__ ОПТИМАЛЬНОЕ ____ УПРАВЛЕНИЕ

УЛК 519.853.6

МЕТОД ПРОЕКЦИИ ГРАДИЕНТА С ШАГОМ АРМИХО НА МНОГООБРАЗИЯХ

© 2021 г. М. В. Балашов^{1,*}. Р. А. Камалов^{1,**}

¹ 117997 Москва, ул. Профсоюзная, 65, Институт проблем управления РАН им. В.А. Трапезникова, Россия *e-mail: balashov73@mail.ru

**e-mail: kamalov.ra@phystech.edu
Поступила в редакцию 23.10.2020 г.
Переработанный вариант 23.10.2020 г.
Принята к публикации 09.07.2021 г.

Рассматривается задача минимизации функции с непрерывным по Липшицу градиентом на проксимально гладком подмножестве, которое является гладким многообразием без края. Обсуждается метод проекции градиента с шагом Армихо и доказывается его линейная сходимость. Для различных матричных множеств и многообразий получена точная константа проксимальной гладкости. Библ. 21.

Ключевые слова: проксимальная гладкость, метод проекции градиента, невыпуклая экстремальная задача, шаг Армихо, матричные многообразия.

DOI: 10.31857/S004446692111003X

1. ВВЕДЕНИЕ И ОСНОВНЫЕ ОБОЗНАЧЕНИЯ

1.1. Введение

Рассмотрим в \mathbb{R}^n задачу

$$\min_{x \in S} f(x). \tag{1}$$

Для решения задачи (1) в выпуклом случае давно используется метод проекции градиента (далее МПГ), который появился в [1], [2]. Напомним, что если функция в (1) сильно выпуклая с непрерывным по Липшицу градиентом и множество S выпукло и замкнуто, то МПГ сходится со скоростью геометрической прогрессии (или линейной скоростью).

Мы предполагаем, что S — гладкое многообразие без края, а f — функция с непрерывным по Липшицу градиентом, которая необязательно выпуклая. Пусть T_x — касательное подпространство к S в точке $x \in S$ и T_x^\perp — его ортогональное дополнение. Мы рассматриваем МПГ вида $x_0 \in S, k = 0$,

$$t_k > 0, \quad z_k = P_{T_{x_k}}(x_k - t_k f'(x_k)), \quad x_{k+1} = R_S z_k, \quad k = k+1.$$
 (2)

Здесь P_A — оператор метрического проектирования на замкнутое множество $A \subset \mathbb{R}^n$, а $R_S z_k$ — некоторая ретракция (см. подробности в [3]) точки z_k на множество S, $R_S z_k \in S$. Часто используется $R_S = P_S$. Другой вид ретракции мы обсудим ниже.

Примером актуальной задачи (1) является задача минимизации гладкой функции f на некотором матричном многообразии S без края (см. [4], [5]).

Традиционно в задаче (1) используются варианты метода проекции градиента с шагами, связанными с локальными геодезическими на многообразии (см. [5]–[9]), а также метод Ньютона (см. [4], [7]).

В последнее время появилось много работ, где используется идеология (2). Основными трудностями являются выбор шага t_k и доказательство сходимости алгоритма при разумных предположениях.

В [10] рассмотрен МПГ в задаче (1) с шагом t_k Армихо (см. определение А1). Однако по сути доказана лишь асимптотика последовательности $\{x_k\}$, но не явные оценки сходимости (см. [10, Theorem 2.3]). Аналогичный результат при некотором фиксированном $t_k = t > 0$ для всех k получен и в [11, Corollary 4.2] при условии, что кривизны многообразия S ограничены. В обоих работах для линейной сходимости принципиально условие Лежанского—Поляка—Лоясевича (условие ЛПЛ) функции f на поверхности S (см. ниже определение 1). Близкий к алгоритму из [10] алгоритм с шагом Армихо рассмотрен в [12, Algorithm 2.1]. Однако в [12] исследовался только факт сходимости алгоритма без оценки скорости сходимости. Кроме того, множество S предполагалось выпуклым, а функция f невыпуклой.

Обозначим через $B_R(x)$ замкнутый шар с центром x радиуса R. В [13, Theorems 2, 3] получен следующий результат.

Теорема А. Пусть многообразие S гладкое и проксимально гладкое c константой $\frac{\pi}{2}R$ многообразие без края, $x_0 \in S$. Предположим, что $f: \mathbb{R}^n \to \mathbb{R}$ функция обладает следующими свойствами:

1) f липшицево дифференцируема с константой L_1 ,

2)
$$L = \sup_{x: \rho(x, S) \leq R} \|f'(x)\| < +\infty, \ e \partial e \ \varrho(x, S) = \inf_{s \in S} \|x - s\|,$$

3) выполнено условие ЛПЛ для функции f на $S \cap \mathcal{L}_f(f(x_0)), \mathcal{L}_f(f(x_0)) = \{x \in \mathbb{R}^n | f(x) \le f(x_0)\},$ c константой $\mu > 0$, т.е. для всех $x \in S \cap \mathcal{L}_f(f(x_0))$

$$\mu(f(x) - \inf_{x \in S} f) \le \|P_{T_x} f'(x)\|^2. \tag{3}$$

Пусть $t_0=\frac{1}{\frac{2L}{R}+L_1}$ и $t\in(0,t_0]$. Положим $q(t)=t-t^2\frac{L}{R}-t^2\frac{L_1}{2}$. Тогда итерации $x_0\in S$,

1)
$$z_k = x_k - tP_{T_{x_k}} f'(x_k), \quad x_{k+1} = S \cap (z_k + T_{x_k}^{\perp}) \cap B_R(x_k),$$

или

2)
$$z_k = x_k - tP_{T_{x_k}} f'(x_k), \quad x_{k+1} = P_S z_k,$$

сходятся с линейной скоростью по функции

$$f(x_{k+1}) - f_* \le (1 - \mu q(t))(f(x_0) - f_*), \quad f_* = \inf_{x \in S} f(x).$$

При этом

$$f(x_{k+1}) - f(x_k) \le -\|P_T f'(x_k)\|^2 q(t).$$
 (4)

Кроме того, для случая 1) имеет место следующая линейная скорость сходимости по точке

$$||x_{k+1} - x_k||^2 \le \frac{t^2 + t^4 \frac{L^2}{R^2}}{q(t)} (1 - \mu q(t))^k (f(x_0) - f_*), \quad f_* = \inf_{x \in S} f(x).$$
 (5)

Отметим, что $1 - \mu q(t) \in (0, 1)$.

