 0, m > 0$).

Получим НКЗ (1.1)–(1.4) аккуратнее: будем искать решения задачи (2.8)–(2.11) в классе автомодельных функций (2.12), где автомодельная переменная τ в (2.13) зависит от параметра *m*, причем справедливы следующие соотношения (штрих означает производную по τ):

$$u(x,y) = \frac{\partial \Psi}{\partial y}(x,y) = x^{(m-1)/(m+1)} \Phi'(\tau), \qquad (2.14)$$

$$v(x,y) = -\frac{\partial \Psi}{\partial x}(x,y) = \sqrt{\frac{\nu}{m(m+1)}} x^{-1/(m+1)} [\tau \Phi'(\tau) - m\Phi(\tau)].$$
(2.15)

Для функции $\Phi(\tau)$ получаем нелинейную сингулярную задачу с параметром m > 0: 1) из уравнения (2.8) и формул (2.12), (2.13) следует автономное нелинейное ОДУ (1.1) третьего порядка; 2) из требования (2.9) и соотношения (2.14) вытекает предельное условие (1.2); 3) из (2.10) и (2.13) следует выполнение условия в нуле (1.3) (ось *x* совпадает со свободной линией тока, а из (2.13) имеем $\tau = 0$ при y = 0); 4) наконец, из требований (2.11) и формул (2.14), (2.15) вытекают предельные соотношения

$$\lim_{\tau \to \infty} [\Phi'(\tau)/\tau^{m-1}] = U_0/[m/(\nu(m+1))]^{(m-1)/2}, \quad \lim_{\tau \to \infty} [\tau \Phi'(\tau) - m \Phi(\tau)] = 0,$$

откуда получаем предельное равенство (1.4) и соотношения:

$$b = (U_0/m)/[m/(\nu(m+1))]^{(m-1)/2}, \quad U_0 = U_0(m,b,\nu) = mb\{m/[(m+1)\nu]\}^{(m-1)/2}.$$
(2.16)

Окончательно получаем сингулярную нелинейную HK3 (1.1)–(1.4) с параметрами m > 0 и b > 0. Из (2.16) следует, что задание величины b в условии (1.4) эквивалентно заданию U_0 в формуле (2.6), которая описывает *y*-зависимость горизонтальной составляющей скорости верхнего потока при больших *y* и влечет качественно различный характер ее поведения при m < 1, m = 1 и m > 1.

Замечание 1. Для случая m = 1 задача (1.1)–(1.4) известна давно (см. [17, с. 180–181] и библиографию там) как описывающая ламинарный слой на границе раздела двух потоков, верхний из которых движется с постоянной скоростью, а нижний покоится (задача о плоской "полуструе"). В одной из ранних публикаций, указанной в [17], для этой задачи были получены численные результаты методом "сращивания" асимптотических и сходящихся разложений. В п. 4.3.2 данной работы для сравнения воспроизведен один численный результат, приведенный в [17], а также дополнительно графически описана картина течений в плоскости $\{x, y\}$.

КОНЮХОВА, КУРОЧКИН

Замечание 2 (О введении безразмерных переменных.) В [3], [4] не обсуждаются какие-либо способы введения безразмерных переменных (например, в уравнение (2.8) для функции тока), и всюду присутствует параметр V, хотя в безразмерных переменных V = 1. Рассмотрим один из способов введения в (2.8) таких переменных, что необходимо для дальнейшего анализа задач и численных экспериментов. В соответствии, например, с терминологией и подходом в [19, с. 519, 528, 545], перейдем от размерных переменных x, y и ψ к безразмерным \tilde{x}, \tilde{y} и $\tilde{\psi}$, выбрав в качестве масштабов постоянные величины: L - для x, $\tilde{x} = Lx$; $L/\sqrt{\text{Re}} - для y, \tilde{y} = (L/\sqrt{\text{Re}})y$, где Re – число Рейнольдса, Re = UL/v, U – масштаб скорости верхнего потока; $UL/\sqrt{\text{Re}} - для \psi$, $\tilde{\psi} = (UL/\sqrt{\text{Re}})\psi$. Тогда для $\tilde{\psi}(\tilde{x}, \tilde{y})$ получаем то же уравнение (2.8), но с v = 1. Далее, обратимся к условиям (2.11). Для масштаба скорости U учитываем соотношение $U = U_0(L/\sqrt{\text{Re}})^{m-1}$, которое следует из (2.6) и масштаба для y. Тогда для $\tilde{\psi}(\tilde{x}, \tilde{y})$ получаем то же условие (2.11), но с $U_0 = 1$. В результате для безразмерной функции тока $\tilde{\psi}(\tilde{x}, \tilde{y})$ получаем ту же задачу (2.8)–(2.11), но с v = 1 и $U_0 = 1$ (разумеется, постоянные величины L, U, Re в полученные уравнение и условия не входят). В дальнейшем, сохраняя V в формулах, в расчетах полагаем v = 1.

Замечание 3 (К расчету течений в плоскости $\{x, y\}$). Как следует из (2.13), автомодельная переменная $\tau = \tau(x, y, v, m)$ имеет вид

$$\tau(x, y) = \sqrt{\frac{m}{\nu(m+1)}} y / x^{1/(m+1)}, \quad x > 0, \quad y \in \mathbb{R}.$$

Пусть для заданных m > 0 и b > 0 функция $\Phi_m(\tau, b)$ является решением сингулярной НКЗ (1.1)–(1.4). Тогда, учитывая формулы (2.14), (2.15), для изучения установившегося движения частиц жидкости в плоскости $\{x, y\}$ можно использовать следующую нелинейную ЗК с параметрами $\{x_0, y_0\}$ (в силу наличия особенности при $x \to +0$ и зависимости правых частей ОДУ от $\Phi_m(\tau, b)$ и

 $\Phi'_{m}(\tau, b)$, численное решение такой ЗК представляет определенные трудности):

$$\frac{dx}{dt} = u(x, y) = x^{(m-1)/(m+1)} \Phi'_m(\tau, b),$$
(2.17)

$$\frac{dy}{dt} = v(x, y) = \sqrt{\frac{v}{m(m+1)}} x^{-1/(m+1)} [\tau \Phi'_m(\tau, b) - m \Phi_m(\tau, b)], \qquad (2.18)$$

$$x(t_0) = x_0, \quad y(t_0) = y_0 \quad (x_0 > 0, y_0 \in \mathbb{R}).$$
 (2.19)

Нелинейная ЗК (2.17)-(2.19) эквивалентна ЗК вида

$$\frac{dy}{dx} = \frac{v(x,y)}{u(x,y)} = \sqrt{\frac{v}{m(m+1)}} x^{-m/(m+1)} [\tau - m\Phi_m(\tau,b)/\Phi'_m(\tau,b)],$$
(2.20)

$$y(x_0) = y_0 \quad (x_0 > 0, y_0 \in \mathbb{R}),$$
 (2.21)

где необходимо рассмотреть различные значения x_0 и y_0 .

Другой подход состоит в определении линий уровня функции тока

$$\Psi(x,y) = \sqrt{\frac{\nu(m+1)}{m}} x^{m/(m+1)} \Phi_m(\tau,b), \quad x > 0, \quad y \in \mathbb{R},$$

что в известном смысле эквивалентно решению нелинейной ЗК (2.20), (2.21). Действительно: $\psi(x, y) = \text{const}$ влечет $(\partial \psi / \partial x) dx + (\partial \psi / \partial y) dy = 0$, затем учитываем соотношения (2.7), (2.14), (2.15), и т.д. (как оказалось, этот подход наиболее удобен в реализации).

Еще раз подчеркнем, что в данной работе рассматривается только задача (1.1)–(1.4) для автомодельных решений и обсуждаются некоторые следствия из нее. На наш взгляд, оправданием предположений (2.5), (2.6) для профиля скорости потока в верхнем слое в указанной выше физической модели является то обстоятельство, что для фиксированных значений $m : 1/2 < m < \infty$, и b > 0 задача (1.1)–(1.4) однозначно разрешима, как это следует из ее дальнейшего анализа (тот же вывод при другом подходе получен в [3, с. 23] и [4, с. 412]). Подробнее о физическом смысле рассматриваемой задачи для различных значений параметра m см. в [3], [4], [6]–[8] и цитированных там работах.

2.3. Корректная постановка предельного условия при $au o -\infty$ и его обоснование

Если система ОДУ обладает особой точкой на конце интервала интегрирования (конечной или бесконечно удаленной), то для постановки допустимых граничных условий в этой точке следует изучить предельное поведение всех компонент решения ОДУ, поставив локальную сингулярную ЗК в окрестности этой точки. Если существует семейство решений такой задачи, то размерность этого семейства и соотношения, порожденные значениями его решений в фазовом пространстве переменных ОДУ, важны для правильной постановки допустимых граничных условий в особой точке и их переноса в близкую регулярную точку.

Для автономных систем нелинейных ОДУ с (псевдо)гиперболическими точками равновесия в фазовом пространстве переменных перечисленные выше проблемы подробно исследованы в [10]–[12]. Полученные результаты используются в данной работе для уточнения предварительной формулировки сингулярной НКЗ (1.1)–(1.4).

В фазовом пространстве \mathbb{R}^3 переменных (z_1, z_2, z_3) = (Φ, Φ', Φ'') ОДУ (1.1) имеет бесконечное множество стационарных точек (положений равновесия):

$$(z_1, z_2, z_3)_s(a) = (\Phi, \Phi', \Phi'')_s(a) = (-a, 0, 0), \quad a \in \mathbb{R}.$$
(2.22)

В переменных $z = (z_1, z_2, z_3)^T$, где $z_1(\tau) = \Phi(\tau)$, $z_2(\tau) = \Phi'(\tau)$, $z_3(\tau) = \Phi''(\tau)$, получаем систему нелинейных ОДУ:

$$z' = Q(z), \quad \tau \in \mathbb{R}, \quad Q(z) = \begin{pmatrix} z_2 \\ z_3 \\ z_2^2(m-1)/m - z_1 z_3 \end{pmatrix}.$$
 (2.23)

Матрица Якоби для Q(z), взятая в стационарной точке (2.22), имеет вид

$$\frac{\partial Q}{\partial z}(z_s(a)) = \begin{pmatrix} 0 & 1 & 0\\ 0 & 0 & 1\\ 0 & 0 & a \end{pmatrix},$$
(2.24)

где $z_s(a) = (z_1, z_2, z_3)_s^T(a)$, $Q(z_s(a)) = 0$. Тогда $\forall a > 0$ стационарная точка (2.22) для системы (2.23), рассматриваемой на \mathbb{R}_{-} , является псевдо-гиперболическим седлом с одномерной устойчивой сепаратрисой (или, по другой терминологии, седло-узлом (– ε ,1)-типа, где ε – произвольное число в интервале (0,*a*)). Это означает, что условие (1.2) следует заменить более точным предельным соотношением (1.5) с параметром *a* > 0. Тонкость в появлении дополнительного параметра ε связана с тем, что матрица Якоби (2.24) имеет жорданову клетку второго порядка, соответствующую нулевому собственному значению (СЗ). При постановке условий в виде (1.5), уточняющих условие (1.2), известен ответ на вопрос о существовании в окрестности точки (2.22) аналитического УНМ для решений ОДУ (1.1) и его размерность (см. ниже утверждения 1 и 2; обоснование подобных условий дано в [10]–[12], см. также [21, гл. XIII, § 4]).

