____ МАТЕМАТИЧЕСКАЯ _____ ФИЗИКА

УДК 517.95

АНАЛИТИЧЕСКОЕ РЕШЕНИЕ ЗАДАЧИ О КАВИТАЦИОННОМ ОБТЕКАНИИ КЛИНА. II¹

© 2021 г. В. И. Власов^{1,2,*}, С. Л. Скороходов^{1,**}

¹ 119333 Москва, ул. Вавилова, 40, Федеральный исследовательский центр "Информатика и управление" РАН, Россия

² 119991 Москва, Воробьевы горы, 1, МГУ им. М.В. Ломоносова, Московский центр фундаментальной и прикладной математики, Россия

риклионой математики, 1 осси

*e-mail: vlasov@ccas.ru,

**e-mail: sskorokhodov@gmail.com

Поступила в редакцию 11.03.2021 г. Переработанный вариант 18.04.2021 г. Принята к публикации 19.05.2021 г.

В работе, являющейся продолжением предыдущих исследований авторов, дано аналитическое решение плоской задачи о симметричном кавитационном обтекании клина идеальной жидкостью для двуспиральной схемы Тулина замыкания каверны. Решение выражено через гипергеометрическую функцию Лауричеллы. Выполнена развернутая численная реализация решения и проведен его асимптотический анализ. Изучена спиральная структура вихрей, замыкающих каверну, в том числе получена оценка размера вихря. Найдена асимптотика по $x \rightarrow \infty$ ширины следа. Установлены также асимптотики коэффициента сопротивления C_x и относительных размеров каверны при стремлении числа кавитации Q к нулю. Библ. 24. Фиг. 8. Табл. 2.

Ключевые слова: плоская теория струй идеальной жидкости, кавитационное обтекание клина, двуспиральная схема Тулина, явное аналитическое решение, гипергеометрическая функция Лауричеллы, численная реализация, асимптотический анализ течения.

DOI: 10.31857/S0044466921110156

1. ВВЕДЕНИЕ. ДВУСПИРАЛЬНАЯ² СХЕМА ТУЛИНА

1.1. Получено аналитическое решение плоской задачи теории струй идеальной жидкости (см. [1]–[4]) о симметричном кавитационном обтекании клина для ряда классических схем замыкания каверны³. В первой части работы (см. [5]) решение для схем Гельмгольца–Кирхгофа, Жуковского–Рошко и Рябушинского было выписано через гипергеометрические функции Гаусса и Аппе́ля. В настоящей, второй части работы решение для двуспиральной схемы Тулина (см. [6]) дано в терминах гипергеометрической функции Лауричеллы⁴. В дальнейшем планируется публикация аналитических решений для односпиральной (первой) схемы Тулина (см. [13]) и схемы Эфроса (см. [14]).

1.2. Как и принято в плоской теории струй идеальной жидкости (см. [1], [2], [15]), картина течения располагается на комплексной плоскости z = x + iy и описывается в терминах комплексного потенциала $w = f(z) = \varphi(x, y) + i \psi(x, y)$, представляющего собой аналитическую функцию переменного *z*, где $\varphi(x, y)$ – потенциал скорости, а $\psi(x, y)$ – функция тока, так что уравнение линии тока есть $\psi(x, y) = \varepsilon$, где $\varepsilon = \text{const.}$ Скорость жидкости $\mathbf{V}(z) = \text{grad } \varphi(x, y)$ выражается через комплексный потенциал в виде его сопряженной производной

¹ Работа выполнена при финансовой поддержке Минобрнауки РФ в рамках реализации программы Московского центра фундаментальной и прикладной математики по соглашению № 075-15-2019-1621.

² Ее часто называют также второй схемой Тулина.

³ Эта задача для некоторых схем замыкания каверны рассматривалась в монографиях [1]–[4] и цитированных в них источниках. О проблеме замыкания каверны см. [1]–[3], [7]–[9].

⁴ Об этой функции см. [10]–[12].

Фиг. 1. Картина линий тока течения для схемы Тулина.

$$\mathbf{V}(z) = V(z)e^{i\theta(z)} = \overline{f}'(z),\tag{1}$$

где $V(z) = |\mathbf{V}(z)|$ и $\theta(z) = \arg \mathbf{V}(z)$ – соответственно модуль и угол наклона скорости к оси *x*. Давление p(z) в потоке связано со скоростью законом Бернулли

$$p(z) = \operatorname{const} -\frac{1}{2}\rho V^{2}(z), \qquad (2)$$

где ρ – плотность жидкости. Через комплексный потенциал выражаются и все остальные характеристики течения, в том числе коэффициент сопротивления C_x , а также относительные длина \mathfrak{X} и ширина \mathfrak{M} каверны (см. разд. 3–6).

1.3. Рассмотрим симметричное относительно продольной оси *x* кавитационное обтекание клина неограниченным по ширине потоком идеальной жидкости при замыкании каверны по двуспиральной схеме Тулина. Картина такого течения представлена на фиг. 1 в виде распределения линий тока. Через *A* обозначена бесконечно удаленная точка на плоскости *z*; скорость жидкости на бесконечности равна V_{∞} и направлена вдоль оси *x*. Стенки клина, изображенные жирными линиями, имеют длину *l* и наклонены к оси *x* под углами $\pm \pi \alpha$.

Подходя к острию *B* клина, поток на фиг. 1 разделяется на два: верхний и нижний. Вместе с ним на этом острие разветвляется и линия тока, изначально идущая по отрицательной вещественной полуоси (*AB*) и считающаяся "нулевой", т.е. отвечающая уравнению $\psi(x, y) = 0$. Каждая из ее ветвей вместе с соответствующим потоком идет по своей, верхней (*BC*) или нижней (*C'B*) стенке клина⁵, в конце которой она отрывается от его кромки (обозначенной соответственно через *C* или *C'*); таким образом, выполняются условия

$$\theta(z) = 0, \quad z \in (AB); \quad \theta(z) = \begin{cases} \pi \alpha, & z \in (BC), \\ -\pi \alpha, & z \in (C'B). \end{cases}$$
(3)

Предполагается, что эти потоки при их дальнейшем движении "возвращаются" в бесконечно удаленную точку A (двигаясь вправо на фиг. 1), а между ограничивающими эти потоки ветвями нулевой линии возникает пространство, которое моделирует каверну — область, заполненную парами или газом, а также след, т.е. присоединенную к каверне вниз по потоку область, представляющую собой вспененное (пронизанное мелкими пузырьками) турбулентное течение⁶.

Оторвавшиеся от кромок *C* и *C*' участки (*CDE*) и (*E*'*D*'*C*') нулевой линии тока изображены на фиг. 1 сплошными линиями (обычной толщины). Они представляют собой свободные линии тока, т.е. дуги, вид которых заранее не известен и находится из условия, что со стороны газов, за-

⁵ Порядок букв в обозначениях граничных дуг соответствует правильному порядку обхода области (см. [15]), т.е. такому, при котором она остается слева.

⁶ Описание физических процессов, происходящих в зоне замыкания каверны, а также обсуждение вопросов формирования и моделирования следа имеется в [1], [3], [6], [8], [9], [16].

полняющих каверну, на эти дуги действует заданное постоянное давление p_Q (меньшее, чем давление p_{∞} на бесконечности). Тогда, согласно (2), на них должен быть постоянен и модуль скорости жидкости, обозначаемый через V_Q (> V_{∞}), т.е. должно выполняться условие

$$V(z) = V_0, \quad z \in (CDE) \cup (E'D'C'). \tag{4}$$

Это условие, как показано далее, приводит к тому, что дуги (*CDE*) и (*E'D'C'*) соответственно вблизи точек *E* и *E'* являются закручивающимися спиралевидными линиями и образуют вихри с центрами в этих точках (фиг. 1). Если следовать движению жидкости, например, по линии (*DE*), то она будет стремиться к точке *E*, закручиваясь по часовой стрелке.