В случае итераций 1) пересечение $S \cap (z_k + T_{x_k}^{\perp}) \cap B_R(x_k)$ одноточечно для всякого k (см. [13, Lemma 5]).

Покажем, что условие (5) действительно означает линейную сходимость к решению (1). Положим

$$\theta = \sqrt{1 - \mu q(t)} \in (0, 1), C = \frac{t^2 + t^4 \frac{L^2}{R^2}}{q(t)} (f(x_0) - f_*)$$

Для $M \geq N$

$$||x_M - x_N|| \le \sum_{k=N}^{M-1} ||x_{k+1} - x_k|| \le \frac{C\theta^N}{1-\theta} \to 0, \quad N \to \infty.$$

Значит, $x_N \to x_* \in S$. Очевидно, что $\|x_N - x_*\| \le \frac{C\theta^N}{1-\theta}$, т.е. сходимость $\{x_k\}$ линейная. В силу [13,

Theorem 2] $f(x_k) - f(x_{k+1}) \ge q(t) \|P_{T_{kt}} f'(x_k)\|^2$ для всех k и в силу условия ЛПЛ

$$f(x_k) - f_* \le \|P_{T_{x_k}} f'(x_k)\|^2 / \mu \le \frac{f(x_k) - f(x_{k+1})}{g(t)\mu}.$$

Отсюда $f(x_*) = f_*$.

Условие ЛПЛ с показателем 2 является одним из наиболее общих условий на гладкую функцию на многообразии, которое обеспечивает линейную сходимость градиентных методов (см. [10]). В частности, сильно выпуклая функция на многообразии при определенном соотношении константы сильной выпуклости и других параметров удовлетворяет условию ЛПЛ, а также некоторые функции с условием квадратичного роста на множестве (см. [13, Theorem 1]). Также условию ЛПЛ удовлетворяет квадратичная форма на сфере или, более общо, квадратичная форма на многообразии Штифеля (см. [14]).

Теорема A решает вопрос об оценке скорости сходимости алгоритма и выборе шага $t_k = t$ через константы Липшица L, $L_{\rm I}$ и константу проксимальной гладкости R многообразия. Константа μ из условия ЛПЛ возникает в оценке (5), она не нужна для выбора шага t. Ключевое отличие в доказательстве теоремы A от приведенных выше результатов состоит в использовании проксимальной гладкости множества S, что позволяет получить оценку сходимости (5) в явном виде.

Тем не менее на практике константы L, L_1 и R могут быть неизвестны. В этой ситуации становится актуальным выбор шага t_k в (2) по некоторому правилу, которое не требует знания упомянутых констант. Правило Армихо как раз и является одним из таких способов выбора шага t_k .

В работе рассмотрены два способа выбора шага t_k по правилу Армихо. Это правило A1, заимствованное в [10], а также правило A2, сформулированное нами.

В обоих случаях мы получаем явную оценку скорости сходимости метода (2) для правил выбора шага A1 и A2.

При правиле А1 нам не нужно знать никаких констант.

В случае, когда константа проксимальной гладкости известна и известна оценка сверху для константы L, можно применять правило A2. Правило A2 имеет техническое преимущество: в отличие от правила A1 при подсчете шага t_k ретракцию точки на множество нужно вычислять 1 раз.

В Приложении мы приводим точные константы проксимальной гладкости R для основных матричных многообразий.

1.2. Основные обозначения

Через \mathbb{R}^n будем обозначать вещественное евклидово пространство n измерений со скалярным произведением (x,y) $\forall x,y \in \mathbb{R}^n$. Обозначим через $B_R(x)$ замкнутый шар с центром x радиуса R. Далее по тексту для задачи (1) T_x — касательное подпространство к многообразию S в точке $x \in S$, f'(x) — градиент Фреше функции f в точке x. Для точки $x_k \in S$ для краткости обозначим $\xi_k = P_{T_{x_k}} f'(x_k)$. Отметим, что $(f'(x_k), \xi_k) = \|\xi_k\|^2$.

Если f' — липшицева функция с константой L_1 , то для любых $x,y\in\mathbb{R}^n$ верны оценки (см. [15, Лемма 1.2.3])

$$f(x) + (f'(x), y - x) - \frac{L_1}{2} \|y - x\|^2 \le f(y) \le f(x) + (f'(x), y - x) + \frac{L_1}{2} \|y - x\|^2.$$

Лебеговым множеством функции f для $\beta \in \mathbb{R}$ называют множество $\mathcal{L}_f(\beta) = \{x \in R^n \mid f(x) \leq \beta\}$.

Определение 1 (см. [10], [16, Definition 1]). Пусть S является C^1 многообразием, функция $f: \mathbb{R}^n \to \mathbb{R}$ дифференцируема. Пусть $\mu > 0$, $\beta \in \mathbb{R}$, $f_* = \inf_{x \in S} f(x)$. Будем говорить, что функция f удовлетворяет условию ЛПЛ на множестве $S \cap \mathcal{L}_f(\beta)$, если $\|P_{T_x}f'(x)\|^2 \ge \mu(f(x) - f_*)$ $\forall x \in S \cap \mathcal{L}_f(\beta)$.

Определим O(n) — ортогональные матрицы размера $n \times n$. Для матриц $X \in \mathbb{R}^{n \times k}$ и $Y \in \mathbb{R}^{n \times k}$ определим скалярное произведение $(X,Y) = \operatorname{tr} X^{\mathrm{T}Y}$ и норму Фробениуса $\|X\| = \sqrt{\operatorname{tr} X^{\mathrm{T}}X}$. Напомним (см. [17, Theorem 7.3.2]), что для каждой матрицы $X \in \mathbb{R}^{n \times k}$ ранга r существует сингулярное разложение вида $X = U \Sigma V^{\mathrm{T}}$, где

$$U \in O(n), V \in O(k), \Sigma = \begin{pmatrix} \sigma_1 & \dots & \dots & \dots & 0 \\ 0 & \sigma_2 & \dots & \dots & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & \sigma_r & \dots & \dots & 0 \\ 0 & 0 & \dots & \dots & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & \dots & \dots & 0 \end{pmatrix} \in \mathbb{R}^{n \times k}.$$

Числа $\sigma_1 \ge ... \ge \sigma_r > 0$ называются сингулярными числами матрицы X. Для случая $k \le n$ договоримся обозначать оставшиеся k-r нулей на главной диагонали матрицы Σ через $\sigma_{r+1}, ..., \sigma_k$.