Задача (1.1), (1.5) рассматривается как сингулярная нелинейная ЗК. Из [9, разд. 23] следует

Утверждение 1 (Экспоненциальный ряд Ляпунова для однопараметрического семейства решений). При любых заданных a > 0 и $m \neq 0$ сингулярная нелинейная ЗК (1.1), (1.5) имеет однопараметрическое семейство решений $\Phi_m(\tau, a, d)$. Эти решения представимы экспоненциальным рядом Ляпунова

$$\Phi_m(\tau, a, d) = -a + d \exp(a\tau) + \sum_{l=2}^{\infty} h_l d^l \exp(la\tau), \quad \tau \le \tilde{\tau}, \quad \tilde{\tau} \in \mathbb{R},$$
(2.25)

где d – параметр, $|d \exp(a\tilde{\tau})|$ мало, а коэффициенты h_l не зависят от d $(l \ge 1, h_l \doteq 1)$:

$$h_{l} = \left[\sum_{k=1}^{l-1} k \left(\frac{(m-1)(l-k)}{m} - k\right) h_{k} h_{l-k}\right] / [al^{2}(l-1)], \quad l = 2, 3, ...;$$
(2.26)

в частности, из (2.26) следует, что $h_2 = -1/(4am), h_3 = (m+4)/(72a^2m^2), \dots$

В предельном случае $m \to \infty$ сингулярная нелинейная ЗК (1.1), (1.5) имеет двухпараметрическое семейство точных решений $\Phi_{\infty}(\tau, a, d)$, существующих на всей вещественной оси:

$$\Phi_{\infty}(\tau, a, d) = -a + d \exp(a\tau), \quad \tau \in \mathbb{R},$$
(2.27)

где а и d – параметры, a > 0, $d \in \mathbb{R}$.

В [8] утверждается, что для доказательства единственности решения задачи (1.1)–(1.4) при m > 1/2 условие (1.2) надо уточнить, а именно (в наших обозначениях): $\Phi(\tau) \rightarrow -a + O(\exp(a\tau))$ при $\tau \rightarrow -\infty$, где a > 0 (см. текст после формулы (2.2) на стр. 1016), что в главном согласуется с формулой (2.25) и не противоречит условию (1.5).

Принимая во внимание результаты [10]-[12], получаем следующее

Утверждение 2 (Об аналитическом одномерном УНМ). При любых заданных $m \neq 0$ и a > 0 в окрестности стационарной точки (2.22) в фазовом пространстве \mathbb{R}^3 переменных (Φ, Φ', Φ'') значения решений сингулярной нелинейной ЗК (1.1), (1.5) образуют инвариантное относительно τ одномерное аналитическое УНМ $\mathbf{M}_{-}^{(1)}(a, m)$, которое задается двумя нелинейными соотношениями

$$\mathbf{M}_{-}^{(1)}(a,m): \quad \Phi + a = \rho_1(\Phi'',a,m), \quad \Phi' = \rho_2(\Phi'',a,m). \tag{2.28}$$

Здесь $\{\rho_1(y), \rho_2(y)\}$ – решение сингулярной нелинейной задачи типа Ляпунова:

$$\frac{d\rho_1}{dy}\left[ay + \frac{m-1}{m}\rho_2^2 - \rho_1y\right] = \rho_2, \quad \frac{d\rho_2}{dy}\left[ay + \frac{m-1}{m}\rho_2^2 - \rho_1y\right] = y, \quad |y| < \Delta, \quad \Delta > 0, \tag{2.29}$$

$$\rho_1(0) = \rho_2(0) = 0. \tag{2.30}$$

Решение { $\rho_1(y, a, m), \rho_2(y, a, m)$ } этой задачи (с вырождением в нуле по начальным данным) существует, единственно и голоморфно в точке y = 0:

$$\rho_1(y) = \sum_{k=1}^{\infty} b_k y^k, \quad \rho_2(y) = \sum_{k=1}^{\infty} c_k y^k, \quad |y| < \Delta_0, \quad \Delta_0 > 0,$$
(2.31)

$$b_1 = 1/a^2, \quad c_1 = 1/a,$$
 (2.32)

$$c_{k} = \left[\sum_{l=1}^{k-1} \left[lc_{l}b_{k-l} - \frac{m-1}{m} \sum_{s=1}^{k-l} lc_{l}c_{s}c_{k-l-s+1} \right] \right] / (ak),$$
(2.33)

$$b_{k} = \left[c_{k} + \sum_{l=1}^{k-1} \left[lb_{l}b_{k-l} - \frac{m-1}{m} \sum_{s=1}^{k-l} lb_{l}c_{s}c_{k-l-s+1}\right]\right] / (ak), \quad k = 2, 3, \dots;$$
(2.34)

в частности, из (2.32)-(2.34) следует, что

$$c_2 = 1/(2ma^4), \quad b_2 = 3/(4ma^5), \quad \dots$$
 (2.35)

В предельном случае $m \to \infty$ задача (2.29), (2.30) имеет точное решение

$$\rho_1(y, a, \infty) = y/a^2, \quad \rho_2(y, a, \infty) = y/a,$$
(2.36)

так что, в силу (2.28), одномерное УНМ $\mathbf{M}_{-}^{(1)}(a,\infty)$ становится линейным, существует глобально на \mathbb{R}^3 и порождается значениями решений (2.27).

Следствие 1. При любых заданных $m \neq 0$ и a > 0 существует $T_0 \gg 1$, такое что $\forall T \ge T_0$ для решений (1.1) предельное условие (1.5) эквивалентно двум нелинейным соотношениям:

$$\Phi(-T) + a = \rho_1(\Phi''(-T), a, m), \quad \Phi'(-T) = \rho_2(\Phi''(-T), a, m).$$
(2.37)

Здесь $\rho_1(y, a, m)$ и $\rho_2(y, a, m)$ те же, что в (2.28), а $|\Phi''(-T_0)|$ достаточно мало. В предельном случае $m \to \infty$, с учетом (2.36), получаем явные выражения

$$\rho_1 = \Phi''(-T)/a^2, \quad \rho_2 = \Phi''(-T)/a,$$
(2.38)

и соотношения (2.37) становятся линейными.

Замечание 4. Касательная к кривой (2.37) в стационарной точке (2.22) определяется соотношениями

$$\Phi(-T) + a - \Phi''(-T)/a^2 = 0, \quad \Phi'(-T) - \Phi''(-T)/a = 0.$$
(2.39)

Эти соотношения дают линейное приближение к нелинейному УНМ (2.37). При $m \to \infty$ соотношения (2.37), с учетом (2.38) совпадают с (2.39) (линейное УНМ для нелинейного ОДУ!).

Следствие 2. При любых фиксированных m > 0 и a > 0 сингулярная нелинейная КрЗ (1.1), (1.5), (1.3), заданная на \mathbb{R}_{-} , эквивалентна регулярной нелинейной двухточечной КрЗ (1.1), (2.37), (1.3), определенной на конечном интервале $[-T, 0], T \ge 1$ (вообще говоря, с подвижным левым концом).

Следствие 3. При любых фиксированных m > 0, a > 0 и b > 0 сингулярная нелинейная HK3 (1.1), (1.5), (1.3), (1.4), заданная на всей вещественной оси, эквивалентна нелинейной HK3 (1.1), (2.37), (1.3), (1.4), определенной на интервале $[-T, \infty)$, $T \ge 1$ (вообще говоря, с подвижным левым концом). Если существует решение Kp3 (1.1), (1.5), (1.3) (эквивалентной Kp3 (1.1), (2.37), (1.3)), то значение параметра a > 0 в (1.5) (в (2.37)) не является произвольным: a = a(b) > 0 выбирается так, чтобы удовлетворить предельному условию (1.4), если такое поведение решения Kp3 справедливо при его продолжении вправо (как решения 3K с полученными данными при $\tau = 0$).

2.4. Предварительные выводы и замечания, в том числе связанные с последующими вычислениями

2.4.1. Перенос предельных граничных условий из бесконечности в конечную точку и методы стрельбы для решения нелинейной двухточечной Кр3. Для приближенного переноса предельных соотношений (1.5) в конечную точку $\tau = -T$, $T \ge 1$, удерживаем в (2.37) главные члены по $\Phi''(-T)$, используя разложения (2.31)–(2.34), где $y = \Phi''(-T)$. В линейном приближении получаем соотношения (2.39). Если учесть в (2.31) члены до второго порядка по *у* включительно, то, в силу формул (2.32), (2.35), (2.37), получаем приближенные краевые условия в точке $\tau = -T$ в виде

$$\Phi(-T) + a - \Phi''(-T)/a^2 = [3/(4a^5m)][\Phi''(-T)]^2, \qquad (2.40)$$

$$\Phi'(-T) - \Phi''(-T)/a = [1/(2a^4m)][\Phi''(-T)]^2.$$
(2.41)

Таким образом, вместо сингулярной нелинейной КрЗ (1.1), (1.5), (1.3), заданной на \mathbb{R}_{-} и зависящей от параметра a > 0, получаем приближенную двухточечную КрЗ на [-T, 0] вида (1.1), (2.40), (2.41), (1.3) (или вида (1.1), (2.39), (1.3)). Если при заданных a > 0 и m > 0 КрЗ (1.1), (1.5), (1.3) однозначно разрешима, то для ее численного решения применяем методы устойчивой "стрельбы":

1) для фиксированного $T \ge 1$, "стартуя" с приближенного одномерного УНМ, определенного формулами (2.40), (2.41) (или (2.39)), решаем слева направо вспомогательную ЗК для ОДУ (1.1) с Φ "(–*T*) в качестве параметра стрельбы ($|\Phi$ "(–*T*)| \ll 1) и находим значение этого параметра, при котором условие (1.3) удовлетворяется в точке $\tau = 0$;

2) как альтернативный эквивалентный метод, используем ряд Ляпунова (2.25), (2.26), взятый

в точке $\tau = -T$, и определяем приближенные значения $\Phi_m(-T, a, d)$, $\Phi'_m(-T, a, d)$, $\Phi''_m(-T, a, d)$ как начальные данные к ЗК для ОДУ (1.1); решая слева направо указанную вспомогательную ЗК с d > 0 в качестве параметра стрельбы, находим значение этого параметра, при котором удовлетворяется условие (1.3) (такой подход наиболее удобен для использования метода стрельбы).

2.4.2. Применение масштабных преобразований при решении сингулярной нелинейной НКЗ. Пусть сингулярная нелинейная НКЗ (1.1), (1.5), (1.3), (1.4) однозначно разрешима при заданных m > 0 и b > 0, и пусть $\Phi_m(\tau, a)$ – ее решение, где a = a(b). Чтобы найти это решение, достаточно решить указанную НКЗ при a = 1. Действительно: 1) решаем сопутствующую сингулярную нелинейную КрЗ (1.1), (1.5), (1.3) при a = 1 (например, методом 2) из п. 2.4.1) и находим $d = d_m(1) > 0$ и соответствующее решение $\Phi_m(\tau, 1)$ (здесь и далее $d = d_m(a)$ – параметр ряда Ляпунова (2.25), (2.26)); 2) продолжая решение $\Phi_m(\tau, 1)$ для $\tau > 0$ как решение ЗК с найденными начальными данными в точке $\tau = 0$, получаем значение $b = b_m(1) > 0$; 3) значение a = a(b) > 0 для заданного b > 0 в (1.4) находим с помощью масштабных преобразований:

$$b_m(a) = b_m(1)a^{m+1} > 0, \quad a = a(b) = [b/b_m(1)]^{1/(m+1)} > 0;$$
 (2.42)

x	$y_0(x)$	$y_{\max}(x)$	$V_{1/2,\max}(x)$	$v_{1/2,\lim}(x)$	$\tilde{v}_{1/2,\lim}(x)$
0.75	3.11308	1.49215	0.227294	-0.69941	-0.69941
1.75	5.47656	2.62501	0.129202	-0.39757	-0.39757
2.75	7.40238	3.54809	0.095589	-0.29414	-0.29414
3.75	9.10270	4.36308	0.077733	-0.23919	-0.23919
4.75	10.6564	5.10781	0.066400	-0.20432	-0.20431

Таблица 1. (к фиг. 1б)

Таблица 2. ($\tau_{-\infty} = -T = -7$)

т	$d_m(1)$	т	$d_m(1)$	т	$d_m(1)$	т	<i>d_m</i> (1)
1/3	8.579306	0.45	2.2846	0.59	1.7191	1.70	1.1641
0.33334	8.4470	0.46	2.2148	0.60	1.6975	1.90	1.1441
0.3334	8.1710	0.47	2.1525	0.70	1.5370	2.00	1.1358
0.334	7.3800	0.48	2.0965	0.80	1.4370	2.50	1.1056
0.335	6.7938	0.49	2.0460	0.90	1.3686	3.00	1.0864
0.34	5.5131	0.50	2.0000	0.99	1.3232	3.50	1.0731
0.35	4.4467	0.5001	1.9996	0.999	1.3192	4.00	1.0633
0.36	3.8739	0.501	1.9956	1.00	1.3188	4.50	1.0558
0.37	3.4922	0.51	1.9580	1.01	1.3146	5.00	1.0500
0.38	3.2125	0.52	1.9196	1.02	1.3104	10.0	1.0243
0.39	2.9959	0.53	1.8841	1.04	1.3025	15.0	1.0161
0.40	2.8218	0.54	1.8514	1.06	1.2949	20.0	1.0120
0.41	2.6781	0.55	1.8211	1.08	1.2877	25.0	1.0096
0.42	2.5571	0.56	1.7929	1.10	1.2809	50.0	1.0048
0.43	2.4534	0.57	1.7666	1.20	1.2511	100.0	1.0024
0.44	2.3635	0.58	1.7421	1.50	1.1904	∞	1.0000

4) искомое решение $\Phi_m(\tau, a)$ и значение параметра $d = d_m(a) > 0$, где a = a(b) определено в (2.42), окончательно получаем с помощью преобразований:

$$\Phi_m(\tau, a) = a\Phi_m(a\tau, 1), \quad \tau \in \mathbb{R}, \quad d_m(a) = ad_m(1) > 0.$$
(2.43)

Значения $b_m(1)$ и $d_m(1)$, вообще говоря, не могут быть определены методами локального анализа и находятся численно (см. далее табл. 2, 3). (В справедливости соотношений (2.42), (2.43) нетрудно убедиться непосредственно.)

