ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ, 2021, том 61, № 10, с. 1684–1692

____ МАТЕМАТИЧЕСКАЯ _____ ФИЗИКА

УДК 519.634

Светлой памяти Юрия Дмитриевича Шмыглевского посвящается

ПРОФИЛИРОВАНИЕ СВЕРХЗВУКОВОЙ ЧАСТИ ПРОСТРАНСТВЕННОГО СОПЛА МАКСИМАЛЬНОЙ ТЯГИ

© 2021 г. И. Е. Михайлов^{1,2,*}

¹ 119333 Москва, ул. Вавилова, 44/2, ФИЦ ИУ РАН, Россия ² 125993 Москва, Волоколамское ш., 4, МАИ НИУ, Россия *e-mail: mikh igor@mail.ru

Поступила в редакцию 02.02.2021 г. Переработанный вариант 02.02.2021 г. Принята к публикации 09.06.2021 г.

Рассматривается задача о нахождении формы пространственной сверхзвуковой части сопла, проходящей через круглое критическое сечение сопла и выходной контур, вписанный в заданные габариты, которая имеет наибольшую тягу среди всех возможных допустимых форм. Составляется функционал Лагранжа, в котором все уравнения газовой динамики и граничное условие учитываются с помощью переменных множителей Лагранжа. Выписывается первая вариация функционала. Уравнения и связи, обращающие первую вариацию в нуль, образуют сопряженную задачу для множителей Лагранжа и условие оптимальности. Разработан вычислительный алгоритм совместного решения уравнений газовой динамики и сопряженной задачи. Приводятся примеры расчетов. Библ. 12. Фиг. 3.

Ключевые слова: сверхзвуковая часть пространственного сопла, необходимые условия экстремума.

DOI: 10.31857/S0044466921100136

введение

С каждым годом возрастает уровень требований к характеристикам летательных аппаратов. Поэтому задачи оптимизации элементов летательных аппаратов и их двигателей, позволяющие улучшать эти характеристики, еще долгое время будут оставаться актуальными. В работе рассматривается задача о нахождении формы пространственной сверхзвуковой части сопла, вписанной в заданные габариты и имеющей наибольшую тягу среди всех возможных допустимых форм. В настоящее время применяются два подхода к решению этой задачи: прямые приближенные методы и обратные точные методы. В прямых методах искомая стенка параметризуется, и искомые параметры находятся с помощью прямых методов максимизации интеграла тяги (см. [1]–[3]). Обратные методы используют математический аппарат теории оптимального управления системами с распределенными параметрами, когда связи задачи учитываются с помощью множителей Лагранжа. Далее вычисляется первая вариация расширенного функционала, возникают сопряженная система для множителей Лагранжа и условие оптимальности. Совместное решение исходной и сопряженной систем, удовлетворяющее условию оптимальности, позволяет найти оптимальное решение. Но решение сопряженной системы для множителей Лагранжа с достаточной точностью является весьма трудоемким процессом, который стал возможным только теперь с развитием вычислительной техники. В этой процедуре для задач с распределенными параметрами есть "узкое" место: какие связи задачи необходимо учитывать с помощью множителей Лагранжа, а какие можно и не привлекать? Дело в том, что учет всех связей в применимости к пространственным оптимальным задачам приводит к чудовищно громоздким расширенным функционалам и громоздким сопряженным системам. Авторы монографий Ю.Д. Шмыглевский (см. [4]) и А.Н. Крайко (см. [5]) считают, что необходимо учитывать только существенные связи задачи. В некоторых задачах можно получить оптимальные решения, которые автоматически удовлетворяют не учтенным в функционале Лагранжа связям. Последнее связано с тем, что если бы такие связи были учтены с помощью соответствующих множителей Лагранжа, то эти множители все равно получились бы нулями (см. [4]). Примером такой задачи является задача, рассматриваемая в настоящей статье. В ней не учитываются условия совместности на характеристических поверхностях, ограничивающих область решения.

1. ПОСТАНОВКА ЗАДАЧИ

Течение идеального газа в сопле полагается изэнергетическим, безвихревым. Оно описывается уравнениями

$$\operatorname{div} \rho \mathbf{V} = 0, \quad \operatorname{rot} \mathbf{V} = 0. \tag{1}$$

Система (1) для идеального газа замыкается интегралом Бернулли

$$\frac{\mathbf{V}^2}{2} + \frac{\mathbf{x}}{\mathbf{x} - 1\rho} = \frac{\mathbf{x} + 1}{2(\mathbf{x} - 1)}$$
(2)

и уравнением состояния

$$p = \frac{\rho^x}{x},\tag{3}$$

где æ – показатель адиабаты.