Мы будем пользоваться следующей формулой (см. [17, Corollary 7.3.5]) для $X,Y \in \mathbb{R}^{n \times k}$:

$$\sum_{i=1}^{k} (\sigma_i(X) - \sigma_i(Y))^2 \le ||X - Y||^2.$$
 (6)

Через I_k обозначим единичную матрицу размера $k \times k$.

Множество $A \subset \mathbb{R}^n$ называется проксимально гладким (прокс-регулярным, слабо выпуклым) с константой R>0 (см. [18], [19]), если функция расстояния $\varrho(x,A)=\inf_{a\in A}\|x-a\|$ непрерывно дифференцируема на множестве $U_A(R)=\{x\in\mathbb{R}^n|0<\varrho(x,A)< R\}$. Эквивалентным условием проксимальной гладкости множества $A\subset\mathbb{R}^n$ является условие, что для всякой точки $x\in U_A(R)$ метрическая проекция $P_A(x)$ является одноточечным множеством.

Напомним определения основных матричных многообразий и множеств (далее $k \le n$):

- (i) многообразие Штифеля $\mathcal{G}_{n,k} = \{X \in \mathbb{R}^{n \times k} | X^{\mathsf{T}} X = I_k\};$
- (ii) многообразие Грассмана $\mathcal{G}_{n,k}$ множество всех k -мерных подпространств в \mathbb{R}^n . Мы рассматриваем реализацию $\mathcal{G}_{n,k}$ вида $\mathcal{G}_{n,k} = \{XX^T | X \in \mathcal{F}_{n,k}\}$ (см. [20]), т.е. подмножество во множестве симметричных матриц $n \times n$;
- (iii) многообразие $\mathfrak{M}_r = \{X \in \mathbb{R}^{n \times k} \mid \text{rank } X = r, \, \sigma_i(X) \ge \sigma_0 > 0 \quad \forall i = \overline{1,r} \}$ матрицы ранга r с сингулярными числами $\ge \sigma_0 > 0$;
- (iv) множество $\mathfrak{L}_r = \{X \in \mathbb{R}^{n \times k} \, | \, 0 < \mathrm{rank} \, X \leq r, \, \sigma_i(X) \geq \sigma_0 > 0 \, \forall i = \overline{1, \mathrm{rank}(X)} \}$ матрицы ранга $> 0, \leq r$ с сингулярными числами $\geq \sigma_0 > 0$.
- В [21] было показано, что $\mathcal{G}_{n,k}$ проксимально гладкое множество с R=1, а $\mathcal{G}_{n,k}$ (в указанной реализации) проксимально гладкое множество с $R=\frac{1}{\sqrt{2}}$. Там же приводятся формулы для метрической проекции матрицы на многообразие Штифеля или Грассмана. Точные значения констант проксимальной гладкости для множеств \mathfrak{M}_r , \mathfrak{L}_r и метрические проекции на них найдены нами в Приложении.

2. РЕТРАКЦИИ И ПРАВИЛО АРМИХО

Мы будем рассматривать две возможности для ретракции.

Во-первых, в качестве ретракции выступает оператор метрического проектирования P_S . В Приложении мы покажем, что, например, на большинство матричных многообразий метрическая проекция может быть найдена с помощью сингулярного разложения матрицы.

Во-вторых, мы рассмотрим упомянутый в теореме А выбор $x_{k+1} = (z_k + T_{x_k}^\perp) \cap S \cap B_R(x_k)$. В [13, Theorem 2] доказано, что при условии $t_k \|\xi_k\| \leq \frac{\sqrt{3}}{2} R$ точка x_{k+1} определена корректно и однозначно. Далее будем обозначать указанную ретракцию через R_S .

Пусть d>0; $\alpha,\beta\in(0,1)$. Мы рассмотрим два способа выбора шага в алгоритме (2) по правилу Армихо.

Определение А1 (см. [10]). Определим t_k на k-м шаге по правилу

$$z_k = x_k - t_k \xi_k, \quad x_{k+1} \in P_S z_k, \quad$$
где
$$t_k = \max_{m \in \mathbb{N} \cup \{0\}} \{d\beta^m \, | \, f(x_{k+1}) \le f(x_k) - \alpha d\beta^m \, \|\xi_k\|^2\}.$$

Отметим, что несмотря на проксимальную гладкость S, мы не можем гарантировать попадание точки z_k в проксимальный слой множества S, поэтому множество $P_S z_k$ может быть неодноточечно и x_{k+1} выбирается из него произвольно.

Определение А2. Пусть $\alpha_1 \in (0, 1)$, $\alpha_1 < \alpha$, множество S проксимально гладкое с константой $\frac{\pi}{2}R$ и функция f липшицева с константой $\leq L$. Определим t_k на k-м шаге по правилу

$$d < \alpha_1 \frac{\sqrt{3}R}{2L}, \quad z_k = x_k - t_k \xi_k, \quad$$
 где
$$t_k = \max_{m \in \mathbb{N} \cup \{0\}} \{d\beta^m \mid f(z_k) \leq f(x_k) - \alpha d\beta^m \parallel \xi_k \parallel^2 \}.$$

При этом $x_{k+1} = P_S z_k$ или $x_{k+1} = R_S z_k$.

Покажем, что обе ретракции в случае определения A2 корректно определены. Действительно, когда шаг t_k найден, вычисляется $x_{k+1} = P_S z_k$. В силу $t_k \leq d < \alpha_1 \frac{\sqrt{3}R}{2L}$ точка $z_k = x_k - t_k \xi_k$ находится в проксимальном слое: $\varrho(z_k,S) \leq \|z_k - x_k\| = t_k \|\xi_k\| < \alpha_1 \frac{R}{L} L = \alpha_1 R < R$. Поэтому $P_S z_k$ — одноточечное множество.