Далее, в данной схеме Тулина принимается, что исходящие из точек *E* и *E*' продолжения (*EA*) и (*AE*') нулевой линии (изображенные на фиг. 1 штриховыми линиями) представляют собой, как и предшествующие участки, свободные линии тока, но с другим заданным на них давлением, совпадающим с давлением на бесконечности $p_{\infty} > p_{O}$; тогда с учетом (2) получаем

$$V(z) = V_{\infty}, \quad z \in (EA) \cup (AE'). \tag{5}$$

Из этого условия (как показано ниже) следует, что дуги (*EA*) и φ_C соответственно вблизи точек *E* и *E*' являются раскручивающимися спиралевидными линиями (фиг. 1). В частности, если следовать движению жидкости по линии (*EA*), то она, выйдя из точки *E*, будет удаляться от него, раскручиваясь против часовой стрелки.

Таким образом, условия (4), (5) приводят к тому, что линии (DE) и (EA) вблизи точки E (а линии (E'D'), (AE') — вблизи точки E') образуют вихрь, который (как показано ниже) асимптотически представляет собой пару подобных⁷ логарифмических спиралей. С этим обстоятельством и связано название рассматриваемой схемы Тулина.

Согласно Тулину (см. [6]), центры E и E' вихрей обозначают место замыкания каверны (фиг. 1), за которым ниже по потоку расположен след, так что исходящие из этих центров участки (*EA*) и (*AE'*) нулевой линии тока принимаются в качестве граничных линий следа, который, распространяясь вниз по потоку, простирается до бесконечности — точки *A*.

Через *D* обозначена точка на верхней ветви, а через и *D'* — на нижней ветви нулевой линии (фиг. 1), в которых скорость направлена, как и в бесконечности, параллельно оси *x*. Поскольку линии тока, ограничивающие каверну, как известно из [1], [2], должны быть обращены выпуклостью в сторону жидкости, то *D* является наивысшей, а *D'* — наинизшей точками каверны. Расстояние между этими точками, отнесенное к размеру основания $2l\sin(\pi\alpha)$ клина, принимается в качестве относительной ширины \mathfrak{M} каверны, т.е.

$$\mathfrak{M} := \frac{y_D}{l\sin(\pi\alpha)},\tag{6}$$

где y_D — ордината⁸ точки D на плоскости z. В качестве относительной длины \mathfrak{L} каверны принимаем отношение абсциссы точки E к размеру основания клина:

$$\mathfrak{L} := \frac{x_E}{2l\sin(\pi\alpha)}.$$
(7)

Определим еще крайнюю левую точку *L* линии (*EA*) и крайнюю правую точку *R* линии (*DE*) как точки, в которых угол наклона скорости равен $\theta = -\pi/2$ (фиг. 1 и 2а). Тогда можно говорить, что вихрь в верхней половине течения образован линией тока (*REL*); аналогично можно определить вихрь и ограничивающие его точки и в нижней половине течения. Разность абсцисс точек *R* и *L* принимаем в качестве размера \mathfrak{D} вихря, т.е.

$$\mathfrak{D} = x_R - x_L. \tag{8}$$

Важной характеристикой описанной картины обтекания, как и других кавитационных течений, является число кавитации — известный параметр (см. [1], [2]), определяемый по формуле

⁸ Для обозначения координаты точки к символу координаты добавляем индекс в виде символа точки, например, $z_D = x_D + iy_D -$ координаты точки D на плоскости z.

⁷ т.е. отличающихся на всесторонее растяжение; о спиралях см. [17].

Фиг. 2. Области на плоскостях z, w, ζ, t и h.

$$Q = \frac{2(p_{\infty} - p_Q)}{\rho V_{\infty}^2},$$

или с учетом (2) с помощью эквивалентного равенства

$$Q := \frac{V_Q^2 - V_\infty^2}{V_\infty^2}.$$

Отметим, что скорость жидкости V_Q на поверхности каверны выражается через V_{∞} и Q по формуле

$$V_Q = V_{\infty} \sqrt{1 + Q}. \tag{9}$$

1.4. Аналитическое решение рассматриваемой задачи для двуспиральной схемы Тулина построено в разд. 3 и 4. Осуществлена его численная реализация (разд. 5), в том числе вычислены значения коэффициента сопротивления C_x , найдены относительная длина \mathfrak{L} и относительная ширина \mathfrak{W} каверны.

На основе этой численной реализации в разд. 5 построены также картины обтекания для различных значений входящих параметров. Следует отметить, что при сравнении этих картин с

фиг. 1 может возникнуть недоразумение, связанное с тем, что на картинах, полученных путем вычислений, не видны вихри, центрами которых, согласно сказанному в п. 1.3, должны быть точки *E* и *E*'. Чтобы устранить это недоразумение, заметим, что представленная на фиг. 1 картина течения является условной с увеличенным для большей наглядности изображением вихревых спиралей⁹. На самом же деле, согласно проведенному расчету, размер вихря \mathfrak{D} имеет порядок 10^{-7} – 10^{-8} при остальных параметрах, лежащих в обычном диапазоне.

Данное значение согласуется с асимптотикой для этой величины $\mathfrak{D} \sim Q^{-2} \exp(-\pi^2/Q), Q \to 0$, полученной с помощью проведенного в разд. 6 асимптотического анализа решения. Ясно, что такой вихрь не различим на общей картине течения и может быть изображен лишь при локальном сильном увеличении (вид которого приведен ниже на фигуре в разд. 5). Выполненный анализ позволил также установить, что вблизи центра вихря *E* линии (*RE*) и (*EL*) асимптотически представляют собой подобные логарифмические спирали. Уравнение для закручивающейся линии (*RE*) в локальных полярных координатах (*r*, ϕ) с центром в полюсе *E* дается формулой *r*(ϕ) = = $\mathcal{A}\exp(2\pi\phi/Q), \phi \to -\infty$; для раскручивающейся линии аналогичное уравнение отличается лишь на множитель $\sqrt{1+O}$.

Получена также асимптотика для числа N оборотов вокруг точки E, совершаемых при движении жидкости вдоль линии тока $\{z : \psi(z) = \varepsilon\}$, соответствующей малому положительному ε (при остальных параметрах, как обычно, равных $l = 1, V_{\infty} = 1$); заметим, что если $\varepsilon = 0$, то число оборотов, очевидно, бесконечно. Эта асимптотика имеет вид $N \sim -Q \ln(Q^2 \varepsilon), \varepsilon \to 0$.

Установлено еще, что относительная ширина следа $\mathfrak{S}(x)$, рассматриваемая как функция продольной координаты x, имеет при удалении от каверны и малых Q следующий характер убывания: $\mathfrak{S}(x) \sim Q^{-2}(x/l)^{-1/2}, x \to +\infty$.

Кроме того, найден (согласующийся с [1], [2], [4]) вид асимптотик для величин $C_x(Q)$, $\mathfrak{L}(Q)$, $\mathfrak{W}(Q)$ при стремлении числа кавитации Q к нулю. Первые коэффициенты этих асимптотик выписаны в виде явных формул, а их численные значения приведены в таблицах, где эти значения даны не только для рассмотренной здесь двуспиральной схемы Тулина, но и для изучавшихся в первой части работы (см. [5]) схем Жуковского–Рошко и Рябушинского¹⁰.