2.4.3. Сходимость сопутствующих несобственных интегралов. Постановка условий при $\tau \to -\infty$ в виде (1.5) гарантирует сходимость несобственных интегралов

$$I_k(\tau, a) = \int_{-\infty}^{\tau} \Phi^{(k)}(s, a) ds, \quad k = 0, 1, 2, 3,$$

(и некоторых других) для решений $\Phi(\tau, a)$ сингулярной нелинейной КрЗ (1.1), (1.5), (1.3). Здесь $\Phi^{(k)}(\tau, a)$ есть *k*-я производная решения $\Phi(\tau, a)$ при $k \ge 1$, $\Phi^{(0)}(\tau, a) \equiv \Phi(\tau, a)$. Это позволяет преобразовать ОДУ (1.1) интегрированием на интервале ($-\infty, \tau$) для проведения полного исследования КрЗ (1.1), (1.5), (1.3) (см. разд. 3).

т	$b_m(1)$	т	<i>b_m</i> (1)	т	$b_m(1)$	т	$b_m(1)$	т	<i>b_m</i> (1)
0.5001	0.06213	0.59	0.67571	0.99	1.3007	1.09	1.2997	1.70	0.83240
0.501	0.09267	0.60	0.71184	0.999	1.3023	1.10	1.2975	1.80	0.73884
0.505	0.17106	0.70	0.98975	1.00	1.3025	1.12	1.2975	1.90	0.64985
0.51	0.23382	0.80	1.1634	1.01	1.3038	1.14	1.2854	2.00	0.56684
0.52	0.32389	0.85	1.2210	1.02	1.3047	1.16	1.2775	2.50	0.25817
0.53	0.39361	0.90	1.2621	1.03	1.3052	1.18	1.2684	3.00	0.10274
0.54	0.45276	0.92	1.2744	1.04	1.3053	1.20	1.2584	3.50	0.03688
0.55	0.50516	0.94	1.2845	1.05	1.3049	1.35	1.1559	4.00	0.01218
0.56	0.55272	0.95	1.2887	1.06	1.3042	1.4	1.1141	5.00	0.00109
0.57	0.59657	0.96	1.2925	1.07	1.3031	1.50	1.0236	6.00	0.00008
0.58	0.63740	0.98	1.2984	1.08	1.3016	1.60	0.9283	~	0.00000

Таблица 3. ($\tau_{-\infty} = -T = -7$)

Для полноты изложения заметим, что с использованием показателей Ляпунова [9] условия (1.5) приобретают вид

$$\limsup_{\tau \to -\infty} \frac{\ln |\Phi(\tau) + a|}{\tau} = \limsup_{\tau \to -\infty} \frac{\ln |\Phi'(\tau)|}{\tau} = \limsup_{\tau \to -\infty} \frac{\ln |\Phi''(\tau)|}{\tau} > \varepsilon \quad \forall \varepsilon : 0 < \varepsilon < a.$$

2.4.4. Семейства частных регулярных и сингулярных решений исходного нелинейного ОДУ третьего порядка. Для некоторых фиксированных значений *m* существуют частные решения нелинейного ОДУ (1.1), которые получаются методами понижения порядка этого ОДУ; они не являются решениями сингулярной нелинейной НКЗ (1.1)–(1.4), и значительная часть из них известна. Именно, наряду с очевидными решениями $\Phi(\tau) \equiv \text{const } \forall m \in \mathbb{R}$, нелинейное ОДУ (1.1) имеет следующие семейства решений:

1) для каждого $m: (m \neq 0) \land (m \neq -1)$, существует однопараметрическое семейство сингулярных решений

$$\Phi_{\operatorname{sing},m}^{(1)}(\tau-\tau_p) = \frac{6m}{(m+1)(\tau-\tau_p)}, \quad \tau_p \in \mathbb{R},$$
(2.44)

с особенностью типа полюса в конечной точке $\tau = \tau_p$; при этом для m = 1/2 существует двухпараметрическое семейство сингулярных решений

$$\Phi_{\text{sing},1/2}^{(2)}(\tau - \tau_p, a) = a \coth(a(\tau - \tau_p)/2), \quad a, \tau_p \in \mathbb{R},$$
(2.45)

которые переходят в решения (2.44) при a = 0: $\Phi_{\text{sing},l/2}^{(2)}(\tau - \tau_p, 0) \equiv \Phi_{\text{sing},l/2}^{(1)}(\tau - \tau_p);$

2) для $m \in \{1/2; 1; 2; \infty\}$ существуют двухпараметрические семейства решений $\Phi_m(\tau - \tau_s, a)$ $(a, \tau_s \in \mathbb{R})$, определенных глобально — на всей вещественной оси:

$$\Phi_{1/2}(\tau - \tau_s, a) = a \tanh(a(\tau - \tau_s)/2), \tag{2.46}$$

$$\Phi_1(\tau-\tau_s,a) = a(\tau-\tau_s), \quad \Phi_2(\tau-\tau_s,a) = a(\tau-\tau_s)^2, \quad (2.47)$$

$$\Phi_{\infty}(\tau - \tau_s, a) = a[\exp(a(\tau - \tau_s)) - 1]; \qquad (2.48)$$

3) для m = 1/3 существует, в частности, двухпараметрическое семейство решений, задаваемых в неявном виде ($b \neq 0, \tau_s \in \mathbb{R}$):

$$\tau - \tau_s = -\frac{1}{2b^2} \ln\left(\frac{b^2 + b\sqrt{|\Phi_{1/3}|} + |\Phi_{1/3}|}{\left(b - \sqrt{|\Phi_{1/3}|}\right)^2}\right) - \frac{\sqrt{3}}{b^2} \arctan\left(\frac{2\sqrt{|\Phi_{1/3}|} + b}{b\sqrt{3}}\right).$$
(2.49)

В (2.44)–(2.49) произвольные величины τ_p и τ_s – параметры сдвига, *a* и *b* – отличные от нуля произвольные числа. При этом при любых заданных a > 0 и $b = \sqrt{a}$ функции $\Phi_{\text{sing,1/2}}^{(2)}(\tau - \tau_p, a)$, $\Phi_{1/2}(\tau - \tau_s, a)$, $\Phi_{\infty}(\tau - \tau_s, a)$ и $\Phi_{1/3}(\tau - \tau_s, a)$ являются решениями сингулярной нелинейной ЗК (1.1), (1.5); они представимы рядами Ляпунова (2.25), (2.26) с соответствующими значениями параметра *d*:

$$d_{\text{sing},1/2}(a,\tau_p) = -2a\exp(-a\tau_p); \qquad (2.50)$$

$$d_{1/2}(a,\tau_s) = 2a \exp(-a\tau_s); \quad d_{\infty}(a,\tau_s) = a \exp(-a\tau_s); \tag{2.51}$$

$$d_{1/3}(a,\tau_s) = 2a\sqrt{3}\exp(\pi\sqrt{3}/3 - a\tau_s).$$
(2.52)

При m = 1/3, если для решения ЗК (1.1), (1.5) положить $\tau_s = \tilde{\tau}_s + \pi \sqrt{3}/(6a)$, то получим $\Phi_{1/3}(\tilde{\tau}_s, a) = \Phi_{1/3}'(\tilde{\tau}_s, a) = 0$, $\Phi_{1/3}'(\tilde{\tau}_s, a) = -2a^3/9$, и $\Phi_{1/3}(\tau - \tau_s, a)$ не существует глобально – имеет полюс в точке $\tau = \tau_p$, где $\tau_p = \tilde{\tau}_s + 2\pi\sqrt{3}/(3a) = \tau_s + \pi\sqrt{3}/(2a)$ (сложный случай m = 1/3 см. подробнее в [1] и здесь в п. 3.2.3 и подразд. 5.2).

2.4.5. Необходимое условие глобального существования решений из однопараметрического семейства Ляпунова. Как показано в подразд. 5.1, при любых заданных $\tau_p \in \mathbb{R}$ и m > 0 для ОДУ (1.1) существует двухпараметрическое семейство сингулярных решений, которые стремятся к частному сингулярному решению (2.44), когда оба параметра стремятся к нулю. Существование таких семейств тесно связано с проблемой глобального существования решений ОДУ (1.1) на всей вещественной оси (далее опускаем индекс (1) вверху в обозначениях решений (2.44) и их производных). А именно, из (2.44) при m > 0 следует, что

$$\Phi_{\text{sing}}(\tau,\tau_p) < 0, \quad \Phi'_{\text{sing}}(\tau,\tau_p) < 0, \quad \Phi''_{\text{sing}}(\tau,\tau_p) < 0, \quad \tau < \tau_p,$$
(2.53)

$$\Phi_{\text{sing}}(\tau,\tau_p) > 0, \quad \Phi'_{\text{sing}}(\tau,\tau_p) < 0, \quad \Phi''_{\text{sing}}(\tau,\tau_p) > 0, \quad \tau > \tau_p.$$
(2.54)

Тогда любое решение ОДУ (1.1), для которого такие неравенства выполнены в некоторой точке $\tau \in \mathbb{R}$, "уходит на полюс", т.е. не существует глобально ("взрывается" в точке $\tau = \tau_p$). В частности, это справедливо для любого решения сингулярной нелинейной ЗК (1.1), (1.5), представимого рядом Ляпунова (2.25), (2.26) с m > 0 и d < 0 (см. пример (2.45), где d < 0 определяется формулой (2.50)).

Следствие 4. Пусть для заданных m > 0 и a > 0 функция $\Phi_m(\tau, a, d)$ является решением сингулярной нелинейной 3K (1.1), (1.5), где d – параметр в разложении (2.25), (2.26). Тогда условие d > 0 является необходимым для глобального существования этого решения, т.е. на всей вещественной оси (при $\tau \ll -1$ для такого решения справедливо $\Phi_m(\tau) < 0$, $\Phi'_m(\tau) > 0$, $\Phi''_m(\tau) > 0$; ср. с неравенствами (2.53) для сингулярных решений).