В случае $x_{k+1} = R_S z_k$ имеем $t_k \|\xi_k\| \le t_k L \le \frac{\sqrt{3}}{2} R$, что, как отмечалось выше, гарантирует существование и единственность $R_S z_k$.

Обсудим очевидные свойства правил A1 и A2. Правило A1 не требует знания констант Липшица L_1 для f', L для f и константы проксимальной гладкости S для выбора t_k , в отличие от теоремы A. В силу теоремы A (см. (4)) при $t_k < t_0$ имеем

$$f(x_{k+1}) - f(x_k) \le -\|\xi_k\|^2 \left[t_k - \left(\frac{L}{R} + \frac{L_1}{2}\right)t_k^2\right],$$

правая часть последнего неравенства очевидно меньше $-\alpha t_k \|\xi_k\|^2$ при достаточно малых t_k . Следовательно, максимум в определении t_k по правилу Армихо A1 достигается. Очевидным недостатком является необходимость находить проекцию $P_S z_k$ точки z_k на множество S при переборе $m=0,1,\ldots$

Правило А2 требует точное знание (либо оценку снизу) константы R и оценки сверху для константы Липшица функции f. Преимуществом является необходимость всего одного проектирования вектора $f'(x_k)$ на подпространство T_{x_k} . Далее t_k ищется перебором $m=0,1,\ldots$ аналогично

правилу Армихо в безусловной минимизации. Когда шаг t_k найден, вычисляется x_{k+1} : $x_{k+1} = P_S z_k$ или $x_{k+1} = R_S z_k$.

3. СХОДИМОСТЬ МПГ В ЗАДАЧЕ (1) С ШАГОМ АРМИХО

3.1. Шаг Армихо А1

Теорема 1. Предположим, что в задаче (1) функция f липшицева c константой L, функция f' липшицева c константой L_1 , S — проксимально гладкое множество c константой $\frac{\pi}{2}R$. Числа L, L_1 , R неизвестны. Пусть выполнено условие ЛПЛ для функции f на $S \cap \mathcal{L}_f(f(x_0))$.

Определим $B = \min\left\{d; \frac{\beta(1-\alpha)}{C}\right\}$, где $C = \frac{L_1}{2} + \frac{L}{R}$. Тогда алгоритм (2) с выбором шага A1 сходится с линейной скоростью по функции (8) и по точке (9).

Доказательство. Рассмотрим алгоритм с шагом A1 и случаи a и δ :

(a) Если $\alpha t_k > t_k - Ct_k^2$, т.е. $t_k > \frac{1-\alpha}{C}$, то на k -м шаге имеем

$$f(x_{k+1}) - f(x_k) \le -\frac{\alpha(1-\alpha)}{C} \|\xi_k\|^2$$
.

(б) Пусть $t_k - Ct_k^2 \ge \alpha t_k$, т.е. $t_k \le \frac{1-\alpha}{C} < \frac{1}{C}$.

Если $d > \frac{1-\alpha}{C}$, то $t_k \ge \frac{(1-\alpha)\beta}{C}$ в силу определения шага Армихо A1.

Если $d \leq \frac{1-\alpha}{C}$, то $t_k = d$ (и m = 0). Покажем это. По теореме A (4) при $t_k < \frac{1}{C}$ (оценка (4) верна для всех t_k)

$$f(x_{k+1}) - f(x_k) \le -\|\xi_k\|^2 (t_k - Ct_k^2) \le -\alpha t_k \|\xi_k\|^2.$$
 (7)

Максимальное t_k , удовлетворяющее предыдущей формуле, равно d.

Таким образом, в случаях (a) и (б), которые исчерпывают весь диапазон $t_k > 0$,

$$t_k \ge B := \min \left\{ d; \frac{\beta(1-\alpha)}{C} \right\}.$$

В силу неравенства ЛПЛ

$$\|\xi_k\|^2 \ge \mu(f(x_k) - f_*), \quad \text{где} \quad f_* = \inf_{x \in S} f(x),$$

получаем, что

$$f(x_{k+1}) - f(x_k) \le -\alpha \mu B(f(x_k) - f_*).$$

Для функции $\varphi(x) = f(x) - f_*$ имеем

$$\varphi(x_{k+1}) \le (1 - \alpha \mu B) \varphi(x_k), \quad B = \min \left\{ d; \frac{\beta(1 - \alpha)}{C} \right\}. \tag{8}$$

Для сходимости по точке с учетом формулы

$$\alpha B \|\xi_k\|^2 \le f(x_k) - f(x_{k+1}) \le \varphi(x_k)$$

и неравенства $\|\xi_k\| \le L$ имеем

$$||x_{k+1} - x_k|| \le 2||z_k - x_k|| = 2t_k ||\xi_k|| \le 2d ||\xi_k||,$$

$$||x_{k+1} - x_k||^2 = 4d^2 ||\xi_k||^2 \le \frac{4d^2}{\alpha R} \varphi(x_k).$$
 (9)

Теорема доказана.

3.2. Шаг Армихо А2

Теорема 2. Пусть в задаче (1) известна константа $\frac{\pi}{2}R$ проксимальной гладкости множества S (или ее оценка снизу), а также известна оценка сверху L константы Липшица f. Пусть f'- липшицева функция c неизвестной константой L_1 . Предположим, что выполнено условие ЛПЛ для функции f на $S \cap \mathcal{L}_f(f(x_0))$.

Пусть $\alpha_1 \in (0, 1)$, $\alpha > \alpha_1$ и $d \leq \alpha_1 \frac{\sqrt{3}R}{2L}$. Тогда алгоритм (2) с выбором шага A2 сходится с линейной скоростью по функции (14) и по точке (15) (для R_S) или (16) (для P_S).