2. ОБЛАСТЬ ГОДОГРАФА И ОБЛАСТЬ ПОТЕНЦИАЛА

2.1. Поскольку для изучаемой задачи течение симметрично относительно оси x (фиг. 1), то теоретические рассмотрения достаточно проводить только для его верхней половины — области \mathfrak{B}_z , изображенной на фиг. 2а. Вместе с тем численно получаемую картину обтекания будем давать для всей области течения, как на фиг. 1.

Аналитическую функцию $\zeta = \omega(z)$, определяемую по формуле

$$\omega(z) := -\ln \frac{V(z)}{V_o} + i\theta(z) \tag{10}$$

или с учетом (1) по эквивалентной формуле

$$\omega(z) := -\ln\left[\frac{1}{V_Q}f'(z)\right],\tag{11}$$

называют функцией годографа скорости в форме Жуковского (см. [18]), а область $\mathfrak{B}_{\zeta} := \omega(\mathfrak{B}_z) -$ образ области \mathfrak{B}_z при отображении $\zeta = \omega(z) -$ называют областью годографа.

Символ, обозначающий образ области или дуги при конформном отображении, снабжаем нижним индексом, указывающим плоскость, где расположен соответствующий образ. Вместе с тем точки на разных плоскостях, соответствующие друг другу при конформном отображении, обозначаем одинаковыми буквами.

⁹ Условную картину с гипертрофированным изображением вихрей приводит и Тулин в своей статье [6].

¹⁰Для этих схем в [5] были получены асимптотики величин $C_x(Q)$, $\mathfrak{V}(Q)$, $\mathfrak{W}(Q)$ при $Q \to 0$, включая формулы для их коэффициентов, но не были приведены численные значения этих коэффициентов. В настоящей работе мы восполняем этот пробел.

2.2. Используя определение (10), построим область годографа для рассматриваемой задачи. Для этого пройдем границу $\partial \mathfrak{B}_z$ в правильном направлении, т.е. так, что область \mathfrak{B}_z остается слева.

При движении по участку (*AB*) скорость монотонно убывает от V_{∞} (в бесконечно удаленной точке *A*) до 0 (в точке остановки *B*). Кроме того, согласно (3), здесь выполняется $\theta = 0$. Отсюда с помощью (9) и (10) находим, что образом этого участка на плоскости годографа ζ является отрезок вещественной оси

$$(AB)_{\zeta} = \{\zeta : \operatorname{Re} \zeta \in [\ln \sqrt{1+Q}, +\infty], \operatorname{Im} \zeta = 0\}.$$

При движении по стенке клина (*BC*) модуль скорости *V* монотонно возрастает от 0 до V_Q и, кроме того, согласно (3), здесь $\theta = \pi \alpha$. Отсюда находим, что образом этого участка на плоскости годографа является прямолинейный отрезок

$$(BC)_{\zeta} = \{\zeta : \operatorname{Re} \zeta \in [0, +\infty], \operatorname{Im} \zeta = \pi\alpha\}.$$

Следующий участок (*CDE*) есть свободная линия тока с заданным на ней по условию (4) модулем скорости, равным V_Q . Тогда его образ (*CDE*)_{ζ}, согласно (10), должен лежать на мнимой оси {Re $\zeta = 0$ }. В соответствии с фиг. 2а дуга (*CDE*) представляет собой вблизи точки *E* вихревую линию, закрученную по часовой стрелке, поэтому при движении по этой дуге угол наклона скорости монотонно падает от $\theta = \pi \alpha$ до $\theta = -\infty$. Отсюда получаем, что образом этого участка на плоскости годографа является прямолинейный отрезок

$$(CDE)_{\zeta} = \{\zeta \colon \operatorname{Re} \zeta = 0, \operatorname{Im} \zeta \in [-\infty, \pi\alpha] \}.$$

Участок (*EA*) также есть свободная линия тока с заданным, согласно (5), модулем скорости V_{∞} . В соответствии с фиг. 2а эта дуга вблизи точки *E* представляет собой вихревую линию, закрученную против часовой стрелки, а при приближении к бесконечности *A* угол наклона скорости θ на этой дуге приближается к нулю. Таким образом, при движении по этой дуге угол θ монотонно возрастает от $-\infty$ до нуля. Тогда из (9) и (10) следует, что образом этого участка служит отрезок

$$(EA)_{\zeta} = \{\zeta \colon \operatorname{Re} \zeta = \ln \sqrt{1} + Q, \operatorname{Im} \zeta \in [-\infty, 0]\}.$$

Граница области годографа построена, а вид этой области $\partial \mathscr{B}_{\zeta}$ дан на фиг. 2в. Отметим, что область годографа для двуспиральной схемы Тулина была приведена в [19] и [16] (при другом определении функции годографа).

2.3. Установим вид области потенциала $\mathscr{B}_{w} := f(\mathscr{B}_{z})$, используя стандартные рассуждения, приведенные, например, в [2, стр. 24].

Так как граница $\partial \mathfrak{B}$ является нулевой линией тока, то ее образ на плоскости потенциала соответствует значению $\psi = 0$. Вдоль этой линии тока имеем $d\phi = Vds_{\phi}$, где ds_{ϕ} – дифференциал длины дуги. Поскольку при стремлении к бесконечно удаленной точке *A* величина *V* стремится к значению $V_{\infty} > 0$, то величина ϕ изменяется от $-\infty$ до $+\infty$ вдоль границы $\partial \mathfrak{B}$. Если же двигаться вдоль эквипотенциальной линии от нулевой линии тока – грацицы $\partial \mathfrak{B}$ до бесконечности (вверх на фиг. 2a), то величина ψ , представляющая собой расход жидкости, будет монотонно возрастать от нуля до $+\infty$. Следовательно, образом \mathfrak{B}_w области \mathfrak{B}_z на плоскости годографа является верхняя полуплоскость

$$\mathscr{B}_w = \{\zeta \colon \operatorname{Im} \zeta > 0\}$$

изображенная на фиг. 2б.

3. ОБЩИЙ ВИД РЕШЕНИЯ ЗАДАЧИ

3.1. Для решения задачи обтекания достаточно найти комплексный потенциал w = f(z), через который выражаются все характеристики течения. Однако, поскольку обратную функцию $z = f^{-1}(w)$ находить и использовать проще, чем прямую, то именно ее мы и будем строить (как это обычно и делается).

Рассматриваемая задача о кавитационном обтекании клина заключается, таким образом, в построении функции $z = f^{-1}(w)$, исходя из заданных параметров: скорости V_{∞} потока на беско-

нечности, скорости V_Q на поверхности каверны, геометрических параметров клина l и α , а также из заданного вида области годографа \mathcal{B}_{ζ} и области потенциала \mathcal{B}_w с учетом соответствия между одноименными точками A, B, C на плоскостях z и w, указанными на фиг. 2. Координаты всех этих точек известны, кроме координаты φ_C конца стенки клина на плоскости потенциала w; для этой величины ниже формируется уравнение.