Все искомые функции, входящие в уравнения (1)–(3): скорость V, давление *p*, плотность ρ , а также местная скорость звука $a = \sqrt{\frac{p}{\rho}}$ обезразмерены к параметрам в критическом сечении соп-

ла. Независимые переменные отнесены к радиусу критического сечения.

Из формул (1)–(3) следует, что закон сохранения импульса в проекции на фиксированное направление е можно записать в следующем дивергентном виде:

$$\operatorname{div}[p\mathbf{e} + \rho(\mathbf{V} \cdot \mathbf{e})\mathbf{V}] = 0. \tag{4}$$

Дополнительно введем две скалярные функции тока у и χ , определяемые уравнениями

$$\mathbf{V} \cdot \nabla \boldsymbol{\psi} = 0, \quad \mathbf{V} \cdot \nabla \boldsymbol{\chi} = 0. \tag{5}$$

Функции ψ и χ сохраняются вдоль линий тока, поэтому задавая значения функций тока ψ и χ на некоторой начальной поверхности, пересекающей все линии тока, мы можем с помощью (5) рассчитать значения ψ и χ во всей области течения и выделить нужные линии тока.

Начальные данные задаются на некоторой характеристической поверхности Σ_1 , сходящей с круглого критического сечения сопла γ_1 (фиг. 1). На стенке сверхзвуковой части сопла σ выполняется условие непротекания

$$\mathbf{V} \cdot \mathbf{n}_{\sigma} = \mathbf{0},\tag{6}$$

где \mathbf{n}_{σ} – нормаль к поверхности σ .

Система уравнений (1) при сверхзвуковом течении имеет гиперболический тип. Это означает, что в рассматриваемой области существуют особые поверхности, называемые характеристическими. Для системы (1) форма этих поверхностей определяется уравнениями

$$\mathbf{V} \cdot \mathbf{n} = \pm a,\tag{7}$$

где **n** — вектор нормали к характеристической поверхности. Такие поверхности удовлетворяют следующему условию: существует линейная комбинация уравнений (1) такая, что в нее будут входить лишь производные вдоль векторов, касательных к поверхности — "внутренние" производные. Такие линейные комбинации называются условиями совместности. На каждой характеристической поверхности может быть выписано одно или несколько условий совместности. Условия совместности для системы (1) имеют вид

$$a^{2} \operatorname{div}(\rho \mathbf{V}) + \rho[a\mathbf{n} + (a-1)\mathbf{V}] \cdot [\mathbf{V} \times \operatorname{rot} \mathbf{V}] = 0,$$

$$\mathbf{n} \cdot \operatorname{rot} \mathbf{V} = 0.$$

В работе для численного расчета как уравнений газовой динамики, так и сопряженной задачи, использовался метод, явно выделяющий характеристические поверхности и использующий соответствующие условия совместности на них.

Фиг. 1. Сечение пространственной сверхзвуковой части сопла меридиональной плоскостью ϕ = const.

Расчет функций **V**, *p*, ρ , ψ и χ в заданной области τ (фиг. 1), ограниченной начальной характеристической поверхностью Σ_1 , замыкающей характеристической поверхностью Σ_2 , приходящей на заданный выходной контур сопла γ_2 , и заданной стенкой сверхзвуковой части сопла σ , по уравнениям (1)–(3), (5) с начальными данными на характеристической поверхности Σ_1 будем называть прямой задачей.

Сформулируем теперь вариационную задачу для определения оптимальной формы сверхзвуковой части сопла. Пусть заданы входная критическая γ_1 и выходная γ_2 кромки сверхзвуковой части сопла (в общем случае контур γ_2 может лежать на известной поверхности Ω , см. фиг. 1). Пусть далее вектор **е** задает направление, в котором будет проводиться оптимизация тяги сопла. Требуется среди всех поверхностей σ , проходящих через заданные контуры γ_1 и γ_2 , найти такую, на которой функционал

$$T = \iint_{\sigma} (p - p_0) \mathbf{e} \cdot d\mathbf{\sigma},\tag{8}$$

являющийся проекцией интеграла сил давления на направление **e**, принимает наибольшее значение (здесь p_0 — постоянное атмосферное давление на внешней поверхности сопла). Давление *p* в (8) находится из решения задачи (1)—(3). В точках критического сечения продольные образующие сопла имеют излом.