3. СОПУТСТВУЮЩАЯ СИНГУЛЯРНАЯ НЕЛИНЕЙНАЯ Кр3 НА НЕПОЛОЖИТЕЛЬНОЙ ПОЛУОСИ И ЕЕ ОДНОЗНАЧНАЯ РАЗРЕШИМОСТЬ

3.1. Постановка сингулярной нелинейной Kp3 с двумя параметрами и интегродифференциальные соотношения для ее решений

Рассмотрим сингулярную нелинейную Kp3 с параметрами a > 0 и m > 0:

$$(\Phi'' + \Phi \Phi')' = [(2m - 1)/m](\Phi')^2, \quad -\infty < \tau \le 0,$$
(3.1)

$$\lim_{\tau \to -\infty} \{\exp(-\varepsilon\tau)[\Phi(\tau) + a]\} = \lim_{\tau \to -\infty} [\exp(-\varepsilon\tau)\Phi'(\tau)] =$$
(3.2)

$$= \lim_{t \to \infty} [\exp(-\varepsilon \tau) \Phi''(\tau)] = 0 \quad \forall \varepsilon : 0 < \varepsilon < a,$$

$$\Phi(0) = 0. \tag{3.3}$$

Здесь для дальнейшего удобства ОДУ (1.1) записано в эквивалентной форме (3.1).

Прежде всего изучим поведение решений сингулярной нелинейной 3К (3.1), (3.2). На основании утверждения 1 при фиксированных a > 0 и m > 0 эта задача обладает однопараметрическим семейством решений $\Phi_m(\tau, a, d)$, причем они представимы экспоненциальным рядом Ляпу-

нова (2.25), (2.26) с параметром d > 0, где $|d \exp(a\tau)|$ достаточно мало. Для таких решений проинтегрируем дважды обе части ОДУ (3.1) от $-\infty$ до τ и учтем равенство

$$\int_{-\infty}^{\tau} \int_{-\infty}^{s} [\Phi'(t)]^2 dt ds = \int_{-\infty}^{\tau} (\tau - s) [\Phi'(s)]^2 ds,$$
(3.4)

которое получается интегрированием по частям интеграла в левой части (3.4). Тогда для решений $\Phi_m(\tau, a, d)$ сингулярной нелинейной ЗК (3.1), (3.2) получаем соотношения:

$$\Phi_m''(\tau, a, d) + \Phi_m(\tau, a, d) \Phi_m'(\tau, a, d) = \left[(2m - 1)/m\right] \int_{-\infty}^{\tau} \left[\Phi_m'(t, a, d)\right]^2 dt,$$
(3.5)

$$\Phi'_{m}(\tau, a, d) = [a^{2} - \Phi^{2}_{m}(\tau, a, d)]/2 + [(2m - 1)/m] \int_{-\infty}^{\tau} (\tau - s) [\Phi'_{m}(s, a, d)]^{2} ds.$$
(3.6)

При m > 1/2 и d > 0 из этих соотношений и следствия 4 получаем неравенство $\Phi'_m(\tau, a, d) > 0$ $\forall \tau \in \mathbb{R}$. Действительно, иначе существовало бы такое $\tau = \tilde{\tau}$, что $\Phi'_m(\tilde{\tau}) = 0$ и $\Phi''_m(\tilde{\tau}) \le 0$, но из (3.5) следует, что $\Phi''_m(\tilde{\tau}) > 0$.

Следствие 5. Пусть при заданных m > 1/2, a > 0 и d > 0 функция $\Phi_m(\tau, a, d)$ есть решение сингулярной нелинейной 3K (3.1), (3.2), где d — параметр в разложении (2.25), (2.26). Тогда это решение существует глобально на \mathbb{R} и строго возрастает по τ ; оно является выпуклой функцией, во всяком случае, пока оно остается отрицательным.

Пусть теперь $\Phi_m(\tau, a)$ – решение сингулярной нелинейной КрЗ (3.1)–(3.3). Тогда оно представимо экспоненциальным рядом Ляпунова (2.25), (2.26) с некоторым d = d(a, m) > 0, а из соотношений (3.5), (3.6) и условия (3.3) следуют равенства:

$$\Phi_m''(0,a) = \left[(2m-1)/m\right] \int_{-\infty}^0 \left[\Phi_m'(t,a)\right]^2 dt, \qquad (3.7)$$

$$\Phi'_m(0,a) = a^2/2 - \left[(2m-1)/m\right] \int_{-\infty}^0 s [\Phi'_m(s,a)]^2 ds.$$
(3.8)

Из (3.7), (3.8) получаем

Следствие 6. Если 0 < m < 1/2, то $\Phi'_m(0) < 0$, $\Phi'_m(0) < a^2/2$; если m = 1/2, то $\Phi'_{1/2}(0) = 0$, $\Phi'_{1/2}(0) = a^2/2 > 0$; если m > 1/2, то $\Phi''_m(0) > 0$, $\Phi'_m(0) > a^2/2 > 0$, причем $\Phi'_{m_2}(0) > \Phi'_m(0) > a^2/2 > \mu$, $\Phi''_{m_2}(0) > \Phi'_m(0) > 0$, $m_2 > m_1 > 1/2$.

Учитывая п. 2.4.5 и следствие 4, получаем

Следствие 7. Если для некоторого m : 0 < m < 1/2, существует решение $\Phi_m(\tau)$ КрЗ (3.1)–(3.3), то для него $\Phi'_m(0) \ge 0$. Иначе, если $\Phi'_m(\tau)$ меняет знак в некоторой точке $\tau < 0$, то такое решение "уходит на полюс" ("взрывается" в конечной точке $\tau = \tau_p$), поскольку для него выполнены неравенства (2.53).

3.2. Точные решения сингулярной нелинейной Кр3 при некоторых значениях параметра т и их физическая интерпретация

Для значений *m* : $m \in \{1/3, 1/2, \infty\}$ существуют точные решения $\Phi_m(\tau, a)$ сингулярной нелинейной КрЗ (3.1)–(3.3), допускающие известную физическую интерпретацию (хотя получены они совершенно другим способом, чем в физической литературе). С другой стороны, здесь даются только краткие представления о физической интерпретации этих задач со ссылками на подробности в литературе.

Далее, приведенные в замечании 3 формулы и методы расчета течений в плоскости $\{x, y\}$ остаются в силе при замене всюду решений $\Phi_m(\tau, b)$ сингулярной нелинейной HK3 (1.1)–(1.4) на решения $\Phi_m(\tau, a)$ вспомогательной сингулярной нелинейной Кр3 (3.1)–(3.3).

Фиг. 1. (m = 1/2).

В расчетах (здесь и далее, если не оговорено особо) a = 1, v = 1 (см. замечание 2 и п. 2.4.2). Значения *m* указаны в подписях к фигурам.

3.2.1. Задача 1: плоская ламинарная "затопленная струя". При m = 1/2 решение $\Phi_{1/2}(\tau, a)$ КрЗ (3.1)–(3.3) существует глобально на \mathbb{R} и задается формулой (2.46) при $\tau_s = 0$:

$$\Phi_{1/2}(\tau, a) = a \tanh(a\tau/2), \quad \tau \in \mathbb{R}.$$
(3.9)

Для данных в точке $\tau = 0$ и параметра $d = d_{1/2}(a)$ в разложении (2.25), (2.26) получаем

$$\Phi_{1/2}(0) = \Phi_{1/2}''(0) = 0, \quad \Phi_{1/2}'(0) = a^2/2, \quad d_{1/2}(a) = 2a.$$
 (3.10)

Решение (3.9) может быть интерпретировано как описывающее *неограниченную плоскую лами*нарную струю (так называемая "затопленная струя"; см. [17]–[19] и библиографию там). Параметр a > 0 в (3.9) определяется заданным значением интеграла $I_{1/2}(a) = \int_{-\infty}^{\infty} [\Phi'_{1/2}(\tau, a)]^2 d\tau = 2a^3/3$ (о физическом смысле этого требования см. в [17, с. 177]).

Для переменных *x*, *y* (*x* > 0, *y* $\in \mathbb{R}$) из замечания 3 получаем $\tau_{1/2}(x, y) = yx^{-2/3}/\sqrt{3\nu}$;

$$\begin{split} \psi_{1/2}(x, y, a) &= (ax^{1/3}\sqrt{3\nu}) \tanh(a\tau_{1/2}(x, y)/2);\\ u_{1/2}(x, y, a) &= (a^2/2)x^{-1/3}/\cosh^2(a\tau_{1/2}(x, y)/2);\\ v_{1/2}(x, y, a) &= ax^{-2/3}\sqrt{\nu/3}[a\tau_{1/2}(x, y)/\cosh^2(a\tau_{1/2}(x, y)/2) - \tanh(a\tau_{1/2}(x, y)/2)] \end{split}$$

На фиг. 1 представлены результаты расчетов течений (видимо, впервые полученные): штриховыми линиями изображены линии тока $\psi_{1/2}(x, y) = \text{const}$; на фиг. 1а (на фиг. 1б) приведены профили горизонтальной компоненты скорости $\tilde{u}_{1/2}(y) = u_{1/2}(x, y)|_{x=\text{const}}$ (вертикальной компоненты скорости $\tilde{v}_{1/2}(y) = v_{1/2}(x, y)|_{x=\text{const}}$).

В табл. 1 использованы обозначения: $y_0(x) : v_{1/2}(x, y_0) = 0; y_{max}(x), v_{1/2,max}(x): v_{1/2,max}(x) = v_{1/2}(x, y_{max}(x)) = \max_{y \in [0, y_0]} v_{1/2}(x, y); v_{1/2,lim}(x) = \lim_{y \to +\infty} v_{1/2}(x, y); \tilde{v}_{1/2,lim}(x) = v_{1/2}(x, 70).$

Нам известны только иллюстрации качественного характера для профилей горизонтальной скорости потоков, приведенные в [17, с. 177], [18, с. 287], [19, с. 532]. (Для профилей вертикальной скорости в монографиях [17]–[19] отсутствуют какие-либо иллюстрации.)

3.2.2. Задача 2: о нестационарном отрыве ламинарного пограничного слоя. При $m \to \infty$ решение $\Phi_{\infty}(\tau, a)$ КрЗ (3.1)–(3.3) существует глобально на \mathbb{R} и задается формулой (2.48) при $\tau_s = 0$:

$$\Phi_{\infty}(\tau, a) = a[\exp(a\tau) - 1], \quad \tau \in \mathbb{R}.$$
(3.11)

Для данных в точке $\tau = 0$ и параметра $d = d_{\infty}(a)$ в разложении (2.25), (2.26) имеем

$$\Phi_{\infty}(0) = 0, \quad \Phi'_{\infty}(0) = a^2, \quad \Phi''_{\infty}(0) = a^3, \quad d_{\infty}(a) = a.$$
 (3.12)

Фиг. 2. $(m \rightarrow \infty)$.

Согласно замечанию в [4] со ссылкой на [22], решение (3.11), а следовательно, и приведенные здесь расчеты, относятся к задаче *о нестационарном отрыве ламинарного пограничного слоя*.

В переменных *x*, *y* ($x \ge 0$, $y \in \mathbb{R}$) из замечания 3 имеем $\tau_{\infty}(x, y) \equiv y/\sqrt{v}$ (это единственный случай, когда автомодельная переменная не имеет особенности при x = 0); $\psi_{\infty}(x, y, a) = ax\sqrt{v}[\exp(ay/\sqrt{v}) - 1]; u_{\infty}(x, y, a) = a^2x\exp(ay/\sqrt{v}); v_{\infty}(x, y, a) \equiv a\sqrt{v}[1 - \exp(ay/\sqrt{v})], a$ соотношение $\psi_{\infty}(x, y, a) = \text{const}$ приводит к формуле

$$y(x,a) = (\sqrt{\nu/a})\ln(1 + \operatorname{const}/(ax\sqrt{\nu})), \quad x > 0.$$

Тогда, согласно определению Прандтля, значение $x = x_0 = 0$ – точка отрыва пограничного слоя, так как $u_{\infty}(x_0, 0) = 0$, $(\partial u_{\infty}/\partial y)(x_0, 0) = 0$.

На фиг. 2 штриховыми линями изображены линии тока $\psi_{\infty}(x, y) = \text{const}$; на фиг. 2а – профили горизонтальной компоненты скорости $\tilde{u}_{\infty}(y) = u_{\infty}(x, y)|_{x=\text{const}}$, на фиг. 2б – не зависящий от x профиль вертикальной компоненты скорости $\tilde{v}_{\infty}(y) = v_{\infty}(4.5, y) \equiv v_{\infty}(x, y)$.