Потенцируя равенство (11), получаем

$$\frac{1}{f'(z)} = \frac{1}{V_Q} \exp[\omega(z)];$$

используя здесь тождество

$$f^{-1}(w) = [f'(z)|_{z=f^{-1}(w)}]^{-1}$$

и вводя функцию F(w) по формуле

$$\zeta = F(w) := \omega \circ f^{-1}(w), \tag{12}$$

находим равенство

$$f^{-1}(w) = \frac{1}{V_Q} \exp[F(w)],$$
(13)

интегрируя которое, устанавливаем представление для искомой функции:

$$z = f^{-1}(w) = \frac{1}{V_Q} \int_0^w \exp[F(\lambda)] d\lambda.$$
(14)

С помощью формулы (14) легко выписываются представления для линий тока, а также для относительной длины \mathfrak{L} и относительной ширины \mathfrak{M} каверны (см. ниже. п. 4.7). Уравнение же для неизвестной координаты φ_C получаем, интегрируя в представлении (14) по образу (*BC*)_w этой стенки:

$$le^{i\pi\alpha} = \frac{1}{V_Q} \int_0^{\varphi_C} \exp[F(w)] dw.$$
(15)

3.2. Коэффициент сопротивления C_x определяется, как известно, в виде отношения *x*-компоненты интеграла сил, действующих на клин, к произведению скоростного напора $\frac{1}{2}\rho V_{\infty}^2$ на длину основания клина $2l\sin(\pi\alpha)$. Используя закон Бернулли (2) и соотношение Im $dz = |dz|\sin(\pi\alpha)$, выполняющееся на стенке (*BC*) клина, по которой производится интегрирование, приходим к следующему выражению для этой величины:

$$\mathbf{C}_{x} = \frac{1}{V_{\infty}^{2} l \sin(\pi \alpha)} \operatorname{Im} \int_{(BC)} [V_{Q}^{2} - V^{2}(z)] dz.$$
(16)

Получаются два вспомогательных выражения: одно — из равенства (10) путем его потенцирования, умножения на сопряженное и вычитания результата из единицы, а второе — непосредственно из (13):

$$1 - V^{2}(z)/V_{Q}^{2} = 1 - \exp[-\omega(z) - \overline{\omega}(z)], \quad \exp[-F(w)]f^{-1}(w) = \frac{1}{V_{Q}}.$$
 (17)

Вынесем теперь V_Q^2 из-под знака интеграла (16), учтем вытекающую из (9) формулу $V_Q^2/V_{\infty}^2 = 1 + Q$ и подставим в него первое равенство (17). Переходя в получающемся интеграле к переменной *w* с помощью (12), учитывая соотношение $dz = f^{-1}(w)dw$ и второе равенство (17), а также тождество Im($e^{\xi} - e^{-\overline{\xi}}$) = 2 Im ch ξ , получаем

$$\mathbf{C}_{x} = \frac{2(1+Q)}{V_{\mathcal{D}} l \sin(\pi \alpha)} \operatorname{Im} \int_{(BC)_{w}} \operatorname{ch}[F(w)] dw,$$
(18)

где $(BC)_w$ есть образ при отображении f дуги (BC) на плоскости потенциала.

3.3. Для того чтобы выразить решение задачи и характеристики течения в аналитическом виде, введем вспомогательную полуплоскость $\mathcal{B}_t := {\text{Im } t > 0}$ и на ней две функции: $w = \chi(t)$ и $\zeta = T(t)$, осуществляющие отображения

$$\chi: \mathfrak{B}_t \xrightarrow{\operatorname{conf}} \mathfrak{B}_w, \quad T: \mathfrak{B}_t \xrightarrow{\operatorname{conf}} \mathfrak{B}_{\zeta}$$
(19)

с соответствием между одноименными точками *A*, *B*, *C* на плоскостях *t*, *w*, ζ, легко усматриваемым из фиг. 26, 2в, 2г. Тогда очевидно, что

$$F(w) = T \circ \chi^{-1}(w).$$

Введем еще полукруг $\mathfrak{B}_h \coloneqq \{|h| < 1, \text{ Im } h > 0\}$, а на нем определим функцию $t = \Theta(h)$ по формуле

$$t = \Theta(h) := \frac{(1+h)^2}{(1-h)^2},$$
(20)

осуществляющую отображение $\Theta : \mathfrak{B}_h \xrightarrow{\text{conf}} \mathfrak{B}_t$ с указанным на фиг. 2г, 2д соответствием между одноименными точками *A*, *B*, *C* на плоскостях *t* и *h*.

На плоскости h определим еще функцию $\zeta = \Omega(h)$ с помощью двойного тождества

$$\Omega(h) := F \circ \chi \circ \Theta(h) = T \circ \Theta(h); \tag{21}$$

она конформно преобразует полукруг \mathfrak{B}_h на область годографа \mathfrak{B}_{ζ} с соответствием (вполне определенных на фиг. 2в, 2д) одноименных точек A, B, C на плоскостях h и ζ . Отмеченные на границе $\partial \mathfrak{B}_h$ полукруга точки E и D (фиг. 2д) определяются как образы одноименных точек на плоскости годографа; их координатам даны специальные обозначения:

$$h_E := \mu, \quad h_D := \eta. \tag{22}$$

3.4. Выполнив в интеграле (14) замену переменной

$$w = \chi \circ \Theta(h), \quad dw = \chi'(t)\Big|_{t=\Theta(h)} \Theta'(h) dh, \tag{23}$$

включая равенство (21), получим представление для искомой функции $f^{-1}(w)$:

$$z = f^{-1}(w) = \frac{1}{V_Q} \int_0^{h(w)} \exp[\Omega(\lambda)]\chi'(t) \bigg|_{t=\Theta(\lambda)} \Theta'(\lambda) d\lambda,$$
(24)

где верхний предел

$$h(w) = \Theta^{-1} \circ \chi^{-1}(w).$$

Делая ту же замену в интеграле (15) с учетом соотношения

$$\Omega(h) = \operatorname{Re}\Omega(h) + i\pi\alpha, \quad h \in (BC)_h, \tag{25}$$

вытекающего из наблюдения, что образ $(BC)_{\zeta}$ стенки клина лежит (как видно на фиг. 2в) на прямой {Im $\zeta = \pi \alpha$ }, переписываем уравнение (15) для φ_C в виде

$$l = \frac{1}{V_Q} \int_0^1 \exp[\operatorname{Re} \Omega(h)] \chi'(t) \bigg|_{t=\Theta(h)} \Theta'(h) dh,$$
(26)

а проведя эту же замену в интеграле (18) с учетом соотношения (25) и формулы

$$\operatorname{Im} \operatorname{ch}(x + iy) = \operatorname{ch} x \sin y,$$

получаем выражение для коэффициента сопротивления в виде

$$\mathbf{C}_{x} = \frac{2(1+Q)}{V_{Q}l} \int_{0}^{1} \operatorname{sh}[\operatorname{Re}\Omega(h)]\chi'(t) \bigg|_{t=\Theta(h)} \Theta'(h)dh.$$
(27)

3.5. Найдем относительные длину \mathfrak{X} и ширину \mathfrak{W} каверны. Для этого, вычислив с помощью представления (24) абсциссу точки *E* и ординату точки *D* на плоскости *z*, подставим их соответственно в формулы (7) и (6); тогда получим

$$\mathfrak{L} = \frac{1}{2V_{Q}l\sin(\pi\alpha)} \operatorname{Re} \int_{0}^{\mu} \exp[\Omega(h)]\chi'(t) \bigg|_{t=\Theta(h)} \Theta'(h)dh,$$
(28)

$$\mathfrak{W} = \frac{1}{V_Q l \sin(\pi \alpha)} \operatorname{Im} \int_0^{\eta} \exp[\Omega(h)] \chi'(t) \bigg|_{t=\Theta(h)} \Theta'(h) dh.$$
(29)

Координаты точек линии тока, соответствующей значению $\psi = \varepsilon$ функции тока, естественно параметризуются в виде $z_{\varepsilon}(\phi) = f^{-1}(\phi + i\varepsilon)$, где параметр $\phi \in (-\infty, +\infty)$. Выражение для параметризованных таким образом координат легко следует из формулы (24):

$$z_{\varepsilon}(\varphi) = f^{-1}(\varphi + i\varepsilon) = \frac{1}{V_Q} \int_{0}^{h(\varphi + i\varepsilon)} \exp[\Omega(\lambda)]\chi'(t) \bigg|_{t=\Theta(\lambda)} \Theta'(\lambda)d\lambda,$$
(30)

где верхний предел равен $h(\phi + i\varepsilon) = \Theta^{-1} \circ \chi^{-1}(\phi + i\varepsilon)$.