Доказательство. Рассмотрим ретракцию R_S . Для $z_k = x_k - t_k \xi_k$ имеем

$$f(z_k) - f(x_k) \le (f'(x_k), z_k - x_k) + \frac{L_1}{2} ||z_k - x_k||^2 =$$

$$= -t_k ||\xi_k||^2 + \frac{L_1}{2} t_k^2 ||\xi_k||^2 = -||\xi_k||^2 \left(t_k - \frac{L_1}{2} t_k^2 \right).$$

Рассмотрим альтернативы (а) и (б):

(a)
$$\alpha t_k > t_k - \frac{L_1}{2} t_k^2$$
, r.e. $t_k > \frac{2(1-\alpha)}{L_1}$

(6)
$$\alpha t_k \le t_k - \frac{L_1}{2} t_k^2$$
, r.e. $t_k \le \frac{2(1-\alpha)}{L_1}$

Аналогично п. (б) теоремы 1, $t_k \geq \frac{2\beta(1-\alpha)}{L_1}$ в случае (б) при условии $d \geq \frac{2(1-\alpha)}{L_1}$. Если $d < \frac{2(1-\alpha)}{L_1}$, то, опять же аналогично доказательству теоремы 1, $t_k = d$ и m = 0.

Итак, в любом случае $t_k \ge E := \min \left\{ d; \frac{2\beta(1-\alpha)}{I_a} \right\}$.

Имеем

$$f(x_{k+1}) - f(x_k) = f(x_{k+1}) - f(z_k) + f(z_k) - f(x_k),$$

$$f(z_k) - f(x_k) \le -\alpha t_k \|\xi_k\|^2.$$
(10)

По теореме Пифагора $\|x_{k+1} - x_k\|^2 = \|x_k - z_k\|^2 + \|z_k - x_{k+1}\|^2$. При этом при условии $t_k \|\xi_k\| < \frac{\sqrt{3}}{2}R$ (см. [13, Theorem 2 (20)])

$$||z_k - x_{k+1}|| \le \frac{||x_k - z_k||^2}{R}.$$
 (11)

В силу (11)

$$f(x_{k+1}) - f(z_k) \le L \|x_{k+1} - z_k\| \le \frac{L}{R} \|x_k - z_k\|^2 \le \frac{L}{R} t_k^2 \|\xi_k\|^2.$$
 (12)

Из (10) и (12) получаем

$$f(x_{k+1}) - f(x_k) \le -\alpha t_k \|\xi_k\|^2 + \frac{L}{R} t_k^2 \|\xi_k\|^2 = -t_k \|\xi_k\|^2 \left(\alpha - \frac{L}{R} t_k\right).$$

В силу условий $d \le \alpha_1 \frac{\sqrt{3}R}{2L}$, $\alpha > \alpha_1$ имеем

$$t_{k} \leq d < \alpha_{1} \frac{R}{L}, \quad \alpha - \frac{L}{R} t_{k} > \alpha - \frac{L}{R} \alpha_{1} \frac{R}{L} = \alpha - \alpha_{1} > 0,$$
$$-t_{k} \|\xi_{k}\|^{2} \left(\alpha - \frac{L}{R} t_{k}\right) \leq -t_{k} \|\xi_{k}\|^{2} (\alpha - \alpha_{1}).$$

Вспоминая, что $t_k \ge E$, окончательно получаем

$$f(x_{k+1}) - f(x_k) \le -E(\alpha - \alpha_1) \|\xi_k\|^2$$
 (13)

По условию ЛПЛ $\|\xi_k\|^2 \ge \mu(f(x_k) - f_*)$ и для $\varphi(x) = f(x) - f_*$ имеем

$$\varphi(x_{k+1}) \le (1 - E(\alpha - \alpha_1)\mu)\varphi(x_k), \quad E = \min\left\{d; \frac{2\beta(1 - \alpha)}{L_1}\right\}. \tag{14}$$

С учетом формулы (11)

$$\begin{aligned} \left\| x_{k+1} - x_k \right\|^2 &= \left\| x_k - z_k \right\|^2 + \left\| z_k - x_{k+1} \right\|^2 \le t_k^2 \left\| \xi_k \right\|^2 + \frac{\left\| x_k - z_k \right\|^4}{R^2} \le \\ &\le D \left\| \xi_k \right\|^2, \quad \text{где} \quad D = d^2 + \frac{d^4 L^2}{R^2}. \end{aligned}$$

Применяя (13), получаем

$$||x_{k+1} - x_k||^2 \le D||\xi_k||^2 \le \frac{D}{E(\alpha - \alpha_1)} (f(x_k) - f(x_{k+1})) \le \frac{D}{E(\alpha - \alpha_1)} \varphi(x_k).$$
(15)

Заметим, что для ретракции P_S оценка (14) также остается верной в силу теоремы А. Для сходимости по точке с учетом формулы (11) и неравенства $\|\xi_k\| \le L$

$$||x_{k+1} - x_k|| \le ||x_{k+1} - z_k|| + ||z_k - x_k|| \le ||R_S z_k - z_k|| + ||z_k - x_k|| \le \frac{||z_k - x_k||^2}{R} + ||z_k - x_k||,$$

$$||x_{k+1} - x_k|| \le t_k ||\xi_k|| + \frac{t_k^2 ||\xi_k||^2}{R}.$$

Отсюда с учетом формулы (13) получаем

$$\|x_{k+1} - x_k\|^2 \le \|\xi_k\|^2 d^2 \left(1 + \frac{dL}{R}\right)^2 \le \frac{d^2 \left(1 + \frac{dL}{R}\right)^2}{E(\alpha - \alpha_1)} \varphi(x_k). \tag{16}$$

Теорема доказана.

ПРИЛОЖЕНИЕ

Лемма 1. Пусть $S \subset \mathbb{R}^n$, $x \in \mathbb{R}^n$, $x \notin S$. Пусть существует $y \in P_S(x)$ и существует число $\lambda > 0$ такое, что $y \in P_S(x + \lambda(x - y))$. Тогда множество $P_S(x)$ является одноточечным.

Зафиксируем вещественное число $\sigma_0 > 0$.

Теорема 3. Константа проксимальной гладкости множества \mathfrak{M}_r (r < k) в точности равна $\frac{\sigma_0}{\sqrt{2}}$.