2. СОПРЯЖЕННАЯ ЗАДАЧА

Для решения поставленной вариационной задачи будем использовать общий метод множителей Лагранжа, предложенный для решения осесимметричных задач в [6]. Составим функционал Лагранжа

$$T^{0} = \iint_{\sigma} (p\mathbf{e} + \mu \mathbf{V}) \cdot d\mathbf{\sigma} + \iiint_{\tau} (\lambda \operatorname{div} \rho \mathbf{V} + \mathbf{h} \cdot \operatorname{rot} \mathbf{V}) d\tau,$$

в котором дифференциальные уравнения (1) и условие непротекания (6) учитываются с помощью переменных множителей Лагранжа μ , λ и **h**. Тогда задача нахождения экстремума функционала (8) при условии выполнения уравнений (1)–(3) сводится к задаче нахождения безусловного экстремума функционала T^0 . Таким образом, необходимым условием экстремальности сверхзвуковой части сопла является обращение первой вариации функционала δT^0 в нуль.

Для получения первой вариации мы будем использовать следующие формулы, основанные на обобщении результатов Н.Е. Кочина по переменным полям в сплошных средах (см. [7]). Формулы, совпадающие с формулами Н.Е. Кочина, опубликованы также и в монографии [8]. Пусть заданы функционалы

$$T_2 = \iint_{S} \mathbf{a}(\mathbf{r}) \cdot d\mathbf{S}, \quad T_3 = \iiint_{\tau} \varphi(\mathbf{r}) d\tau.$$

Тогда первые вариации этих функционалов равны

$$\delta T_2 = \iint_S (\delta \mathbf{a} + \delta \mathbf{r}_S \operatorname{div} \mathbf{a}) \cdot d\mathbf{S} + \oint_L [\mathbf{a} \times \delta \mathbf{r}_L] \cdot d\mathbf{r},$$

$$\delta T_3 = \iiint_\tau \delta \varphi d\tau + \bigoplus_S \varphi(\mathbf{r}_S) \delta \mathbf{r}_S \cdot d\mathbf{S}.$$

Здесь вектор-функция δa обозначает допустимую вариацию вектора a внутри и на границе фиксированной поверхности S, $\delta \phi$ — допустимая вариация функции ϕ внутри и на границах фиксированного объема τ , вектор-функция $\delta \mathbf{r}_S$ — малая непрерывная деформация поверхности S, ограничивающей объем τ , $\delta \mathbf{r}_L$ — малая непрерывная деформация контура L, ограничивающего поверхность S.

При варьировании поверхности σ из-за сверхзвукового характера течения будем считать, что на поверхности Σ_1 функции течения не меняются. Это означает, что на поверхности Σ_1 выполняются соотношения $\delta \mathbf{V} = \delta \mathbf{r} = 0$. Кроме того, из формул (1)–(3) следуют связи

$$\delta \rho = -\frac{\rho}{a^2} \mathbf{V} \cdot \delta \mathbf{V}, \quad \delta p = a^2 \delta \rho$$

С учетом этих формул первая вариация функционала Лагранжа записывается в виде

$$\delta T_0 = \bigoplus_{\tau} \left[\operatorname{rot} \mathbf{h} - \rho \nabla \lambda + \frac{\rho}{a^2} \mathbf{V} (\mathbf{V} \cdot \nabla \lambda) \right] \cdot \delta \mathbf{V} d\tau + \iint_{\sigma} \left[(\mu + \rho \lambda) \delta \mathbf{V} - (\rho \mathbf{V} \times \mathbf{e} + \mathbf{h}) \times \delta \mathbf{V} \right] d\mathbf{S} + \\ + \iint_{\Sigma_2} \left[\rho \lambda \left(\mathbf{n}_2 \times \frac{\mathbf{V}}{a} \right) - \mathbf{h} \right] \cdot (\delta \mathbf{V} \times d\mathbf{S}) + \iint_{\sigma} \left\{ \operatorname{div}(p \mathbf{e} - \rho \lambda \mathbf{V}) \delta \mathbf{r}_{\sigma} \right\} d\mathbf{S} + \oint_{\gamma_2} \left\{ \left[(p - p_0) \mathbf{e} - \rho \lambda \mathbf{V} \right] \times \delta \mathbf{r}_L \right\} d\mathbf{r}_L$$

где \mathbf{n}_2 – вектор нормали к поверхности Σ_2 такой, что $\mathbf{V} \cdot \mathbf{n}_2 = a$.