4. АНАЛИТИЧЕСКОЕ ПРЕДСТАВЛЕНИЕ РЕШЕНИЯ

4.1. Построим отображения (19), определенные на плоскости *t*. Первое из них, осуществляемое функцией $\zeta = T(t)$, конформно преобразует полуплоскость $\mathcal{B}_t := \{\text{Im } t > 0\}$ на область годографа \mathcal{B}_{ζ} , представляющую собой четырехугольник и изображенную на фиг. 2в. Оно выражается в виде интеграла Кристоффеля—Шварца (см. [15]) следующим образом:

$$\zeta = T(t) = \mathscr{H} \int_{-\infty}^{t} \frac{t^{1/2} dt}{(t-1)(t-t_E)} + i\pi\alpha,$$
(31)

где параметры t_E (прообраз бесконечно удаленной точки E на плоскости ζ) и \mathcal{X} подлежат нахождению. Нетрудно увидеть, что при обходе малой полуокружности, расположенной в {Im t > 0}, с центром в точке t = 1 приращение интеграла (31) равно изменению ζ при переходе вблизи точки B от верхней к нижней стороне полосы¹¹ (по нормали к ним), т.е. равно $-i\pi\alpha$ (фиг. 2в). Отсюда получаем соотношение

$$\frac{\mathscr{H}}{1-t_E} = -\alpha. \tag{32}$$

Аналогично, при обходе расположенной в {Im t > 0} малой полуокружности с центром в точке $t = t_E$ приращение этого интеграла равно изменению ζ при переходе от правой к левой стороне полосы вблизи точки *E*, т.е. равно $-\ln \sqrt{1+Q}$. Отсюда получаем равенство

$$\frac{i\pi \mathcal{H}\sqrt{t_E}}{1-t_E} = \ln\sqrt{1+Q}.$$
(33)

Из (32), (33) находим

$$\mathcal{H} = -\alpha \left(1 + \frac{\ln^2 \sqrt{1+Q}}{\pi^2 \alpha^2} \right), \quad t_E = -\frac{\ln^2 \sqrt{1+Q}}{\pi^2 \alpha^2}.$$
(34)

Используя эти формулы и вычисляя интеграл (31) с помощью разложения подынтегрального выражения на простые дроби и применения подстановки $\sqrt{t} = \xi$, получаем

¹¹Это известный прием нахождения параметров интеграла Кристоффеля-Шварца для многоугольников, содержащих нулевые углы (см. [15], [20]).

$$\zeta = T(t) = i\pi\alpha - \alpha \left(\ln \frac{\sqrt{t} - 1}{\sqrt{t} + 1} - i\beta \ln \frac{\sqrt{t} - i\beta}{\sqrt{t} + i\beta} \right),\tag{35}$$

где введено обозначение

$$\beta = \sqrt{-t_E} = \frac{\ln\sqrt{1+Q}}{\pi\alpha}.$$
(36)

Отметим еще следующие вытекающие из (34) асимптотики для \Re и t_E :

$$\mathcal{H} = -\alpha \left(1 + \frac{Q^2}{4\pi^2 \alpha^2} \right) + \mathcal{O}(Q^3), \quad t_E = -\frac{Q^2}{4\pi^2 \alpha^2} + \mathcal{O}(Q^3), \quad Q \to 0.$$
(37)

Найдем координату t_D прообраза точки D, расположенной на плоскости годографа в начале координат, т.е. величину t_D , удовлетворяющую условию

$$T(t_D) = 0; (38)$$

она понадобится при вычислении ширины каверны. Введем величину $\gamma = \sqrt{t_E/t_D}$, тогда

$$\sqrt{-t_D} = \beta \gamma^{-1}.$$
(39)

Подставляя в условие (38) выражения (35) и легко устанавливаемое соотношение

$$\frac{\sqrt{t_D} - 1}{\sqrt{t_D} + 1} = \exp[i(\pi - 2 \operatorname{arctg} \sqrt{-t_D})],$$

получаем после элементарных преобразований уравнение для ү:

$$\gamma \ln \frac{1 - \gamma}{1 + \gamma} = -2 \frac{\operatorname{arctg} \beta \gamma^{-1}}{\beta \gamma^{-1}}.$$
(40)

Используя здесь связь (36) величин β и t_E , а также асимптотику t_E из (37), находим, что γ имеет следующую асимптотику при $Q \rightarrow 0$: $\gamma = \gamma_0 + \mathbb{O}(Q^2)$, где $\gamma_0 -$ решение уравнения (40) с правой частью, равной (-2); решение такого уравнения (с точностью до 10^{-10}) есть $\gamma_0 = 0.8335565596$. Для решения уравнения (40) применяем, например, метод Ньютона (см. [21]). Вычислив таким образом γ , получаем искомую координату

$$t_D = -\frac{\ln^2 \sqrt{1+Q}}{\pi^2 \alpha^2 \gamma^2}.$$
(41)

Отметим еще легко следующую из (41) асимптотику этой координаты

$$t_D = -\frac{Q^2}{4\pi^2 \alpha^2 \gamma_0^2} + \mathbb{O}(Q^3), \quad Q \to 0.$$

4.2. Обратимся теперь к отображениям $\chi : \mathfrak{B}_t \xrightarrow{\text{conf}} \mathfrak{B}_w$ и $\Theta : \mathfrak{B}_h \xrightarrow{\text{conf}} \mathfrak{B}_t$. Функция $w = \chi(t)$ есть дробно-линейное отображение (19) полуплоскостей с соответствием одноименных точек A, B, C (фиг. 26 и 2г). Оно выражается формулой

$$w = \chi(t) = \varphi_C \frac{t-1}{t},\tag{42}$$

где фс находится, как было отмечено выше (см. п. 3.1 и 3.5), из уравнения (26). Из (42) получаем

$$t = \chi^{-1}(w) = \frac{\phi_C}{\phi_C - w}, \quad \chi'(t) = \frac{\phi_C}{t^2}.$$
 (43)

Тогда (вещественные) координаты ϕ_E , ϕ_D точек E, D на плоскости w записываются через найденные координаты одноименных точек на плоскости t по формулам

$$\varphi_D = \varphi_C \frac{t_D - 1}{t_D}, \quad \varphi_E = \varphi_C \frac{t_E - 1}{t_E}.$$
(44)

ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ том 61 № 11 2021

1882

Что же касается отображения $t = \Theta(h)$ полукруга \mathcal{B}_h на полуплоскость \mathcal{B}_t , то оно дается формулой (20), а его производная и обратное к нему определяются равенствами

$$h = \Theta^{-1}(t) = \frac{\sqrt{t-1}}{\sqrt{t+1}}, \quad \Theta'(h) = 4\frac{1+h}{(1-h)^3}.$$
(45)

Координаты точек *E* и *D* на полуокружности $\{h : |h| = 1, \text{ Im } h > 0\}$ (фиг. 2д), обозначенные, согласно (22), через µ и η, получаются подстановкой в первую формулу (45) найденных в (36) и (39) величин $\sqrt{-t_E}$ и $\sqrt{-t_D}$:

$$\mu = \frac{i\beta - 1}{i\beta + 1} = \exp[i(\pi - 2 \operatorname{arctg}\beta)], \quad \eta = \exp\{i[\pi - 2 \operatorname{arctg}(\beta\gamma^{-1})]\},$$
(46)

где (напомним) β дается равенством (36), а γ есть решение уравнения (40).