Доказательство. Рассмотрим произвольную матрицу $Y \in \mathbb{R}^{n \times k}$. Пусть ее сингулярное разложение задается формулой $\underline{Y} = U_Y \Sigma V_Y^{\mathrm{T}}$. Определим матрицу $\Lambda \in \mathbb{R}^{n \times k}$ следующим образом: $\Lambda_{ii} = \max(\sigma_0, \sigma_i(Y))$ $\forall i = \overline{1, r}$, остальные элементы матрицы Λ положим равными 0. Докажем, что матрица $Z \in \mathbb{R}^{n \times k}$, сингулярное разложение которой задано формулой $Z = U_Y \Lambda V_Y^{\mathrm{T}}$, принадлежит множеству $P_{\mathfrak{M}_r}(Y)$. Рассмотрим произвольную матрицу $X \in \mathfrak{M}_r$, имеющую сингулярное разложение $X = U \Lambda_1 V^{\mathrm{T}}$. Тогда с учетом формулы (6) верна следующая цепочка равенств и неравенств:

$$||Y - Z||^{2} = ||U_{Y} \Sigma V_{Y}^{\mathsf{T}} - U_{Y} \Lambda V_{Y}^{\mathsf{T}}||^{2} = ||\Sigma - U_{Y}^{\mathsf{T}} U_{Y} \Lambda V_{Y}^{\mathsf{T}} V_{Y}||^{2} = ||\Sigma - \Lambda||^{2} =$$

$$= \sum_{i=1}^{k} (\sigma_{i}(\Sigma) - \sigma_{i}(\Lambda))^{2} \leq \sum_{i=1}^{k} (\sigma_{i}(\Sigma) - \sigma_{i}(\Lambda_{1}))^{2} = \sum_{i=1}^{k} (\sigma_{i}(Y) - \sigma_{i}(X))^{2} \leq ||Y - X||^{2}.$$

Таким образом, $Z \in P_{\mathfrak{M}_r}(Y)$, а $\varrho^2(Y,\mathfrak{M}_r) = \left\|Y - Z\right\|^2 = \sum_{i=1}^k (\sigma_i(\Sigma) - \sigma_i(\Lambda))^2$.

Пусть верно $\varrho(Y,\mathfrak{M}_r)<\frac{\sigma_0}{\sqrt{2}}$. Докажем, что $\sigma_r(Y)\neq\sigma_{r+1}(Y)$. Предположим противное, т.е., что $\sigma_r(Y)=\sigma_{r+1}(Y)$. Рассмотрим две альтернативы. Если $\sigma_r(Y)\geq\sigma_0$, то $\sum_{i=1}^k(\sigma_i(\Sigma)-\sigma_i(\Lambda))^2\geq\sigma_0^2$, а значит, $\varrho(Y,\mathfrak{M}_r)\geq\sigma_0$, что противоречит $\varrho(Y,\mathfrak{M}_r)<\frac{\sigma_0}{\sqrt{2}}$. Если $\sigma_r(Y)<\sigma_0$, то $\sum_{i=1}^k(\sigma_i(\Sigma)-\sigma_i(\Lambda))^2\geq(\sigma_r(Y)-\sigma_0)^2+(\sigma_{r+1}(Y)-0)^2=(\sigma_r(Y)-\sigma_0)^2+(\sigma_r(Y)-0)^2\geq\frac{\sigma_0^2}{2}$, что противоречит $\varrho(Y,\mathfrak{M}_r)<\frac{\sigma_0}{\sqrt{2}}$. Таким образом, $\sigma_r(Y)\neq\sigma_{r+1}(Y)$. Рассмотрим матрицы $Y(\lambda)=Y+\lambda(Y-Z)=U_Y(\Sigma+\lambda(\Sigma-\Lambda))V_Y^T$ для любого $\lambda\in\mathbb{R}$. В силу непрерывности операций сложения и умножения на скаляр существует такое число $\lambda>0$, что выражение $U_Y(\Sigma+\lambda(\Sigma-\Lambda))V_Y^T$ является сингулярным разложением матрицы $Y(\lambda)$ (это следует из того, что $\sigma_r(Y)\neq\sigma_{r+1}(Y)$), и при этом $\max(\sigma_0,\sigma_i(Y(\lambda)))=\max(\sigma_0,\sigma_i(Y)+\lambda(\sigma_i(Y)-\max(\sigma_0,\sigma_i(Y)))\ \forall i=\overline{1,r}$. Итак, $Z\in P_{\mathfrak{M}_r}(Y(\lambda))$. По лемме 1 получаем, что множество $P_{\mathfrak{M}_r}(Y)$ является одноточечным. Таким образом, множество \mathfrak{M}_r (r< k) является проксимально гладким с $R_{\mathfrak{M}_r}=\frac{\sigma_0}{\sqrt{2}}$.

Докажем, что константа проксимальной гладкости множества \mathfrak{M}_r (r < k) неулучшаема. Рассмотрим матрицу Σ , заданную следующим образом: $\Sigma_{ii} = \sigma_0 \ \forall i = \overline{1,r-1}, \ \Sigma_{ii} = \frac{\sigma_0}{2} \ \forall i = \overline{r,r+1},$ остальные элементы матрицы Σ положим равными 0. Аналогично приведенным выше рассуждениям (используя формулу (6)) получаем, что $\varrho(\Sigma,\mathfrak{M}_r) = \frac{\sigma_0}{\sqrt{2}}$. Рассмотрим матрицы M и N, заданные следующим образом: $M_{ii} = \sigma_0 \ \forall i = \overline{1,r},$ остальные элементы матрицы M положим равными 0; $N_{ii} = \sigma_0 \ \forall i = \overline{1,r-1}, N_{r+1,r+1} = \sigma_0$, остальные элементы матрицы N положим равными 0. Заметим (пользуясь формулой (6)), что $M,N \in P_{\mathfrak{M}_r}(\Sigma)$. Таким образом, $R_{\mathfrak{M}_r} = \frac{\sigma_0}{\sqrt{2}}$, причем эта константа неулучшаема. Теорема доказана.

Теорема 4. Константа проксимальной гладкости множества \mathfrak{M}_k в точности равна σ_0 .

Доказательство. Рассмотрим произвольную матрицу $Y \in \mathbb{R}^{n \times k}$, для которой верно $\varrho(Y,\mathfrak{M}_k) < \sigma_0$. Пусть ее сингулярное разложение задается формулой $Y = U_Y \Sigma V_Y^{\mathsf{T}}$. Аналогично доказательству теоремы 3 получаем, что верно неравенство $\sigma_k(Y) > 0$, которое обеспечивает одноточечность множества $P_{\mathfrak{M}_k}(Y)$. Таким образом, множество \mathfrak{M}_k является проксимально гладким с $R_{\mathfrak{M}_k} = \sigma_0$.