Определим множители Лагранжа следующим образом: в области т

$$\operatorname{rot} \mathbf{h} = \rho \nabla \lambda - \frac{\rho}{a^2} \mathbf{V} (\mathbf{V} \cdot \nabla \lambda), \tag{9}$$

на поверхности Σ_2

$$\left[\mathbf{h} - \rho \lambda \left(\mathbf{n}_2 \times \frac{\mathbf{V}}{a}\right)\right] \times \mathbf{n}_2 = 0, \tag{10}$$

на поверхности σ

$$(\mathbf{h} + \rho \mathbf{V} \times \mathbf{e}) \times \mathbf{n}_{\sigma} = 0, \tag{11}$$

$$\mu + \rho \lambda = 0. \tag{12}$$

Выпишем теперь три дифференциальных и одно конечное следствия формул (9)–(11), не содержащих вектор-функцию **h**:

в области τ

$$\operatorname{div}\left[\rho\nabla\lambda - \frac{\rho}{a^2}\mathbf{V}(\mathbf{V}\cdot\nabla\lambda)\right] = 0,$$
(13)

на поверхности Σ_2

$$\mathbf{n}_{2} \cdot \operatorname{rot}\left[\rho\lambda\left(\mathbf{n}_{2} \times \frac{\mathbf{V}}{a}\right)\right] + \rho\left(\frac{\mathbf{V}}{a} - \mathbf{n}_{2}\right) \cdot \nabla\lambda = 0, \tag{14}$$

на поверхности σ

$$\rho \mathbf{n}_{\sigma} \cdot \nabla \lambda = -\mathbf{n}_{\sigma} \cdot \operatorname{rot}(\rho \mathbf{V} \times \mathbf{e}), \tag{15}$$

на контуре γ_2

$$\lambda = a \frac{(\mathbf{e} \cdot \mathbf{n}_{\sigma})}{(\mathbf{n}_{2} \cdot \mathbf{n}_{\sigma})}.$$
(16)

ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ том 61 № 10 2021

МИХАЙЛОВ

Уравнения (13)—(16) однозначно определяют функцию λ в замкнутой области τ . Дело в том, что уравнение (13) имеет гиперболический тип и его характеристические поверхности совпадают с характеристическими поверхностями уравнений (1). Значение нормальной производной $\mathbf{n}_{\sigma} \cdot \nabla \lambda$ известно на σ из (15), сама функция $\lambda(\Sigma_2)$ однозначно определяется уравнением (13) и граничными условиями (14), (16).

Отметим, что после определения множителя $\lambda(\sigma)$ формула (12) однозначно определяет множитель $\mu(\sigma)$.

Описанная выше процедура выбора множителей Лагранжа тесно связана с выбором "зависимых" и "независимых" функций, входящих в задачу. Вариации "независимых" функций, называемых управлениями, оставляются в выражении первой вариации исследуемого функционала, а вклад вариаций "зависимых" функций исключается с помощью выбора множителей Лагранжа. Тогда выражение для первой вариации примет вид

$$\delta T_0 = \iint_{\sigma} \{ \operatorname{div}(p\mathbf{e} - \rho\lambda \mathbf{V})\delta\mathbf{r}_{\sigma} \} d\mathbf{S} + \oint_{\gamma_2} \{ [(p - p_0)\mathbf{e} - \rho\lambda \mathbf{V}] \times \delta\mathbf{r}_L \} d\mathbf{r}.$$
(17)

Теперь условие оптимальности поверхности σ можно записать с учетом формулы (4) в виде

$$\operatorname{div}(p\mathbf{e} - \rho\lambda\mathbf{V}) = \operatorname{div}[\rho\mathbf{V}(\lambda + \mathbf{V} \cdot \mathbf{e})] = 0.$$

Интегралом последнего равенства является соотношение

$$\lambda + \mathbf{V} \cdot \mathbf{e} = \Phi(\psi, \chi), \tag{18}$$

где $\Phi(\psi, \chi)$ – произвольная функция, сохраняющая свое значение на линиях тока.

Вектор *d***r** во втором интеграле (17) лежит на поверхности Ω , поэтому его можно представить в точках контура γ_2 в виде

$$d\mathbf{r} = \frac{\mathbf{n}_{\sigma} \times \mathbf{N}}{|\mathbf{n}_{\sigma} \times \mathbf{N}|} dr,$$

где N — вектор нормали к поверхности Ω .