4.3. Перейдем к получению явных аналитических выражений для искомых величин. Найдем прежде всего вид якобиана преобразования (23), подставив во второе равенство (43) выражение (20) и умножив результат на $\Theta'(h)$ из (45):

$$\chi'(t)\Big|_{t=\Theta(h)}\Theta'(h) = 4\varphi_C \frac{1-h}{(1+h)^3}.$$
(47)

Заметим, что для получения явных представлений мы будем в дальнейшем широко использовать гипергеометрическую функцию Лауричеллы для случая трех (комплексных) переменных z_1 , z_2 , z_3 , определяемую¹² с помощью интегрального представления типа Эйлера (см. [10]–[12])

$$F_D^{(3)}(a_1, a_2, a_3; b, c; z_1, z_1, z_3) = \frac{\Gamma(c)}{\Gamma(b)\Gamma(c-b)} \int_0^1 \frac{\xi^{b-1}(1-\xi)^{c-b-1}}{(1-\xi z_1)^{a_1}(1-\xi z_2)^{a_2}(1-\xi z_3)^{a_3}} d\xi,$$
(48)

где предполагается Re(b) > 0, Re(c - b) > 0; здесь $\Gamma(x)$ есть гамма-функция (см. [22]). Функция Лауричеллы записывается в виде следующего ряда:

$$F_D^{(3)}(a_1, a_2, a_3; b, c; z_1, z_1, z_3) = \sum_{n_1, n_2, n_3=0}^{\infty} \frac{(b)_{n_1+n_2+n_3}(a_1)_{n_1}(a_2)_{n_2}(a_3)_{n_3}}{(c)_{n_1+n_2+n_3}n_1!n_2!n_3!} z_1^{n_1} z_2^{n_2} z_3^{n_3},$$
(49)

сходящегося в области $\{|z_j| < 1, j = \overline{1,3}\}$; для ее представления вне указанной области можно воспользоваться формулами ее аналитического продолжения, полученными в [12]. В представлении (49) через $(x)_n$ обозначен символ Похгаммера (см. [22]), определяемый с помошью гамма-функции по формуле $(x)_n = \Gamma(x + n)/\Gamma(x)$, иначе говоря,

$$(x)_0 = 1, \quad (x)_n = x(x+1)\dots(x+n-1), \quad n = 1, 2, \dots$$

4.4. Вычислим теперь выражение $\Omega(h)$, фигурирующее в формулах (24), (27)–(30) для искомых величин f^{-1} , \mathbf{C}_x , \mathfrak{L} , \mathfrak{W} , $z_{\mathbb{W}_0}(\varphi)$ и в уравнении (26) для φ_C .

Для этого в соответствии с (21) подставим равенство (20) в выражение (35) для T(t), обратив внимание, что в этом выражении первое слагаемое в скобках, согласно (45), равно $\ln h$; в итоге получим

$$\Omega(h) = i\pi\alpha + \ln\left[\left(\frac{1-i\beta}{1+i\beta}\right)^{i\alpha\beta}h^{-\alpha}(1-\mu^{-1}h)^{i\alpha\beta}(1-\mu h)^{-i\alpha\beta}\right],\tag{50}$$

где в соответствии с (36) имеем

$$\alpha\beta = \frac{\ln\sqrt{1+Q}}{\pi}.$$
(51)

Первый множитель в квадратных скобках (50) является вещественным числом; обозначим его через

¹²Вообще говоря, эта функция определена для произвольного числа переменных. Использованная в первой части работы (см. [5]) функция Аппеля является ее частным случаем, соответствующим двум переменным.

ВЛАСОВ, СКОРОХОДОВ

$$\tau = \left(\frac{1-i\beta}{1+i\beta}\right)^{i\alpha\beta} = \exp(2\alpha\beta \arctan\beta).$$
(52)

Нетрудно также убедиться, что если $h \in (0,1)$, то произведение двух последних сомножителей в квадратных скобках в (50) принимает вещественные значения, поэтому величина $\text{Re}\Omega(h)$, фигурирующая в (26), (27), равна в этом случае второму члену правой части (50):

Найдем теперь величину φ_c . Для этого подставим последнее выражение в (26) и обозначим возникающий при этом интеграл через I_0 . Записывая его с помощью представления (48) через функцию Лауричеллы:

$$I_{0} := \int_{0}^{1} \frac{\lambda^{-\alpha} (1-\lambda)}{(1+\lambda)^{3} (1-\mu\lambda)^{i\alpha\beta} (1-\mu^{-1}\lambda)^{-i\alpha\beta}} d\lambda = \frac{1}{(1-\alpha)(2-\alpha)} F_{D}^{(3)}(3, i\alpha\beta, -i\alpha\beta; 1-\alpha, 3-\alpha; -1, \mu, \mu^{-1}), \quad (54)$$

находим искомую формулу для ϕ_C – образа f(C) концевой точки C стенки клина:

$$\varphi_C = \frac{lV_O}{4\tau I_0}.$$
(55)

Напомним, что вещественная величина τ дается формулой (52), число μ – формулой (46), и заметим, что интеграл I_0 является вещественнозначной функцией параметров α и Q.

Вычислим коэффициент сопротивления C_x . Для этого подставим выражение (53) в формулу (27). Один из возникающих при этом интегралов — это I_0 из (54), а другой, обозначаемый через I_1 , может быть выражен с помощью (48) через функцию Лауричеллы следующим образом:

$$I_1 := \frac{1}{(1+\alpha)(2+\alpha)} F_D^{(3)}(3, -i\alpha\beta, i\alpha\beta; 1+\alpha, 3+\alpha; -1, \mu, \mu^{-1}).$$
(56)

Тогда для величины \mathbf{C}_x получаем формулу

$$\mathbf{C}_{x} = (1+Q) \left(1 - \tau^{-2} \frac{I_{1}}{I_{0}} \right).$$
(57)

Найдем явное выражение для функции $z = f^{-1}(w)$. Используя формулы (50), (52), подставим в выражение (24) функцию $\exp[\Omega(h)]$ и якобиан (47), а также учтем формулу (55); тогда получим

$$f^{-1}(w) = \frac{l}{I_0} e^{i\pi\alpha} \int_0^{h(w)} \frac{\lambda^{-\alpha}(1-\lambda)}{(1+\lambda)^3 (1-\mu\lambda)^{i\alpha\beta} (1-\mu^{-1}\lambda)^{-i\alpha\beta}} d\lambda,$$
(58)

где

$$h(w) = \frac{\sqrt{\varphi_C} - \sqrt{\varphi_C - w}}{\sqrt{\varphi_C} + \sqrt{\varphi_C - w}}.$$
(59)