3.2.3. Задача 3: плоская ламинарная "пристеночная струя". При m = 1/3 решение $\Phi_{1/3}(\tau, a)$ Кр3 (3.1)—(3.3) не существует глобально на \mathbb{R} (для указанного ниже значения $\tau = \tau_p > 0$ оно имеет особенность типа полюса) и задается неявными формулами (подробнее см. [1] и здесь формулу (2.49) и подразд. 5.2):

$$\tau(\Phi_{1/3}) = \frac{\sqrt{3}\pi}{6a} - \frac{1}{2a} \ln\left(\frac{a + \sqrt{-a\Phi_{1/3}} - \Phi_{1/3}}{\left[\sqrt{a} - \sqrt{-\Phi_{1/3}}\right]^2}\right) - \frac{\sqrt{3}}{a} \arctan\left(\frac{\sqrt{a} + 2\sqrt{-\Phi_{1/3}}}{\sqrt{3a}}\right), \quad (3.13)$$
$$-\infty < \tau \le 0, \quad -a < \Phi_{1/3}(\tau) \le 0;$$

$$\tau(\Phi_{1/3}) = \frac{\sqrt{3}\pi}{6a} - \frac{1}{2a} \ln\left(\frac{a - \sqrt{-a\Phi_{1/3}} - \Phi_{1/3}}{\left[\sqrt{a} + \sqrt{-\Phi_{1/3}}\right]^2}\right) - \frac{\sqrt{3}}{a} \arctan\left(\frac{\sqrt{a} - 2\sqrt{-\Phi_{1/3}}}{\sqrt{3a}}\right),$$

$$0 < \tau < \tau_p = 2\pi\sqrt{3}/(3a) \approx 3.6275987/a, \quad \Phi_{1/3}(\tau) < 0, \quad \lim_{\tau \to \tau_n - 0} \Phi_{1/3}(\tau) = -\infty.$$
(3.14)

В точке $\tau = 0$ и точке перегиба $\tau = \tau_{in}(a)$ из (3.5), (3.7), (3.8) получаем соотношения

$$\Phi'_{1/3}(0,a) = a^2/2 + \int_{-\infty}^0 s[\Phi'_{1/3}(s,a)]^2 ds = 0, \quad \Phi''_{1/3}(0,a) = -\int_{-\infty}^0 [\Phi'_{1/3}s,a)]^2 ds = -2a^3/9, \quad (3.15)$$

$$\Phi_{1/3}(\tau_{\rm in},a)\Phi_{1/3}'(\tau_{\rm in},a) = -\int_{-\infty}^{\tau_{\rm in}} [\Phi_{1/3}'(s,a)]^2 ds, \quad \tau_{\rm in} \in \mathbb{R}_-,$$
(3.16)

а для параметра $d = d_{1/3}(a)$ в разложении (2.25), (2.26) имеем

$$d_{1/3}(a) = 2a\sqrt{3}\exp(\sqrt{3}\pi/6) \approx 8.579306a.$$
(3.17)

Фиг. 3. (m = 1/3).

В переменных *x*, *y* (*x* > 0, *y* $\in \mathbb{R}$) и τ : $-\infty < \tau < \tau_p$, из замечания 3 получаем

$$\tau_{1/3}(x, y) = yx^{-3/4}/(2\sqrt{\nu}); \quad \Psi_{1/3}(x, y, a) = 2x^{1/4}\sqrt{\nu}\Phi_{1/3}(\tau, a);$$
$$u_{1/3}(x, y, a) = x^{-1/2}\Phi_{1/3}'(\tau, a); \quad v_{1/3}(x, y, a) = (3\sqrt{\nu}/2)x^{-3/4}[\tau\Phi_{1/3}'(\tau, a) - \Phi_{1/3}(\tau, a)/3].$$

Из КрЗ (3.1)–(3.3) при m = 1/3, заменой т на –т, Ф на –Ф и с учетом формулы (3.13), получаем задачу *о неограниченной струе вблизи стенки*. Параметр сдвига (см. (2.49)) определяется требованием (3.3), а значение параметра a > 0 – заданным значением интеграла $I_{1/3}(a) = \int_0^{\infty} \Phi_{1/3}(\tau, a) [\Phi'_{1/3}(\tau, a)]^2 d\tau$. Эта модель описана в [19, с. 541–543], включая основное соотношение (3.13) в других обозначениях (с тем же логарифмическим слагаемым и преобразованной остальной частью формулы); формулы (3.14) там не приводятся.

На фиг. 3 штриховыми линиями изображены линии тока $\psi_{1/3}(x, y) = \text{const}$; на фиг. 3а – профили горизонтальной компоненты скорости $\tilde{u}_{1/3}(y) = 0.15u_{1/3}(x, y)|_{x=\text{const}}$ с масштабным множителем; на фиг. 3б – профили вертикальной компоненты скорости $\tilde{v}_{1/3}(y) = 0.02v_{1/3}(x, y)|_{x=\text{const}}$ с масштабным множителем.

Какие-либо расчеты для этой задачи в [19] не приводятся, а приводится лишь иллюстративная фигура (см. [19, с. 541]), которая не описывает истинное поведение потока. Других статей или монографий, где рассматривалась бы эта задача, нами не обнаружено.

3.3. Теоремы существования и единственности и двусторонние оценки строго возрастающих решений

3.3.1. Случай $m \in \{1/3; 1/2; \infty\}$. Суммируя результаты подразд. 3.2, получаем

Утверждение 3. Для любой фиксированной пары значений $\{m, a\}$: $m \in \{1/3; 1/2; \infty\}$, a > 0, сингулярная нелинейная Kp3 (3.1)–(3.3) имеет единственное решение $\Phi_m(\tau, a)$ – строго возрастающую на $\mathbb{R}_$ функцию:

(i) решение $\Phi_{1/3}(\tau, a)$ задается неявной формулой (3.13), где данные в точке $\tau = 0$ определены в (3.15), а параметр $d = d_{1/3}(a)$ в разложении Ляпунова — в (3.17); это решение имеет точку перегиба $\tau = \tau_{in} < 0$, определяемую соотношением (3.16);

(ii) решение $\Phi_{1/2}(\tau, a)$ – выпуклая на \mathbb{R}_{-} функция, представимая формулой (3.9), где данные в точке $\tau = 0$ и параметр $d = d_{1/2}(a)$ в ряду Ляпунова определены в (3.10);

(iii) решение $\Phi_{\infty}(\tau, a) - выпуклая на \mathbb{R}_{-} функция, представимая формулой (3.11), где данные в точ$ $ке <math>\tau = 0$ и параметр $d = d_{\infty}(a)$ в ряду Ляпунова определены в (3.12).

Следствие 8. При любых заданных a > 0 и $m \in \{1/3; 1/2; \infty\}$ сингулярная нелинейная НКЗ (3.1)– (3.3), (1.4), определенная на \mathbb{R} , не имеет решений ни при каком конечном $b \neq 0$. Более того, при m = 1/3 решение сингулярно – имеет полюс в точке $\tau = \tau_p = 2\pi\sqrt{3}/(3a) > 0$.

Фиг. 4.

На фиг. 4 представлены графики решений КрЗ (3.1)–(3.3), описанных в утверждении 3 и продолженных вправо. Они отделяют области с различным поведением на \mathbb{R}_+ решений ОДУ (3.1) ($m \in \{1/3; 1/2; \infty\}$ – критические значения m как параметра бифуркации).

3.3.2. Случай $m \ge 1/2$. При фиксированных $m \ge 1/2$ и a > 0 решение $\Phi_m(\tau, a, d)$ 3K (3.1), (3.2), заданное рядом (2.25), (2.26) при d > 0, строго возрастает при его продолжении вправо и выпукло на \mathbb{R}_- (см. следствие 5 и утверждение 3). Тогда, по непрерывности, существует такое d = d(m, a) > 0, при котором выполняется (3.3) (варьирование d эквивалентно сдвигу по τ).

Теорема 1. При любых заданных $m \ge 1/2$ и a > 0 сингулярная нелинейная Kp3 (3.1)–(3.3), определенная на \mathbb{R}_{-} , имеет единственное решение $\Phi_m(\tau, a)$; оно есть строго возрастающая выпуклая функция, принадлежащая семейству (2.25), (2.26) при некотором d = d(m, a) > 0 и удовлетворяющая соотношениям (3.5)–(3.8), причем справедливы двусторонние оценки

$$\Phi_{\infty}(\tau, a) \le \Phi_m(\tau, a) \le \Phi_{1/2}(\tau, a), \quad \tau \in \mathbb{R}_-; \quad a \le d(m, a) \le 2a, \tag{3.18}$$

еде "supersolution" $\Phi_{1/2}(\tau, a)$ ("subsolution" $\Phi_{\infty}(\tau, a)$) определено в (3.9) (в (3.11)).

Для нескольких значений *m* графики решений Кр3 (3.1)–(3.3) представлены на фиг. 5.

3.3.3. Случай $0 < m \le 1/2$. В последующем изложении учитываем: 1) приведенные выше аналитические формулы для m = 1/2 и m = 1/3; 2) поведение решений семейства (2.25), (2.26); 3) непрерывность решений по m, 1/3 < m < 1/2 (см. следствие 6).

Теорема 2. Для решений сингулярной нелинейной Kp3 (3.1)—(3.3) при $m: 0 < m \le 1/2$, следующие утверждения справедливы:

1) для любой фиксированной пары значений $\{m, a\}$: $1/3 \le m \le 1/2$, a > 0, Kp3 (3.1)–(3.3) имеет единственное решение $\Phi_m(\tau, a)$; оно есть строго возрастающая функция, принадлежащая семейству (2.25), (2.26) при некотором d = d(a, m) > 0, и справедливы оценки:

$$\Phi_{1/2}(\tau, a) \le \Phi_m(\tau, a) \le \Phi_{1/3}(\tau, a), \quad \tau \in \mathbb{R}_-, \quad 2a \le d(a, m) \le 2a\sqrt{3}\exp(\pi\sqrt{3}/6); \tag{3.19}$$

Фиг. 7.

2) при т : 1/3 \leq m < 1/2, решение $\Phi_{m}(\tau,a)$ имеет точку перегиба $\tau=\tau_{\rm in}\in\mathbb{R}_{-},$ определяемую соотношением

$$\Phi_{m}(\tau_{\rm in}, a)\Phi_{m}'(\tau_{\rm in}, a) = \frac{2m-1}{m} \int_{-\infty}^{\tau_{\rm in}} [\Phi_{m}'(s, a)]^{2} ds, \quad \tau_{\rm in} \in \mathbb{R}_{-},$$
(3.20)

и не существует глобально на \mathbb{R} – имеет полюс первого порядка в точке $\tau = \tau_p(a,m) > 0$, где $\tau_p(a,1/3) = 2\pi\sqrt{3}/(3a), \tau_p(a,m) > \tau_p(a,1/3) \forall m : 1/3 < m < 1/2;$

3) при любых m : 0 < m < 1/3, и a > 0 Кр3 (3.1)-(3.3) решений не имеет.

На фиг. 6 представлена графическая иллюстрация к теореме 2 для случая $1/3 \le m \le 1/2$ (иллюстрации к случаю 0 < m < 1/3 см. в [1]).

3.3.4. Вычисление параметра $d = d_m(a)$ $(m \ge 1/3)$ в разложении Ляпунова для решений КрЗ (3.1)–(3.3). Напомним следующее: 1) точные значения параметров $d = d_m(a)$ в ряду Ляпунова, соответствующие частным решениям $\Phi_m(\tau, a)$ КрЗ (3.1)–(3.3) (см. подразд. 3.2): $d_{\infty}(a) = a$, $d_{1/2}(a) = 2a$, $d_{1/3}(a) = 2a\sqrt{3} \exp(\pi\sqrt{3}/6) \approx 8.579306a$; 2) справедливость соотношений $d_m(a) = ad_m(1)$, $\Phi_m(\tau, a) = a\Phi_m(a\tau, 1)$, позволяющих проводить все расчеты при a = 1 (см. п. 2.4.2).