Окончательно получим

$$\delta T_0 = \oint_{\gamma_2} [-(p - p_0)(\mathbf{e} \cdot \mathbf{N}) + \rho \lambda (\mathbf{V} \cdot \mathbf{N})] \frac{\mathbf{n}_{\sigma} \cdot \delta \mathbf{r}_L}{|\mathbf{n}_{\sigma} \times \mathbf{N}|} dr.$$
(19)

Если контур γ_2 фиксирован, то на нем $\delta \mathbf{r}_L = 0$, если контур γ_2 не фиксирован и принадлежит поверхности Ω , то вдоль кромки γ_2 с учетом (16) получаем аналог локального условия Буземана для пространственных вариационных задач газовой динамики

$$\left[(p - p_0)\mathbf{e} - \rho a \frac{\mathbf{e} \cdot \mathbf{n}_{\sigma}}{\mathbf{n}_2 \cdot \mathbf{n}_{\sigma}} \mathbf{V} \right] \cdot \mathbf{N}(\gamma_2) = 0.$$
⁽²⁰⁾

В вариационных задачах о соплах максимальной тяги часто существуют конструктивные ограничения на контур γ_2 , приводящие к "недорасширенным" соплам. В таких соплах габаритные ограничения на кромку γ_2 не позволяют получить степень расширения, соответствующую условию (20). Поэтому на участках краевого экстремума допустимая в формуле (19) произвольная вдоль γ_2 функция $\mathbf{n}_{\sigma} \cdot \delta \mathbf{r}_L < 0$. Отсюда на таких участках необходимое условие локального максимума тяги вместо равенства (20) приводит к неравенству

$$\left[(p - p_0)\mathbf{e} - \rho a \frac{\mathbf{e} \cdot \mathbf{n}_{\sigma}}{\mathbf{n}_2 \cdot \mathbf{n}_{\sigma}} \mathbf{V} \right] \cdot \mathbf{N}(\gamma_2) \le 0.$$
(21)

В дальнейшем приведем примеры расчетов только оптимальных "недорасширенных" сопел, вдоль выходного контура которых выполняется достаточное условие локального максимума: строгое неравенство в формуле (21).

Введем новую искомую функцию $\lambda_1 = \lambda + \mathbf{e} \cdot \mathbf{V}$. Тогда формулы (13)—(16) можно переписать в виде

в области τ

$$\operatorname{div}\left[\rho\nabla\lambda_{1}-\frac{\rho}{a^{2}}\mathbf{V}(\mathbf{V}\cdot\nabla\lambda_{1})\right]=0,$$
(22)

ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ том 61 № 10 2021

на поверхности Σ₂

$$\mathbf{n}_{2} \cdot \operatorname{rot}\left[\rho(\lambda_{1} - \mathbf{e} \cdot \mathbf{V})\left(\mathbf{n}_{2} \times \frac{\mathbf{V}}{a}\right)\right] + \rho\left(\frac{\mathbf{V}}{a} - \mathbf{n}_{2}\right) \cdot \nabla(\lambda_{1} - \mathbf{e} \cdot \mathbf{V}) = 0,$$
(23)

на поверхности σ

$$\mathbf{n}_{\sigma} \cdot \nabla \lambda_1 = 0, \tag{24}$$

на контуре γ_2

$$\lambda_1 = \Phi(\psi, \chi) = \mathbf{e} \cdot \mathbf{V} + a \frac{(\mathbf{e} \cdot \mathbf{n}_{\sigma})}{(\mathbf{n}_2 \cdot \mathbf{n}_{\sigma})}.$$
(25)

Условие оптимальности (18) на поверхности сопла σ примет вид

$$E(\mathbf{r}_{\sigma},\lambda_{1}) = \lambda_{1} - \Phi(\psi,\chi) = 0.$$
⁽²⁶⁾

В дальнейшем систему (22)-(25) будем называть сопряженной задачей.

Из уравнения (22) видно, что вектор $\rho \nabla \lambda_1 - \frac{\rho}{a^2} \mathbf{V} (\mathbf{V} \cdot \nabla \lambda_1)$ является соленоидальным и, следовательно, может быть представлен как вихрь некоторого другого вектора **A**:

$$\rho \nabla \lambda_1 - \frac{\rho}{a^2} \mathbf{V} (\mathbf{V} \cdot \nabla \lambda_1) = \operatorname{rot} \mathbf{A}.$$
 (27)