Для того чтобы выразить интеграл в (58) через функцию Лауричеллы, разобьем его на два и сделаем подстановку $\lambda = h\xi$, $\xi \in [0,1]$, $d\lambda = hd\xi$. Тогда этот интеграл запишется как $h^{1-\alpha}I_2(h) - h^{2-\alpha}I_3(h)$, где

$$I_{2}(h) = \int_{0}^{1} \frac{\xi^{-\alpha} d\xi}{(1+h\xi)^{3} (1-\mu h\xi)^{i\alpha\beta} (1-\mu^{-1}h\xi)^{-i\alpha\beta}} = \frac{1}{1-\alpha} F_{D}^{(3)}(3, i\alpha\beta, -i\alpha\beta; 1-\alpha, 2-\alpha; -h, h\mu, h\mu^{-1}),$$
(60)

$$I_{3}(h) = \int_{0}^{1} \frac{\xi^{1-\alpha} d\xi}{(1+h\xi)^{3} (1-\mu h\xi)^{i\alpha\beta} (1-\mu^{-1}h\xi)^{-i\alpha\beta}} = \frac{1}{2-\alpha} F_{D}^{(3)}(3, i\alpha\beta, -i\alpha\beta; 2-\alpha, 3-\alpha; -h, h\mu, h\mu^{-1}).$$
(61)

Таким образом,

$$z = f^{-1}(w) = \frac{l}{I_0} e^{i\pi\alpha} h^{1-\alpha} [I_2(h) - hI_3(h)],$$
(62)

ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ том 61 № 11 2021

1884

1

α180°	Q = 0.1	Q = 0.2	Q = 0.3	Q = 0.4	Q = 0.5
5	0.13607	0.19725	0.27436	0.35967	0.44953
10	0.22885	0.27549	0.33537	0.40480	0.48103
20	0.39937	0.44665	0.50068	0.56061	0.62561
30	0.53949	0.59446	0.65325	0.71556	0.78106
40	0.65319	0.71613	0.78142	0.84891	0.91846
45	0.70165	0.76828	0.83677	0.90703	0.97895
50	0.74527	0.81529	0.88683	0.95980	1.03413
60	0.81979	0.89582	0.97285	1.05085	1.12976
70	0.88005	0.96108	1.04278	1.12514	1.20812
80	0.92872	1.01385	1.09944	1.18549	1.27197
90	0.96795	1.05642	1.14522	1.23433	1.32375
100	0.99947	1.09066	1.18208	1.27371	1.36555
110	1.02470	1.11809	1.21162	1.30530	1.39913
120	1.04480	1.13994	1.23518	1.33052	1.42595
	•				

Таблица 1. Значения C_x при различных α и Q

где h = h(w) дается формулой (59).

Теперь, используя формулу (62), и в соответствии с равенствами (6), (7) находим относительную длину \mathfrak{X} и относительную ширину \mathfrak{W} каверны:

$$\mathfrak{L} = \frac{l}{2I_0 \sin(\pi\alpha)} \operatorname{Re} \{ e^{i\pi\alpha} \mu^{1-\alpha} [I_2(\mu) - \mu I_3(\mu)] \},$$
(63)

$$\mathfrak{W} = \frac{l}{I_0 \sin(\pi \alpha)} \operatorname{Im} \{ e^{i\pi \alpha} \eta^{1-\alpha} [I_2(\eta) - \eta I_3(\eta)] \}.$$
(64)

Наконец, в соответствии с (30) получаем, что параметрическое по $\varphi \in (-\infty, +\infty)$ представление для координат $z_{\varepsilon}(\varphi)$ линии тока, соответствующей значению ε функции ψ , дается формулой (62) с подстановкой $h = h(\varphi + i\varepsilon)$, где функция h(w) определяется равенством (59). Описанный алгоритм вычисления координат $z_{\varepsilon}(\varphi)$ позволяет построить картину обтекания клина, соответствующую рассмотренной схеме.

5. ЧИСЛЕННАЯ РЕАЛИЗАЦИЯ

5.1. Осуществлена численная реализация полученного в разд. 4 решения задачи обтекания клина по двуспиральной схеме Тулина. Для различных значений угла $\pi\alpha$ наклона клина и числа кавитации Q получены численные значения коэффициента сопротивления C_x , помещенные в табл. 1.

Вычислены также значения относительной длины \mathfrak{L} и относительной ширины \mathfrak{W} каверны, приведенные (соответственно на фиг. 3 и 4) в виде графиков зависимости этих величин от угла $\pi\alpha$ при различных Q.

5.2. На основе численной реализации полученного решения построена также картина обтекания, т.е. изображено распределение линий тока { $\psi(x, y) = \varepsilon$ } с шагом значений функции тока между соседними линиями тока, составляющим $\Delta \varepsilon = 0.2$. В работе даны три картины обтекания для l = 1, $V_{\infty} = 1$ и следующих значений остальных параметров:

$$-\phi$$
иг. 5: $\alpha = 1/4$, т.е. $\pi \alpha = 45^{\circ}$, $Q = 0.8$;

$$-\phi$$
иг. 6: $\alpha = 1/2$, т.е. $\pi \alpha = 90^{\circ}$, $Q = 0.7$;

$$-\phi$$
иг. 7: $\alpha = 3/4$, т.е. $\pi \alpha = 135^{\circ}$, $Q = 0.6$.

Фиг. 3. Зависимость \mathfrak{L} от α при различных Q.

Фиг. 4. Зависимость \mathfrak{W} от α при различных Q.

При рассмотрении этих картин и их сравнении с картиной обтекания, изображенной на фиг. 1, следует иметь в виду, что последняя носит условно-иллюстративный характер, а вихревые спирали на ней сильно увеличены (о чем было сказано в п. 1.4). По контрасту с фиг. 1, размер Э вихрей, получаемый в результате расчета, составил очень малую величину; напомним, что он определяется по формуле (8). Так, для случаев, изображенных на фиг. 5–7, он принимал следующие значения:

- $-\phi$ иг. 5: $\mathfrak{D} = 2.3 \times 10^{-7}$;
- $-\phi$ иг. 6: $\mathfrak{D} = 1.1 \times 10^{-7}$;
- $-\phi$ иг. 7: $\mathfrak{D} = 1.3 \times 10^{-8}$.

Эти результаты согласуются с полученной в разд. 6 асимптотикой для $\mathfrak D$ при малых Q.

Ясно, что такой вихрь не может быть изображен на фоне общей картины течения, и для своего представления требует очень малого масштаба. Именно в таком масштабе (~ 10^{-11}) на фиг. 8 дана часть вихря (*REL*) вблизи его центра *E*, где этот вихрь уже превратился в двойную спираль. Часть

АНАЛИТИЧЕСКОЕ РЕШЕНИЕ ЗАДАЧИ

Фиг. 5. Картина линий тока при обтекании клина для случая $\alpha = 1/4$, Q = 0.8.

Фиг. 6. Картина линий тока при обтекании клина для случая $\alpha = 1/2, Q = 0.7$.

Фиг. 7. Картина линий тока при обтекании клина для случая $\alpha = 3/4$, Q = 0.6.

Фиг. 8. Спиралевидные линии тока вблизи центра *E* вихря для случая $\alpha = 1/4$, Q = 0.3.

линии (*RE*), т.е. часть закручивающейся спирали, изображена сплошной линией, а часть линии (*EL*), т.е. раскручивающейся спирали, — штриховой линией. Там же даны три фрагмента линий тока, соответствующих $\psi = 10^{-4}$, $\psi = 10^{-6}$ и $\psi = 10^{-9}$ вблизи того места внутри вихря (*REL*), где эти линии максимально "углубляются" внутрь двойной спирали до точек своего разворота. Представляется, что эта картина, изображенная на фиг. 8, является весьма полезной для уяснения спиральной структуры вихрей в данной схеме.