Покажем, что константа проксимальной гладкости множества \mathfrak{M}_k неулучшаема. Рассмотрим матрицу Σ , заданную следующим образом: $\Sigma_{ii} = \sigma_0 \ \forall i = \overline{1,k-1}$, остальные элементы матрицы Σ положим равными 0. Аналогично доказательству теоремы 3 получаем, что $\varrho(Y,\mathfrak{M}_k) = \sigma_0$. Рассмотрим матрицы M и N, заданные следующим образом: $M_{ii} = \sigma_0 \ \forall i = \overline{1,k}$, остальные элементы матрицы M положим равными 0; $N_{ii} = \sigma_0 \ \forall i = \overline{1,k-1}$, $N_{k,k} = -\sigma_0$, остальные элементы матрицы N положим равными 0. Заметим (пользуясь формулой (6)), что $M,N \in P_{\mathfrak{M}_k}(\Sigma)$. Таким образом, $R_{\mathfrak{M}_k} = \sigma_0$, причем эта константа неулучшаема. Теорема доказана.

Перейдем к рассмотрению множеств \mathfrak{L}_r . Заметим, что $\mathfrak{L}_1 = \mathfrak{M}_1$.

Теорема 5. Константа проксимальной гладкости множества \mathfrak{L}_r (r > 1) в точности равна $\frac{\sigma_0}{2}$.

Доказательство. Рассмотрим произвольную матрицу $Y \in \mathbb{R}^{n \times k}$, для которой верно $\varrho(Y, \mathfrak{L}_r) < \frac{\sigma_0}{2}$. Пусть ее сингулярное разложение задается формулой $Y = U_Y \Sigma V_Y^\mathsf{T}$. Вследствие того,

что $\mathfrak{L}_r = \bigcup_{i=1}^r \mathfrak{M}_i$, множество $P_{\mathfrak{L}_r}(Y)$ может оказаться неодноточечным только в следующих случаях:

- (*a*) Существует $i \in \{1, 2, ..., r\}$ такое, что множество $P_{\mathfrak{M}_i}(Y)$ является неодноточечным и при этом $P_{\mathfrak{M}_i}(Y) \subset P_{\mathfrak{L}_r}(Y)$. Из теорем 3 и 4 $\varrho(Y,\mathfrak{M}_i) \geq \frac{\sigma_0}{\sqrt{2}}$, а следовательно, $\varrho(Y,\mathfrak{L}_r) \geq \frac{\sigma_0}{\sqrt{2}}$, что противоречит $\varrho(Y,\mathfrak{L}_r) < \frac{\sigma_0}{2}$.
- (б) Существуют $i,j\in\{1,2,\ldots,r\}, i< j$, такие, что $\varrho(Y,\mathfrak{M}_i)=\varrho(Y,\mathfrak{M}_j)=\varrho(Y,\mathfrak{L}_r)$. Из доказательства теоремы 3 матрицы $Z_l=U_Y\Lambda_lV_Y^\mathsf{T}$, где матрицы Λ_l заданы следующим образом: $(\Lambda_l)_{mm}=\max(\sigma_0,\sigma_m(Y))\ \forall m=\overline{1,l},$ а их остальные элементы равны 0, принадлежат $P_{\mathfrak{M}_l}(Y),$ $l\in\{i,j\}$. Покажем, что $\max(\sigma_m,\sigma_0)=\sigma_0\ \forall m\in i+1,\ldots,j$. Действительно, иначе $\varrho(Y,\mathfrak{M}_i)=\|Y-Z_i\|\geq\sigma_0$, что противоречит $\varrho(Y,\mathfrak{L}_r)<\frac{\sigma_0}{2}$. Учитывая это, получаем

$$0 = \|Y - Z_j\|^2 - \|Y - Z_i\|^2 = \sum_{m=1}^k (\sigma_m(\Sigma) - \sigma_m(\Lambda_j))^2 - \sum_{m=1}^k (\sigma_m(\Sigma) - \sigma_m(\Lambda_i))^2 =$$

$$= \sum_{m=i+1}^j ((\sigma_m(\Sigma) - \sigma_m(\Lambda_j))^2 - \sigma_m^2(\Sigma)) = \sum_{m=i+1}^j (\sigma_m^2(\Lambda_j) - 2\sigma_m(\Sigma)\sigma_m(\Lambda_j)) =$$

$$= \sum_{m=i+1}^j ((\sigma_0^2 - 2\sigma_m(\Sigma)\sigma_0)).$$

Таким образом, $\sum_{m=i+1}^{j} \sigma_m(\Sigma) = \frac{N\sigma_0}{2}$, где N=j-i. По неравенствам между средними

$$\sum\nolimits_{m=i+1}^{j}\sigma_{m}^{2}(\Sigma)\geq\frac{\left(\sum\nolimits_{m=i+1}^{j}\sigma_{m}(\Sigma)\right)^{2}}{N}=\frac{N\sigma_{0}^{2}}{4}.$$
 Используя это, получаем

$$\begin{split} \varrho^2(Y, \mathfrak{Q}_r) &= \varrho^2(Y, \mathfrak{M}_i) = \sum_{m=1}^k (\sigma_m(\Sigma) - \sigma_m(\Lambda_i))^2 = \sum_{m=1}^i (\sigma_m(\Sigma) - \max(\sigma_m(\Sigma), \sigma_0))^2 + \\ &+ \sum_{m=i+1}^j \sigma_m^2(\Sigma) + \sum_{j+1}^k \sigma_m^2(\Sigma) \geq \frac{N\sigma_0^2}{4} \geq \frac{\sigma_0^2}{4}, \end{split}$$

что противоречит $\varrho(Y,\mathfrak{Q}_r)<\frac{\sigma_0}{2}$. Итак, для любой матрицы $Y\in\mathbb{R}^{n\times k}$, для которой верно $\varrho(Y,\mathfrak{Q}_r)<\frac{\sigma_0}{2}$, множество $P_{\mathfrak{Q}_r}(Y)$ является одноточечным. Таким образом, множество \mathfrak{Q}_r (r>1) является проксимально гладким с $R_{\mathfrak{M}_r}=\frac{\sigma_0}{2}$.