Вектор **A** в общем случае можно представить в виде трех скалярных функций, т.е. мы имеем всего три скалярных уравнения (27) для определения четырех неизвестных функций λ_1 , **A**. Поэтому однозначно определить эти функции из (27) мы не можем. Воспользуемся этим произволом и представим вектор **A** с помощью двух неизвестных функций λ_2 и λ_3 . Такое представление не-единственно. Возьмем его в виде

$$\mathbf{A} = \lambda_2 \nabla \boldsymbol{\varphi} + \lambda_3 \nabla \boldsymbol{\psi}.$$

Здесь φ — угол цилиндрической системы координат *x*, *r*, φ (орты \mathbf{e}_x , \mathbf{e}_r , \mathbf{e}_{φ}), в которой мы и будем работать в дальнейшем. Выбор такого представления вектора **A** можно объяснить двумя причинами. Во-первых, в осесимметричном случае при $\lambda_3 = 0$ уравнения (27) совпадают с уравнениями, полученными в [6]. Во-вторых, как это будет видно дальше, краевые условия для λ_2 и λ_3 имеют наиболее простой вид. Таким образом, система уравнений (27) записывается в виде

$$\rho \nabla \lambda_1 - \frac{\rho}{a^2} \mathbf{V} (\mathbf{V} \cdot \nabla \lambda_1) = \frac{1}{r} \nabla \lambda_2 \times \mathbf{e}_{\varphi} + \nabla \lambda_3 \times \nabla \psi.$$
(28)

Система уравнений (28) имеет гиперболический тип. Ее характеристические поверхности совпадают с характеристическими поверхностями уравнений (1). Условие совместности на них получается скалярным умножением (28) на вектор нормали к характеристической поверхности. В частности, условие совместности на замыкающей характеристической поверхности Σ_2 имеет вид

$$\rho\left(\frac{\mathbf{V}}{a}-\mathbf{n}_{2}\right)\cdot\nabla\lambda_{1}=\frac{1}{r}(\mathbf{n}_{2}\times\mathbf{e}_{\varphi})\cdot\nabla\lambda_{2}+(\mathbf{n}_{2}\times\nabla\psi)\cdot\nabla\lambda_{3}.$$
(29)

Выберем распределения функций ψ и χ в критическом сечении сопла следующим образом:

$$\Psi(r, \varphi) = \frac{1}{2}(r^2 - 1), \quad \chi(r, \varphi) = \varphi.$$

Тогда в точках контура γ_1 и, следовательно, на всей стенке сопла $\psi = 1$. Умножим скалярно уравнение (28) на вектор \mathbf{n}_{σ} . Так как σ является поверхностью уровня для функции ψ , то $\nabla \psi \times \mathbf{n}_{\sigma} = 0$ и $\mathbf{V} \cdot \mathbf{n}_{\sigma} = 0$, и второе слагаемое в правой части (28) пропадает. Слагаемое в левой части в силу (24) также обращается в нуль. Окончательно получим условие, справедливое на стенке сопла, $(\mathbf{e}_{\phi} \times \mathbf{n}_{\sigma}) \cdot \nabla \lambda_2 = 0$. Отсюда следует, что на поверхности сопла мы имеем условие $\lambda_2 =$ const вдоль линий пересечения σ с меридиональными плоскостями. И если мы зададим $\lambda_2 = 0$ во всех точках контура γ_2 , то на всей поверхности σ

$$\lambda_2 = 0. \tag{30}$$

ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ том 61 № 10 2021

1689

МИХАЙЛОВ

Если теперь задать на всей поверхности Σ_2 какое-либо распределение λ_3 , например, $\lambda_3 = 0$, то из уравнений (23), (29) с граничными условиями (24), (25), (30) можно найти распределения λ_1 и λ_2 на поверхности Σ_2 . Таким образом, в качестве краевых условий для системы (28) выберем следующие:

на поверхности Σ_2 известны λ_1 , λ_2 и λ_3 ,

на поверхности сопла $\sigma \lambda_2 = 0$.

В качестве условия оптимальности поверхности сопла σ будем рассматривать условие (26). Таким образом, мы выписали корректную краевую задачу для уравнений (22)–(26).

3. АЛГОРИТМ РАСЧЕТА ОПТИМАЛЬНОЙ ФОРМЫ СВЕРХЗВУКОВОЙ ЧАСТИ ПРОСТРАНСТВЕННОГО СОПЛА

В [9] был разработан численный метод пространственных характеристик для расчета сверхзвуковых течений газа. Входными параметрами задачи являлись числа M – количество меридиональных плоскостей φ = const на отрезке [0, π], N – количество плоскостей x = const, секущих заданную начальную осесимметричную характеристическую поверхность Σ_0 , и P – количество характеристических поверхностей в пространственном течении разрежения Прандтля–Майера. Линии пересечения характеристических поверхностей противоположных семейств будем называть венками. Расчетная сетка строилась пересечением венков и меридиональных плоскостей в процессе решения задачи.