Значения $d = d_m(1)$ приведены в табл. 2, а график $d_m(1)$ как функции *m* представлен на фиг. 7. Здесь, в частности, $d'_m(1) \rightarrow -\infty$ при $m \rightarrow 1/3 + 0$, где производная берется по *m*.

Замечание 5. Используя следствие 1, из сингулярной нелинейной Kp3 (3.1)-(3.3) получаем эквивалентную регулярную Kp3 на интервале [-T, 0]. Линеаризуя последнюю в окрестности стационарного решения (2.22), с учетом замечания 4, получаем не зависящую от *m* линейную Kp3:

$$\Phi''' - a\Phi'' = 0, \quad -T \le \tau \le 0, \quad \Phi(-T) + a - \Phi''(-T)/a^2 = 0, \quad \Phi'(-T) - \Phi''(-T)/a = 0, \quad \Phi(0) = 0.$$

Эта задача имеет точное решение, которое совпадает с решением (3.11) исходной сингулярной нелинейной Кр3 (3.1)–(3.3) при $m \to \infty$. В результате, если применять итерационный метод квазилинеаризации [23] для решения регулярной нелинейной Кр3 на интервале [-T,0], то функцию (3.11) можно использовать как начальное приближение $\forall m \ge 1/3$. Расчеты показали, что $\forall m \ge 1/3$ и, в особенности, $\forall m \ge 1/2$ решения сингулярной нелинейной Кр3 (3.1)–(3.3) на \mathbb{R}_{-} действительно достаточно близки (см. фиг. 4, 5).

Замечание 6. Формально проведенные расчеты для течений в плоскости $\{x, y\}$ при m : 1/3 < m < 1/2 ("сингулярные потоки") позволяют проследить переход от "пристеночного течения" (m = 1/3) к "затопленной струе" (m = 1/2).

4. СУЩЕСТВОВАНИЕ, ДВУСТОРОННИЕ ОЦЕНКИ И ПОВЕДЕНИЕ РЕШЕНИЙ ИСХОДНОЙ СИНГУЛЯРНОЙ НЕЛИНЕЙНОЙ НКЗ

4.1. О продолжении решений сингулярной нелинейной КрЗ на положительную полуось

Проанализируем поведение решений сингулярной нелинейной КрЗ (3.1)–(3.3) при их неограниченном продолжении вправо, что возможно при $m \ge 1/2$. Имеются два предельных случая: $\lim_{\tau\to\infty} \Phi_{1/2}(\tau, a) = a$, $\lim_{\tau\to\infty} [\Phi_{\infty}(\tau, a)/\exp(a\tau)] = a$. Для случая $m : 1/2 < m < \infty$, решения ищем в виде

$$\Phi(\tau) = \tau^m [b + Y(\tau)], \quad \tau > 0, \quad \lim_{\tau \to \infty} Y(\tau) = 0, \tag{4.1}$$

где *b* – параметр ($b \neq 0$). Введя замену переменных $\xi = \tau^{m+1}/(m+1)$, $Y(\tau(\xi)) = v(\xi)$, для $v(\xi)$ получаем сингулярную нелинейную ЗК на бесконечности (точки означают дифференцирование по ξ):

$$\ddot{v} + \left[\frac{6m}{(m+1)\xi} + b\right]\ddot{v} + \left[\frac{(7m-4)m}{(m+1)^2\xi^2} + \frac{(m+2)b}{(m+1)\xi}\right]\dot{v} + \frac{m(m-1)(m-2)}{(m+1)^3\xi^3}v + \frac{m(m-1)(m-2)b}{(m+1)^3\xi^3} = -v\ddot{v} - \frac{m+2}{(m+1)\xi}v\dot{v} + \frac{m-1}{m}\dot{v}^2, \quad \xi > 0,$$
(4.2)

$$\lim_{\xi \to \infty} v(\xi) = \lim_{\xi \to \infty} \dot{v}(\xi) = \lim_{\xi \to \infty} \ddot{v}(\xi) = 0.$$
(4.3)

ОДУ (4.2) имеет иррегулярную особенность при $\xi \to \infty$ (см. [24]). Следующие два утверждения следуют из общей теории [24] для некоторых классов систем нелинейных ОДУ с особенностями типа полюса.

Прежде всего заметим, что ОДУ (4.2) удовлетворяет формальный ряд:

$$v_{\text{form}}(\xi, b) = \sum_{k=1}^{\infty} v_k(b) / \xi^k,$$
 (4.4)

$$w_1 = -(m-1)(m-2)/(m+1)^2,$$
 (4.5)

$$v_{k+1} = \left\{ \left[k(k+1)(k+2) - \frac{6m}{m+1}k(k+1) + \frac{(7m-4)m}{(m+1)^2}k - \frac{m(m-1)(m-2)}{(m+1)^3} \right] v_k - \frac{k}{m} \right\}$$
(4.6)

$$-\sum_{l=1}^{k} l \left[l+1 - \frac{m+2}{m+1} - \frac{m-1}{m} (k-l+1) \right] v_l v_{k-l+1} \bigg\} / \bigg[b(k+1) \bigg(k+2 - \frac{m+2}{m+1} \bigg) \bigg], \quad k = 1, 2, \dots$$

Утверждение 4. При любых заданных $b \neq 0$ и m > 0 сингулярная нелинейная 3K(4.2), (4.3) имеет частное решение $v_{par}(\xi, b)$, для которого ряд (4.4)–(4.6) является асимптотическим разложением при больших ξ .

Утверждение 5. При любом заданном m > 0 нелинейное ОДУ (3.1), рассматриваемое на \mathbb{R} , имеет трехпараметрическое семейство решений $\Phi_m(\tau + \tau_s, b, D)$, которое в главном, для больших положительных τ , представимо в виде

$$\Phi_{m}(\tau + \tau_{s}, b, D) = (\tau + \tau_{s})^{m} \left\{ b + v_{\text{par}}((\tau + \tau_{s})^{m+1}/(m+1), b) + D(\tau + \tau_{s})^{\gamma} \exp(-b(\tau + \tau_{s})^{m+1}/(m+1))[1 + o(1)] \right\}, \quad \tau \to \infty,$$
(4.7)

где τ_s , b и D – параметры, τ_s , $D \in \mathbb{R}$, b > 0,

$$\gamma = (-4m^2 - 6m + 4)/(m + 1), \tag{4.8}$$

 $a v_{par}(\xi, b)$ определено в утверждении 4.

Вывод формулы (4.7) подробнее приведен в [1]. С использованием более сложного подхода эта формула получена также в [3], [4], за исключением того, что из разложения (4.4)–(4.6) для частного решения приведено только выражение вида $v_1/\xi + O(1/\xi^2)$ при $\xi \to \infty$.

Замечание 7. При m = 1 и m = 2 из (4.4)–(4.6) следует, что $v_{par}(\xi, b) \equiv 0$. Тогда из (4.7), (4.8) для больших $\tau > 0$ получаем

$$\Phi_1(\tau + \tau_s, b, D) = (\tau + \tau_s) \{ b + D(\tau + \tau_s)^{-3} \exp(-b(\tau + \tau_s)^2/2) [1 + o(1)] \},$$
(4.9)

$$\Phi_2(\tau + \tau_s, b, D) = (\tau + \tau_s)^2 \{ b + D(\tau + \tau_s)^{-8} \exp(-b(\tau + \tau_s)^3/3) [1 + o(1)] \},$$
(4.10)

а следующие из (2.47) двухпараметрические семейства решений $\Phi_1(\tau + \tau_s, b) = b(\tau + \tau_s)$ и $\Phi_2(\tau + \tau_s, b) = b(\tau + \tau_s)^2$ принадлежат семействам (4.9) и (4.10) при D = 0 и $b \neq 0$.

Для решения $\Phi(\tau)$ ОДУ (3.1), удовлетворяющего условию (3.3), следует равенство

$$[\Phi'(\tau) + \Phi^2(\tau)/2]' = \Phi''(0) + [(2m-1)/m] \int_0^{\tau} [\Phi'(t)]^2 dt$$
(4.11)

и неравенства $\Phi'(0) > 0$, $\Phi''(0) > 0$ при m > 1/2 (см. (3.7), (3.8)). Тогда из (4.11) следует, что при m > 1/2 величина $\Phi'(\tau) + \Phi^2(\tau)/2$ возрастает по τ при $\tau > 0$ и справедливо

Утверждение 6. При любых заданных a > 0 и $m : 1/2 < m < \infty$, решение $\Phi_m(\tau, a)$ сингулярной нелинейной КрЗ (3.1)–(3.3) неограниченно продолжимо вправо и для больших $\tau > 0$ представимо в виде (4.7) при некоторых b = b(m, a) > 0, D = D(m, a) и $\tau_s = \tau_s(m, a)$.

Следствие 9. Для любой фиксированной пары значений $\{m, b\}$: $m : 1/2 < m < \infty$, b > 0, сингулярная нелинейная НКЗ (3.1)–(3.3), (1.4), определенная на \mathbb{R} , имеет единственное решение $\Phi_m(\tau, a, b)$; это решение принадлежит семейству (2.25), (2.26) при некоторых a = a(m, b) > 0 и d = d(m, b) > 0.

Напомним следующее: 1) решая КрЗ (3.1)–(3.3) при a > 0 и $m : 1/2 < m < \infty$, получаем в точке $\tau = 0$ данные Коши $\Phi_m(0, a) = 0$, $\Phi'_m(0, a) > 0$, $\Phi''_m(0, a) > 0$, которые при продолжении решения $\Phi_m(\tau, a)$ для $\tau > 0$, определяют три параметра в (4.7), включая значение $b = b_m(a)$; 2) при этом достаточно решить КрЗ (3.1)–(3.3) при a = 1 и найти значение $b = b_m(1)$, так как справедливы формулы (2.42), (2.43).

На фиг. 8 представлены графики решений КрЗ (3.1)–(3.3), продолженных для $\tau > 0$.

Значения $b_m(1)$ приведены в табл. 3, а график $b = b_m(1)$ как функции *m* представлен на фиг. 9. Здесь $\lim_{m\to 1/2+0} b_m(1) = \lim_{m\to\infty} b_m(1) = 0$ и $\lim_{m\to 1/2+0} b'_m(1) = \infty$, где производная берется по *m* (значение m = 1/2 является точкой ветвления для функции $b_m(1)$).

4.2. Основной результат для сингулярной нелинейной НКЗ

Далее рассматриваем ОДУ (3.1) на всей вещественной оси и добавляем к условиям (3.2), (3.3) предельное условие (1.4) при $\tau \to +\infty$.

Теорема 3. Для любой фиксированной пары значений $\{m, b\}$: $m : 1/2 < m < \infty$, b > 0, сингулярная нелинейная HK3 (3.1)–(3.3), (1.4), определенная на всей вещественной оси, имеет единственное решение $\Phi_m(\tau, a, b)$, где a = a(m, b) > 0, и следующие утверждения справедливы:

(i) $\Phi_m(\tau, a, b)$ – выпуклая на \mathbb{R}_{-} монотонно возрастающая на \mathbb{R} функция, принадлежащая семейству (2.25), (2.26) для некоторого d = d(m, a, b) > 0 и удовлетворяющая ограничениям

$$a[\exp(a\tau) - 1] \le \Phi_m(\tau, a, b) \le a \tanh(a\tau/2), \quad -\infty < \tau \le 0,$$

$$a \tanh(a\tau/2) < \Phi_m(\tau, a, b) < a [\exp(a\tau) - 1], \quad \tau > 0;$$

(ii) при больших $\tau > 0$ функция $\Phi_m(\tau, a, b)$ представима в виде (4.7) с некоторыми D = D(m, a, b) и $\tau_s = \tau_s(m, a, b)$;

(iii) решение $\Phi_m(\tau, a, b)$ может быть получено следующим образом: фиксируем a = 1 и определяем решение $\Phi_m(\tau, 1)$ Kp3 (3.1)–(3.3), которое, в силу теоремы 1, существует, единственно и принадлежит семейству (2.25), (2.26) при некотором $d = d_m(1)$; продолженное вправо, это решение удовлетворяет предельному соотношению $\lim_{\tau\to\infty} [\Phi_m(\tau, 1)/\tau^m] = b_m(1) > 0$; в силу масштабных преобразований (2.42), (2.43), для искомого решения $\Phi_m(\tau, a, b)$ при $\tau \in \mathbb{R}$ окончательно получаем:

 $\Phi_m(\tau, a, b) = a \Phi_m(a\tau, 1), \quad a = a(m, b) = [b/b_m(1)]^{1/(m+1)}, \quad d = d_m(a(m, b)) = a(m, b)d_m(1).$

4.3. Численные результаты для различных значений параметра автомодельности

Ниже приводятся результаты расчета потоков в плоскости $\{x, y\}$ для значений параметра *m*, указанных в подписях к фигурам.