Докажем, что константа проксимальной гладкости множества \mathfrak{L}_r (r > 1) неулучшаема. Рассмотрим матрицу Σ , заданную следующим образом: $\Sigma_{ii} = \sigma_0 \ \forall i = \overline{1,r-1}, \ \Sigma_{rr} = \frac{\sigma_0}{2}$, остальные элементы положим равными 0. Аналогично доказательству теоремы 3 получаем

$$\varrho^{2}(\Sigma, \mathfrak{M}_{i}) = \begin{cases} (r-1-i)\sigma_{0}^{2} + \frac{\sigma_{0}^{2}}{4}, & i \in \{1, 2, ..., r-1\}, \\ \frac{\sigma_{0}^{2}}{4}, & i = r. \end{cases}$$

Итак, $\varrho(\Sigma, \mathfrak{L}_r) = \varrho(\Sigma, \mathfrak{M}_{r-1}) = \varrho(\Sigma, \mathfrak{M}_r) = \frac{\sigma_0}{2}$. Таким образом, $R_{\mathfrak{L}_r} = \frac{\sigma_0}{2}$, причем эта константа неулучшаема. Теорема доказана.

Пусть $Y \in \mathbb{R}^{n \times k}$ — произвольная матрица. Пусть ее сингулярное разложение задается формулой $Y = U_Y \Sigma V_Y^{\mathsf{T}}$. Определим $\forall l = \overline{1,k}$ матрицы Λ_l следующим образом: $(\Lambda_l)_{mm} = \max(\sigma_0, \sigma_m(Y))$ $\forall m = \overline{1,l}$, а их остальные элементы положим равными 0. Определим матрицы Z_l следующим образом: $Z_l = U_Y \Lambda_l V_Y^{\mathsf{T}} \ \forall l = \overline{1,k}$.

Следствие 1. Матрица $Z_l \in \mathbb{R}^{n \times k}$ принадлежит множеству $P_{\mathfrak{M}_l}(Y) \quad \forall l = \overline{1, k}$.

Следствие 2. Матрица $Z_l \in \mathbb{R}^{n \times k}$, для которой $\|Y - Z_l\|$ минимально $(l = \overline{1, r})$, принадлежит множеству $P_{\Sigma_l}(Y)$.

СПИСОК ЛИТЕРАТУРЫ

- 1. Goldstein A.A. Convex programming in Hilbert space // Bull. Amer. Math. Soc. 1964. V. 70. № 5. P. 709–710.
- 2. Levitin E.S., Polyak B.T. Constrained minimization methods // Zh. Vychisl. Mat. Mat. Fiz. 1966. V. 6. № 5. P. 787–823.
- 3. Absil P.-A., Malick J. Projection-like retraction on matrix manifolds // SIAM J. Optim. 2012. V. 22. № 1. P. 135–158.
- 4. *Edelman A., Arias T., Smith S.T.* The geometry of algorithms with orthogonality constraints // J. Matrix Anal. Appl. 1998. V. 20. № 2. P. 303–353.
- 5. Absil P.-A., Mahony R., Sepulchre R. Matrix Manifolds. Princeton Univ. Press, Princeton and Oxford, 2008. 240 p.
- 6. Luenberger D.G. The gradient projection methods along geodesics // Management Sci. 1972. V. 18. № 11. P. 620–631.
- 7. Hager W.W. Minimizing a quadratic over a sphere // SIAM J. Optim. and Contr. 2001. V. 12. № 1. P. 188–208.
- 8. *Neto J.X. da Cruz, De Lima J.X. da Cruz, Oliveira P.R.* Geodesic algorithms on Riemannian manifolds // Balkan J. of Geom. and its Appl. 1998. V. 3. № 2. P. 89–100.
- 9. *Udrişte C*. Convex Functions and Optimization Methods on Riemannian Manifolds // Math. and Its Appl. Ser. Springer, 1998. V. 297.
- 10. *Schneider R., Uschmajew A.* Convergence results for projected line search methods on varieties of low-rank matricies via Lojasiewicz inequality // SIAM J. Optim. 2015. V. 25. № 1. P. 622–646.
- 11. *Merlet B., Nguyen T.N.* Convergence to equilibrium for discretizations of gradient-like flows on Riemannian manifolds // Different. Integral Equat. 2013. V. 26. P. 571–602.
- 12. *Birgin E.G., Martinez J.M., Raydan M.* Nonmonotone Spectral Projected Gradient Methods on Convex Sets // SIAM J. Optim. 2000. V. 10. № 4. P. 1196–1211.
- 13. *Balashov M.V.* The Gradient Projection Algorithm for Smooth Sets and Functions in Nonconvex Case // Set-Valued and Variat. Anal. 2021.V. 29.P. 341–360. https://doi.org/10.1007/s11228-020-00550-4
- 14. *Huikang Liu, Anthony Man-Cho So, Weijie Wu* Quadratic optimization with orthogonality constraint: explicit Lojasiewicz exponent and linear convergence of retraction-based line-search and stochastic variance-reduced gradient methods // Math. Program. 2018. V. 178. P. 215–262.
- 15. Nesterov Yu. Introductory lectures on convex optimization. Abasic course basic course. Berlin: Springer, 2004.
- 16. Balashov M.V., Polyak B.T., Tremba A.A. Gradient Projection and Conditional Gradient Methods for Constrained Nonconvex Minimization // Numerical Function. Anal. and Optimizat. 2020. V. 41. № 7. P. 822–849.
- 17. Horn R., Johnson C. Matrix Analysis. New York, NY, USA: Cambridge Univ. Press, 2009. 643 p.
- 18. *Vial J.-Ph*. Strong and weak convexity of sets and functions // Math. of Operat. Res. 1983. V. 8. № 2. P. 231–259.
- 19. *Clarke F.H.*, *Stern R.J.*, *Wolenski P.R.* Proximal smoothness and lower–*C*² property // J. Convex Anal. 1995. V. 2. № 1–2. P. 117–144.
- 20. *Conway J.H., Hardin R.H., Sloane N.J.A.* Packing Lines, Planes, etc.: Packings in Grassmannian Spaces // Experiment. Math. 1996. V. 5. P. 139–159.
- 21. *Балашов М.В.* Метод проекции градиента на матричных многообразиях // Ж. вычисл. матем. и матем. физ. 2020. Т. 60. № 9. С. 1453—1461.