Все характеристические уравнения на этой сетке аппроксимировались со вторым порядком. При этом для аппроксимации уравнений (5) со вторым порядком в разностную схему вводились вспомогательные искомые функции (см. [10]). Этот метод был использован для определения функций тока ψ и χ в узловых точках сетки при решении прямой задачи.

Так как характеристические поверхности для прямой и сопряженной задач совпадают, то уравнения сопряженной задачи (28) аппроксимировались на той же сетке. При этом для аппроксимации этих уравнений со вторым порядком в разностную схему вводились две вспомогательные функции.

Опишем теперь общую последовательность действий, в соответствии с которой мы будем решать задачу профилирования. Длина сопла *L* предполагается фиксированной. В плоскости x = L задан гладкий контур γ_2 . Оптимальная стенка сопла σ искалась в два этапа, на каждом из которых был организован итерационный процесс. На первом этапе проводился прямой расчет сопла заданной формы $r = r(x, \phi)$, определялось распределение узловых точек и находились скорость **V**, функция тока ψ в узловых точках области τ и функция тока χ в фиксированных точках стенки сопла. Для того чтобы рассматриваемая сетка целиком заполняла область τ , т.е. для того, чтобы замыкающая характеристическая поверхность Σ_2 , найденная в результате прямого расчета, проходила через заданный выходной контур γ_2 , был организован итерационный процесс, в результате которого на поверхности Σ_1 находился венок γ_0 , с которого замыкающая характеристическая поверхность Σ_2 приходила на контур γ_2 . Остальные венки на Σ_1 сдвигались пропорционально. При этом количество венков на Σ_1 сохранялось. Газодинамические функции в сдвинутых венках находились с помощью квадратичной интерполяции по данным на исходной поверхности Σ_1 .

На втором этапе решалась сопряженная задача. Сначала решалась задача Коши для уравнения (23) с начальными данными (25), и находилась функция λ_1 на замыкающей характеристической поверхности Σ_2 . Затем на этой поверхности из (29) определялась функция λ_2 . Далее решалась задача Дарбу для системы (28) с известными значениями λ_1 , λ_2 и λ_3 на Σ_2 и условием (30) на σ , и определялись значения искомых функций λ_1 , λ_2 и λ_3 в узлах найденной ранее сетки в области τ . Как в задаче Коши, так и в задаче Дарбу решение искалось с помощью трех пересчетов. Вычисленные в узловых точках стенки значения λ_1 подставлялись в функцию невязки $E(x, \phi, \lambda_1)$ условия оптимальности (26). Теперь ординаты новых узловых точек стенки в каждой меридиональной плоскости ϕ_* вычислялись по формуле

$$r_{\rm HOB}(x,\phi_*) = r_{\rm cT}(x,\phi_*) + \int_0^x E(x,\phi_*,\lambda_1)F(x,\phi_*)dx - \frac{x}{L}\int_0^L E(x,\phi_*,\lambda_1)F(x,\phi_*)dx.$$
(31)

Здесь $F(x, \phi)$ — некоторая заданная функция, удачный выбор которой позволял уменьшить общее число итераций, необходимых для нахождения оптимальной стенки.

На этом заканчивалась одна итерация второго этапа.

Фиг. 3.

4. ПРИМЕРЫ РАСЧЕТОВ

Во всех приведенных расчетах x = 1.4, $p_0 = 0$.

Были проведены два расчета сверхзвуковой части сопла длиной L = 7.6 с круглым критическим сечением r = 1 с выходным контуром в виде прямоугольного сектора круга радиуса R = 6.8974 со скругленными по радиусам r_1 и r_2 углами. На фиг. 2 показан общий вид выходного контура $r_L(\varphi)$. При использовании входных параметров $M \times N \times P = 31 \times 61 \times 19$ относительная погрешность вычисления тяги не превышала 0.1%.

В первом расчете радиус скругления углов был одинаков и равнялся $r_1 = r_2 = 2.5570$. В качестве начального приближения бралась форма, рассчитанная прямым методом оптимизации (см. [1]). Осесимметричная поверхность Σ_0 бралась из таблиц [11]. Функция $F(x,\varphi)$ из (31) задавалась в виде $F(x,\varphi) = 1 + \beta x$, где параметр β в процессе итераций менялся от 10 до 0.