На фиг. 10–12, 14, 15 штриховыми линиями изображены линии тока $\psi_m(x, y) = \text{const}$; на фиг. 10а–12а, 14а (106–12б, 14б) – профили горизонтальных (вертикальных) компонент скорости $\tilde{u}_m(y) = u_m(x, y)|_{x=\text{const}} (\tilde{v}_m(y) = v_m(x, y)|_{x=\text{const}})$; на фиг. 15а (15б) – профили горизонтальной (вертикальной) компоненты скорости $\tilde{u}_{6/5}(y) = 0.2u_{6/5}(x, y)|_{x=\text{const}} (\tilde{v}_{6/5}(y) = 0.5v_{6/5}(x, y)|_{x=\text{const}})$ с мас-штабным множителем.

4.3.1. Случай 1/2 < *m* < 1 (*m* ∈ {11/20, 3/5, 4/5}).

4.3.2. Случай *m* = 1 (плоская "полуструя"). В [17, с. 180–181] сформулирована задача о ламинарном слое на границе раздела двух потоков (см. здесь замечание 1):

$$f'''(\eta) + f(\eta)f''(\eta)/2 = 0, \quad -\infty < \eta < \infty,$$
 (4.12)

$$\lim_{\eta \to \infty} f'(\eta) = U_2 / U_1 = \lambda, \quad f(0) = 0, \quad \lim_{\eta \to \infty} f'(\eta) = 1.$$
(4.13)

Здесь η – автомодельная переменная, $\eta(x, y) = y\sqrt{U_1/(vx)}$, а $U_1(U_2)$ – постоянная скорость верхнего (нижнего) потока. Для "полуструи" в (4.13) $U_2 = 0$, т.е. $\lambda = 0$ (при $\lambda \neq 0$ задача (4.12), (4.13) – другая как математически, так и по физической интерпретации).

В случае "полуструи" для функции тока $\psi(x, y, U_1)$ и *x*-компоненты скорости $u(\eta, U_1)$ справедливо: $\psi(x, y, U_1) = \sqrt{v U_1 x} f(\eta)$, $u(\eta, U_1) = U_1 f'(\eta)$. Полагая $U_1 = 1/2$, получаем $\eta(x, y) \equiv \tau(x, y)$, $\Phi_1(\tau) = f(\eta)/2$, $\tilde{u}(\eta) = f'(\eta) = 2\Phi'_1(\tau, a) = 2u_1(\tau, a)$, где $a : b_1(a) = 1/2$.

Из табл. 2 и 3 имеем $d_1(1) \approx 1.3188$, $b_1(1) \approx 1.3025$. Учитывая соотношения $b_1(a) = b_1(1)a^2 = 1/2$, $d_1(a) = d_1(1)a$, окончательно получаем $a \approx 0.619583$, $d_1(a) \approx 0.8171$.

В [17, с. 181] представлены графики функции $\tilde{u}(\eta) = u(\eta, U_1)/U_1 = f'(\eta)$ для значений $\lambda = 0$ и $\lambda = 0.5$; см. здесь фиг. 13a. На фиг. 13б представлен график $\tilde{u}(\eta) = 2\Phi'_1(\tau, a)$ (a = 0.619583) для сравнения с графиком на фиг. 13a, соответствующим $\lambda = 0$.

На фиг. 14 представлены результаты расчета течений, которые ранее не проводились. **4.3.3.** Случай m > 1. См. фиг. 15, где m = 6/5.

5. ДОПОЛНИТЕЛЬНЫЕ ЗАМЕЧАНИЯ О ПОВЕДЕНИИ ЧАСТНЫХ РЕШЕНИЙ

5.1. О семействах сингулярных ("взрывающихся") решений исходного нелинейного ОДУ

Для ОДУ (1.1) при m > 0 опишем поведение решений, стремящихся к точному сингулярному решению (2.44) при $\tau \to \tau_n$. В окрестности точки $\tau = \tau_n$ решения ищем в виде

$$\Phi(\tau - \tau_p) = \frac{6m}{(m+1)(\tau - \tau_p)} [1 + Y(\tau - \tau_p)], \quad \lim_{\tau \to \tau_p} Y(\tau - \tau_p) = 0$$

Без потери общности достаточно рассмотреть случай $\tau > \tau_p$. Вводя обозначение $x = \tau - \tau_p$, для Y(x) при малых x > 0 получаем локальную сингулярную ЗК для нелинейного ОДУ третьего порядка с регулярной особенностью в нуле (см. [24]):

$$x^{3}Y^{\prime\prime\prime} + [3(m-1)/(m+1)]x^{2}Y^{\prime\prime} + [6(m-1)/(m+1)]xY^{\prime} + 6Y + F(x,Y,xY^{\prime},x^{2}Y^{\prime\prime}) = 0,$$
(5.1)

$$\lim_{x \to +0} Y(x) = \lim_{x \to +0} (xY'(x)) = \lim_{x \to +0} (x^2 Y''(x)) = 0;$$
(5.2)

здесь нелинейная функция в (5.1) имеет вид

$$F(x, Y, xY', x^2Y'') = [6/(m+1)][mx^2Y''Y - (m-1)(xY')^2 - 2xY'Y + (m+1)Y^2].$$

СЗ главной линейной части ОДУ (5.1) являются корнями кубического уравнения $\lambda^3 - 6\lambda^2/(m+1) + \lambda(5m-1)/(m+1) + 6 = 0$, один из корней которого $\lambda_3 = -1$, а два других $\lambda_{1,2}(m)$ удовлетворяют уравнению $\lambda^2 - \lambda(m+7)/(m+1) + 6 = 0$, откуда

$$\lambda_{1,2}(m) = (m+7 \pm i\sqrt{\varkappa(m)})/[2(m+1)], \quad m \ge m_1,$$
(5.3)

$$\lambda_{1,2}(m) = (m+7 \pm \sqrt{-\kappa(m)})/[2(m+1)], \quad 0 < m \le m_1;$$
(5.4)

здесь $\varkappa(m) = 23m^2 + 34m - 25$, а m_1 – положительный корень уравнения $\varkappa(m) = 0$:

$$m_1 = (-17 + 12\sqrt{6})/23 \approx 0.538864213.$$
(5.5)

Для $\lambda_{1,2}(m)$ в (5.3) при $m > m_1$ обозначим

$$\alpha = \operatorname{Re} \lambda_{1,2}(m) = (m+7)/[2(m+1)], \quad \beta = \left| \operatorname{Im} \lambda_{1,2}(m) \right| = \sqrt{\mathfrak{E}(m)}/[2(m+1)].$$
(5.6)

Введем в (5.1), (5.2) замены переменных: $x = \exp(-t)$, t > 0 ($t = -\ln x$, 0 < x < 1), $Z(t) \equiv Y(\exp(-t))$. Для Z(t) получим сингулярную ЗК на бесконечности для нелинейного автономного ОДУ:

$$\ddot{Z} + [6/(m+1)]\ddot{Z} + [(5m-1)/(m+1)]\dot{Z} - 6Z - G(Z, \dot{Z}, \ddot{Z}) = 0, \quad t \ge T,$$
(5.7)

$$\lim_{t \to \infty} Z(t) = \lim_{t \to \infty} \dot{Z}(t) = \lim_{t \to \infty} \ddot{Z}(t) = 0;$$
(5.8)

здесь нелинейная часть в (5.7) имеет вид

$$G(Z, \dot{Z}, \ddot{Z}) = [6/(m+1)][m\ddot{Z}Z - (m-1)\dot{Z}^{2} + (m+2)\dot{Z}Z + (m+1)Z^{2}].$$

Применяя классические результаты [9, разд. 23] к сингулярной нелинейной ЗК (5.7), (5.8) и учитывая введенные замены переменных, получаем

Утверждение 7. При любых фиксированных m > 0 и $\tau_p \in \mathbb{R}$ сингулярная нелинейная 3K(5.1), (5.2)имеет двухпараметрическое семейство решений $Y_m(\tau - \tau_p, C_1, C_2)$, где C_1 и C_2 – параметры (C_1, C_2R) . В окрестности точки $\tau = \tau_p$ эти решения представимы в виде: 1) *npu* $m > m_1 u \tau \rightarrow \tau_n$

$$Y_m(\tau - \tau_p, C_1, C_2) = |\tau - \tau_p|^{\alpha} [C_1 \cos(\beta \ln |\tau - \tau_p|) + C_2 \sin(\beta \ln |\tau - \tau_p|)] [1 + o(1)],$$
(5.9)

где $m_1 > 1/2$, $\alpha > 0$ и $\beta > 0$ определены в (5.5), (5.6);

2) *npu* $m = m_1$

$$Y_{m_1}(\tau - \tau_p, C_1, C_2) = \left| \tau - \tau_p \right|^{\alpha} [C_1 + C_2 \ln \left| \tau - \tau_p \right|] [1 + o(1)], \quad \tau \to \tau_p,$$
(5.10)

 $e\partial e \; \alpha = (m_1 + 7) / [2(m_1 + 1)] > 0;$

3) *npu* $0 < m < m_1$

$$Y_m(\tau - \tau_p, C_1, C_2) = [C_1 | \tau - \tau_p |^{\lambda_1} + C_2 | \tau - \tau_p |^{\lambda_2}] [1 + o(1)], \quad \tau \to \tau_p,$$
(5.11)

где $\lambda_{1,2} = \lambda_{1,2}(m) > 0$ определены в (5.4). Более полное утверждение: в окрестности точки $\tau = \tau_p$ двухпараметрическое семейство решений $Y_m(\tau - \tau_p, C_1, C_2)$ сингулярной нелинейной ЗК (5.1), (5.2), где $x = |\tau - \tau_p|$, представимо параметрическим рядом Ляпунова по целым степеням величин (5.9)–(5.11) соответственно (без слагаемых вида o(1)); коэффициенты этих рядов могут быть получены их формальной подстановкой в ОДУ (5.1) и имеют рост не выше степенного.

Для m = 1/2, используя точные решения (2.45) и принимая во внимание, что $\kappa(1/2) = -9/4 < 0$, $\lambda_1(1/2) = 3$, $\lambda_2(1/2) = 2$ и $m_1 > 1/2$, получаем также

Следствие 10. При m = 1/2 сингулярная нелинейная 3К (5.1), (5.2) имеет однопараметрическое семейство точных решений

$$Y_{1/2}(x,a) = (ax/2) \coth(ax/2) - 1, \quad x, a \in \mathbb{R},$$

где a – параметр, т.е. для любого заданного τ_n

$$Y_{1/2}(\tau - \tau_p, a) = [a(\tau - \tau_p)/2] \operatorname{coth}(a(\tau - \tau_p)/2) - 1, \quad \tau, \tau_p, a \in \mathbb{R}.$$

Эти решения принадлежат семейству (5.11) при $C_1 = 0$, $C_2 = C_2(a) = a^2/(3 \cdot 2^2)$ и $\lambda_2 = 2$; их разложения в ряд Ляпунова при $(\tau - \tau_p)^2 < \pi^2$ имеют вид

$$Y_{1/2}(\tau - \tau_p, a) = C_2(a)(\tau - \tau_p)^2 - (1/5)C_2^2(a)(\tau - \tau_p)^4 + (2/35)C_2^3(a)(\tau - \tau_p)^6 - \dots,$$

или, в полной записи, $Y_{1/2}(\tau - \tau_p, a) = \sum_{n=1}^{\infty} D_n (C_2(a)(\tau - \tau_p)^2)^n$, где $(\tau - \tau_p)^2 < \pi^2$, $D_n = [(-1)^{n-1}/(2n!)]3^n \cdot 2^{2n} B_n$, B_n – числа Бернулли (см. [25]): $B_1 = 1/6$, $B_2 = 1/30$, $B_3 = 1/42$, ...