Тяга оптимальной сверхзвуковой части сопла в направлении единичного вектора $\mathbf{e} = -\mathbf{e}_x$ составила $T_x = 1.549$, а в поперечном направлении $T_y = -0.079$. Тяга же оптимальной осесимметричной сверхзвуковой части сопла с выходным контуром, вписанным в данный ($r_{\text{вп}} = 2.8570$), составила $T_x = 1.522$. Таким образом, абсолютная величина тяги оптимальной сверхзвуковой части пространственного сопла (T = 1.551) превышает тягу закритической части вписанного осесимметричного сопла на 1.9%.

Во втором расчете радиусы скруглений брались разные: $r_1 = 2.3$, $r_2 = 2.0$. Тяга в продольном направлении составила $T_x = 1.555$, а в поперечном направлении $T_y = -0.073$. Таким образом, аб-

МИХАЙЛОВ

солютная величина тяги этой оптимальной сверхзвуковой части сопла (*T* = 1.557) превысила тягу вписанного сопла на 2.2%.

Был проведен расчет сверхзвуковой части сопла длиной L = 14.96 с круглым критическим сечением r = 1 с выходным контуром в виде 120° – сектора круга радиуса R = 12.0711 со скругленными по радиусам $r_1 = 5.4$ и $r_2 = 4.5$ углами. На фиг. 3 показан общий вид выходного контура $r_L(\varphi)$. Тяга оптимальной сверхзвуковой части сопла составила T = 1.864. Для сравнения (с использованием той же сетки) был проведен расчет оптимального осесимметричного сопла с $r_L(\varphi) \equiv 5.6022$, вписанного в рассчитанное пространственное сопло. Его тяга составила T = 1.855. Таким образом, величина тяги оптимальной пространственной сверхзвуковой части сопла превысила тягу вписанного осесимметричного сопла на 0.5%.

Такое увеличение связано с более рациональным использованием площади миделя выходно-го сечения.

Отметим, что в случае вывода спутника на околоземную орбиту увеличение тяги ракетного сопла на 0.3% позволяет вывести на орбиту на 1.3% больше полезного груза, или поднять высоту орбиты на 10% (см. [12]).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Борисов В.М., Михайлов И.Е.* Об оптимизации сверхзвуковых частей пространственных сопел // Ж. вычисл. матем. и матем. физ. 1981. Т. 21. № 2. С. 517–519.
- 2. *Wang X., Damodon M.* Optimal Three-Dimensional Nozzle Shape Design Using CFD and Parallel Simulated Anealing Algorithms // AIAA J. of Propulsion and Power. 2002. V. 18. № 8. C. 217–221.
- 3. *Крайко А.А., Пьянков К.С.* Профилирование оптимальных пространственных сопел // Изв. РАН. МЖГ. 2014. № 1. С. 141–153.
- 4. Шмыглевский Ю.Д. Некоторые вариационные задачи газовой динамики. М.: ВЦАН СССР, 1963. 142 с.
- 5. Крайко А.Н. Вариационные задачи газовой динамики. М.: Наука, 1979. 448 с.
- 6. *Guderley K.G., Armitage J.V.,* General Approach to Optimum Rocket Nozzles / Chapter 11, Theory of Optimum Aerodynamic Shapes. Ed. by A. Miele. New York: Acad. Press, 1965.
- 7. Кочин Н.Е. Векторное исчисление и начала тензорного исчисления. М.: Изд-во АН СССР, 1951. 426 с.
- 8. *Germain P.* Cours de Mécanique des Milieu Continus. Téorie Générale. Paris, 1973.
- 9. Борисов В.М., Михайлов И.Е. Метод характеристик для расчета пространственных сверхзвуковых безвихревых течений // Ж. вычисл. матем. и матем. физ. 1978. Т. 18. № 5. С. 1243–1252.
- Kurilenko Yu.V., Mikhailov I.E. Three-dimensional Method of Characteristics for Computing Steady Supersonic Flows / Modern Problems in Computational Aerohydrodynamics. Ed. by A.A. Dorodnicyn and P.I. Chushkin. M.: Mir Publ., London: CRC Press. 1991. P. 67–80.
- 11. Кацкова О.Н., Шмыглевский Ю.Д. Таблицы параметров осесимметричного сверхзвукового течения свободно расширяющегося газа с плоской переходной поверхностью. М.: Изд-во АН СССР, 1962.
- 12. Пирумов У.Г., Росляков Г.С. Течения газа в соплах. М.: МГУ, 1978. 352 с.

1692