Суммируя результаты этого подраздела, получаем

Следствие 11. При любом заданном m > 0 нелинейное ОДУ (1.1) имеет трехпараметрическое семейство сингулярных решений $\Phi_m(\tau - \tau_p, C_1, C_2)$, представимых в виде

$$\Phi_m(\tau - \tau_p, C_1, C_2) = \frac{6m}{(m+1)(\tau - \tau_p)} [1 + Y_m(\tau - \tau_p, C_1, C_2)],$$
(5.12)

где τ_p , C_1 , C_2 — параметры ($\tau_p, C_1, C_2 \in \mathbb{R}$), а двухпараметрическое семейство функций $Y_m(\tau - \tau_p, C_1, C_2)$ при фиксированном $\tau_p \in \mathbb{R}$ описано в утверждении 7.

Замечание 8. Формулы (5.9)–(5.11) получены также в [3], [4] с использованием существенно более сложного подхода. Кроме того, результаты утверждения 7 и следствия 11 являются более полными и точными, а результаты следствия 10 – новыми.

5.2. О преобразовании нелинейного ОДУ третьего порядка к сингулярному нелинейному ОДУ первого порядка (в нефизических переменных) и некоторых его частных решениях

Коротко обратимся к подходу [3], [4], чтобы уточнить один частный результат.

ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ том 61 № 10 2021

1643

Порядок ОДУ (1.1) понижается, если взять искомую функцию Φ в качестве независимой переменной и ввести новую искомую функцию $f(\Phi)$, которая вдоль траектории $\Phi(\tau)$ этого ОДУ задается в виде

$$f(\Phi(\tau)) = \frac{d\Phi}{d\tau}(\tau).$$
(5.13)

Для $f(\Phi)$ получаем ОДУ второго порядка (точка означает производную по Φ):

$$f\ddot{f} + \dot{f}^2 + \Phi\dot{f} - [(m-1)/m]f = 0.$$
(5.14)

Учитывая инвариантность этого ОДУ и ОДУ (1.1) относительно некоторых групп преобразований, в [3], [4] вводятся новые функции $F(\Phi)$ и $\Psi(\Phi)$ по формулам

$$\Phi^2 F(\Phi) = f(\Phi), \quad \Psi(\Phi) = \Phi \frac{dF}{d\Phi}(\Phi).$$
(5.15)

Дифференцируя (5.15) по Ф и используя формулы (5.13)-(5.15), получаем соотношения

$$\frac{df}{d\Phi} = (2F + \Psi)\Phi, \quad F\frac{d^2f}{d\Phi^2} = -(\Psi + 2F)^2 - \Psi - \frac{m+1}{m}F;$$
(5.16)

$$\frac{d^{2}\Phi}{d\tau^{2}} = F(2F + \Psi)\Phi^{3}, \quad \frac{d^{3}\Phi}{d\tau^{3}} = -F\left[\Psi + F(m+1)/m\right]\Phi^{4};$$
(5.17)

$$\Psi F \frac{d\Psi}{dF} = -\Psi^2 - \Psi - 7F\Psi - 6F^2 - \frac{m+1}{m}F.$$
(5.18)

Далее, в соответствии с [3], [4], следует рассмотреть особые точки нелинейного ОДУ (5.18) на плоскости (F, Ψ) и проанализировать поведение интегральных кривых в окрестностях этих точек в проекциях на сферу Пуанкаре. Для возвращения к исходным переменным (τ , Φ , Φ' , Φ'') приходится использовать довольно сложный набор формул (5.13)–(5.17). В результате анализ решений в терминах исходных физических переменных получается достаточно трудоемким: для (5.18) все граничные условия потеряны, так что надо изучать поведение всех траекторий решений, отбирая нужные.

Одним из исключений является случай частных решений ОДУ (5.18) вида

$$\Psi = AF + B. \tag{5.19}$$

Здесь A и B – постоянные, зависящие от m; для нахождения всех возможных значений этих постоянных получаем уравнения

$$B^{2} + B = 0$$
, $A + 3AB + 7B + (m+1)/m = 0$, $2A^{2} + 7A + 6 = 0$,

которые дают решения

$$B = B_m = 0, \quad A = A_m = -(m+1)/m, \quad m \in \{1, 2\};$$
(5.20)

$$B = B_m = -1, \quad A = A_m = (1 - 6m)/(2m), \quad m \in \{1/3; 1/2\}.$$
(5.21)

В терминах исходных переменных решения получаются с помощью формул (5.15), (5.19), откуда следует

$$F = (C/A) |\Phi|^{A} - B/A, \quad f(\Phi) = \Phi^{2} F(\Phi),$$
(5.22)

где С – произвольная постоянная. Окончательно имеем

. -

$$\frac{d\Phi_m}{d\tau} = \Phi_m^2[(C/A_m)|\Phi_m|^{A_m} - B_m/A_m], \quad m \in \{1/3; 1/2; 1; 2\}.$$
(5.23)

В результате получаем семейства решений (2.46), (2.47) для $m \in \{1/2; 1; 2\}$ и более сложное семейство неявных решений (2.49) для m = 1/3, если в (5.23) положить $C = -b^3$ (пример этого последнего случая обсуждается в п. 3.2.3). (В [1] допущены опечатки в первой формуле (5.22) и, как следствие, в (5.23), которые здесь исправлены.)

Следствие 12. Для ОДУ (5.18) значения *A*, *B* и *m*, определенные в (5.20), (5.21), охватывают все возможные решения вида (5.19). В свою очередь, из ОДУ (5.23) следуют формулы (2.46), (2.47) и (2.49) для решений ОДУ (1.1).

В заключение отметим, что анализ сингулярных задач для нелинейных ОДУ, возникающих в моделях естественных наук, связан с большими трудностями, что вызывает особый интерес к тем задачам, которые допускают достаточно полный их математический и численный анализ. Подход к конкретной задаче гидродинамики, описанный в данной работе, может представлять интерес и для других задач. Отметим еще раз, что в [3], [4], [6]–[8], в отличие от [1] и данной работы, никакие расчеты не приводятся (вообще говоря, непонятно, что и как можно посчитать при таком сложном подходе этих работ).

Авторы благодарят М.Б. Соловьева за помощь в проведении расчетов, а также Рецензентов, некоторые замечания и вопросы которых по тексту способствовали улучшению статьи.

СПИСОК ЛИТЕРАТУРЫ

- 1. Дышко А.Л., Конюхова Н.Б., Суков А.И. О сингулярной задаче для нелинейного обыкновенного дифференциального уравнения третьего порядка, возникающего в гидродинамике// Ж. вычисл. матем. и матем. физ. 2007. Т. 47. № 7. С. 1158–1178.
- 2. *Konyukhova N.B., Sukov A.I., Soloviev M.B.* Singular nonlinear problems for self-similar solutions to the boundary layer equations with a zero pressure gradient// Intern. Scientific Journal Spectral and Evolution Problems. 2009. V. 19. P. 143–155 (Simferopol: Taurida National V.Vernadsky University; e-print: http://www.kromsh.info/).
- 3. *Диесперов В.Н.* Исследование автомодельных решений, описывающих течения в слоях смешения// Прикл. матем. и мех. 1986. Т. 50. Вып. 3. С. 403–414.
- 4. Диесперов В.Н. Поведение автомодельных решений уравнения пограничного слоя с нулевым градиентом давления// Сообщ. по прикл. матем. ВЦ АН СССР. М.: ВЦ АН СССР, 1986.
- 5. *Андронов А.А., Леонтович Е.А., Гордон И.И., Майер А.Г.* Качественная теория динамических систем второго порядка. М.: Наука, 1966.
- 6. *Диесперов В.Н.* О существовании и единственности автомодельных решений, описывающих течение в слоях смешения// Докл. АН СССР. Гидромеханика. 1984. Т. 275. № 6. С. 1341–1346.
- 7. *Диесперов В.Н.* О течении в слое смешения Чепмена// Докл. АН СССР. Аэродинамика. 1985. Т. 284. № 2. С. 305–309.
- 8. *Диесперов В.Н.* Об одной задаче в теории слоев смешения// Прикл. матем. и мех. 1996. Т. 60. Вып. 6. С. 1008–1020.
- 9. Ляпунов А.М. Общая задача об устойчивости движения. М.–Л.: Гостехтеоретиздат, 1950.
- 10. *Конюхова Н.Б.* О стационарной задаче Ляпунова для системы квазилинейных уравнений с частными производными первого порядка// Дифференц. ур-ния. 1994. Т. 30. № 8. С. 1384–1395.
- 11. *Конюхова Н.Б.* Об устойчивых многообразиях Ляпунова для автономных систем нелинейных обыкновенных дифференциальных уравнений // Ж. вычисл. матем. и матем. физ. 1994. Т. 34. № 10. С. 1358–1379.
- 12. Конюхова Н.Б. Гладкие многообразия Ляпунова и сингулярные краевые задачи// Сообщ. по прикл. матем. ВЦ РАН. М.: ВЦ РАН, 1996.
- Konyukhova N.B. Smooth Lyapunov's manifolds and singular boundary value problems for autonomous systems of nonlinear ordinary differential equations// Проблемы дифференциальных уравнений, анализа и алгебры. Материалы II Междунар. научн. конф. (Актобе, 15–19 сентября 1999 г.). Актобе: Ред.-изд. отдел Актюбинского университета им. К. Жубанова, 2000. С. 60–65.
- Konyukhova N.B. Smooth Lyapunov's manifolds and singular boundary value problems for nonlinear autonomous systems on an infinite interval// Spectral and Evolution Problems (Sevastopol, 2000). Simferopol: National Taurida V. Vernadsky University, 2001. V. 11. P. 204–209.
- 15. *Konyukhova N.B., Sukov A.I.* Smooth Lyapunov manifolds and correct mathematical simulation of nonlinear singular problems in mathematical physics// Mathematical Modeling. Problems, Methods, Applications. New York: Kluwer Academic/ Plenum Publishers, 2001. P. 205–217.
- Konyukhova N.B., Sukov A.I. On correct statement of singular BVPs for autonomous systems of nonlinear ODEs with the applications to hydrodynamics// Proc. Inter. Seminar "Day on Diffraction – 2003" (St. Petersburg, Russia, June 24–27, 2003)/ Ed. by I.V. Andronov. St. Petersburg: Faculty of Physics, SPbU, 2003. P. 99–109.
- 17. Шлихтинг Г. Теория пограничного слоя. М.: Наука, 1974.
- 18. Слезкин Н.А. Динамика вязкой несжимаемой жидкости. М.: Гостехтеоретиздат, 1955.
- 19. Лойцянский Л.Г. Механика жидкости и газа. М.: Наука, 1973.
- 20. Олейник О.А., Самохин В.Н. Математические методы в теории пограничного слоя. М.: Наука, 1997.
- 21. Коддингтон Э.А., Левинсон Н. Теория обыкновенных дифференциальных уравнений. М.: Изд-во иностр. лит., 1958.
- 22. Сычев Вик.В. Теория нестационарного отрыва пограничного слоя и разрушение следа// Успехи механики. 1983. Т. 6. Вып. 1/2. С. 13–51.
- 23. Беллман Р., Калаба Р. Квазилинеаризация и нелинейные краевые задачи. М.: Мир, 1968.
- 24. Вазов В. Асимптотические разложения решений обыкновенных дифференциальных уравнений. М.: Мир, 1968.
- 25. Двайт Г.Б. Таблицы интегралов и другие математические формулы. М.: ФИЗМАТЛИТ, 1977.