Обратим еще внимание, что на картинах обтекания, помещенных на фиг. 5–7, линии (*EA*) и (*AE*') являются, согласно трактовке автора схемы Тулина, границей следа. Как видно на этих картинах, ширина следа $\mathfrak{S}(x)$ убывает при удалении от каверны. Асимптотика этой величины так же, как и ряда других важных характеристик течения, изучена в следующем разд. 6.

6. АСИМПТОТИКИ ХАРАКТЕРИСТИК РЕШЕНИЯ

6.1. Для того чтобы провести асимптотический анализ решения рассматриваемой задачи и его характеристик, получим вначале развернутое представление функции $z = f^{-1}(w)$, обратной к комплексному потенциалу, и выведем ее разложение вблизи точки E – образа центра вихря на плоскости потенциала w.

Для этого, заменив с помощью формулы (43) переменную *t* на $\chi^{-1}(w)$ в выражении (35) для отображения $\zeta = T(t)$, найдем, согласно (12), вид функции $\zeta = F(w)$, а подставив его в представление (14) для исследуемой функции $z = f^{-1}(w)$, получим

$$z = f^{-1}(w) = \frac{e^{i\pi\alpha}}{V_Q} \int_0^w \left(\frac{\sqrt{\varphi_C} - \sqrt{\varphi_C - w}}{\sqrt{\varphi_C} + \sqrt{\varphi_C - w}}\right)^{-\alpha} \left(\frac{\sqrt{\varphi_C - \varphi_E} - \sqrt{\varphi_C - w}}{\sqrt{\varphi_C - \varphi_E} + \sqrt{\varphi_C - w}}\right)^{i\alpha\beta} dw, \tag{65}$$

где φ_E и φ_C – координаты точек *E* и *C* на плоскости *w*, определяемых соответственно по формулам (44) и (55). Введя локальную переменную $u = w - \varphi_E$ с началом в точке *E* на плоскости *w*, разложим подынтегральное выражение (65) в ряд по степеням переменного *u*. Интегрируя получаемое равенство, устанавливаем следующее разложение исследуемой функции $f^{-1}(w)$:

$$z = f^{-1}(w) = z_E + u^{i\alpha\beta}(\mathcal{A}_1 u + \mathcal{A}_2 u^2 + ...),$$
(66)

где z_E – координата точки E на плоскости z, а коэффициенты \mathcal{A}_1 , \mathcal{A}_2 даются формулами

$$\mathcal{A}_1 = \frac{e^{i\pi\alpha}}{V_Q} \left(\frac{\sqrt{\varphi_C} - \sqrt{\varphi_C - \varphi_E}}{\sqrt{\varphi_C} + \sqrt{\varphi_C - \varphi_E}} \right)^{-\alpha} \frac{4^{-i\alpha\beta}}{(\varphi_C - \varphi_E)^{i\alpha\beta} (1 + i\alpha\beta)},$$

$$\mathcal{A}_{2} = \frac{e^{i\pi\alpha}}{V_{Q}} \left(\frac{\sqrt{\varphi_{C}} - \sqrt{\varphi_{C} - \varphi_{E}}}{\sqrt{\varphi_{C}} + \sqrt{\varphi_{C} - \varphi_{E}}} \right)^{-\alpha} \frac{\alpha 4^{-i\alpha\beta}}{(\varphi_{C} - \varphi_{E})^{1+i\alpha\beta} (2 + i\alpha\beta)} \left(\frac{i\beta}{2} - \frac{\sqrt{\varphi_{C}} \sqrt{\varphi_{C} - \varphi_{E}}}{\varphi_{E}} \right),$$

а ряд (66) сходится и представляет функцию f^{-1} в полукруге { $w : |w| < |\varphi_E - \varphi_C|$, Im w > 0}.

6.2. Получим уравнения линий закручивающейся (*RE*) и раскручивающейся (*EL*), образующих вихрь с центром в точке *E*. Используя определенную в п. 6.2 локальную переменную *u* с началом в точке *E* на плоскости *w*, видим, что, согласно принцину соответствия границ, дуге (*RE*) при отображении f^{-1} отвечают отрицательные значения, а дуге (*EL*) – положительные значения переменной *u*. Тогда, вводя на f(RE) параметризацию по ξ ,

$$u = -\xi$$
, $u^{i\alpha\beta} = \exp(-\pi\alpha\beta)\exp(i\alpha\beta\ln\xi)$,

где параметр $\xi \in (0, \xi_0), \xi_0 \in (0, 1)$; подставим эти равенства в разложение (66). Учитывая еще, что, согласно (36), выполняется равенство $\exp(-\pi\alpha\beta) = 1/\sqrt{1+Q}$, получаем параметрическое по ξ представление для координат кривой (*RE*):

$$z(\xi) = z_E - \frac{\mathcal{A}_1}{\sqrt{1+Q}} \exp(i\alpha\beta\ln\xi) \left(\xi - \frac{\mathcal{A}_2}{\mathcal{A}_1}\xi^2 + \dots\right),\tag{67}$$

где величина $\alpha\beta$, напомним, определяется равенством (51). Вводя на плоскости *z* локальные полярные координаты (*r*, ϕ) с началом в центре *E* вихря и сравнивая полученное выражение (67) со стандартным представлением для спиралевидной кривой

$$z(\phi) = z_E + r(\phi)e^{i(\phi - \phi_0)}$$

находим связь $\xi = \exp(\phi/\alpha\beta)$ между параметрической переменной ξ и полярным углом. Тогда уравнение в полярных координатах $r(\phi)$ линии (*RE*) с относительной точностью до $\exp(\phi/\alpha\beta)$ принимает вид

$$r(\phi) = \frac{|\mathcal{A}_1|}{\sqrt{1+Q}} \exp\left(\frac{\phi}{\alpha\beta}\right) + O\left(\exp\left(\frac{2\phi}{\alpha\beta}\right)\right), \quad \phi \to -\infty.$$
(68)

Таким образом, кривая (RE) вблизи центра вихря представляет собой закручивающуюся логарифмическую спираль. Принимая теперь во внимание соотношение (51), получаем первый (по малости Q) член асимптотики (68):

$$r(\phi) = \mathcal{A} \exp(2\pi Q^{-1}\phi)$$

где *А* – главный член разложения множителя при экспоненте в упомянутой асимптотике.

Для раскручивающейся дуги (*EL*) переменная *и* положительна, поэтому $u^{i\alpha\beta} = \exp(i\alpha\beta \ln u)$. Проводя рассуждения, аналогичные изложенным выше, устанавливаем уравнение в полярных координатах *r*(ϕ) линии (*EL*):

$$r(\phi) = |\mathcal{A}_1| \exp\left(\frac{\phi}{\alpha\beta}\right) + O\left(\exp\left(\frac{2\phi}{\alpha\beta}\right)\right), \quad \phi \to -\infty.$$

Таким образом, кривые (*RE*) и (*EL*) вблизи центра вихря представляют собой две подобные логарифмические спирали с коэффициентом подобия $\sqrt{1+O}$.

6.3. Найдем число *N* оборотов, совершаемых при движении жидкости вдоль линии тока $\{z : \psi(z) = \varepsilon\}$, соответствующей малому положительному ε (заметим, что число оборотов нулевой линии тока, очевидно, бесконечно).

Для этого найдем образ точки $w = \varphi_E + i\varepsilon$ на плоскости годографа при отображении $\zeta = F(w)$, значение которого находится, согласно (12), путем подстановки функции $t = \chi^{-1}(w)$ из (43) в выражение (35) для отображения $\zeta = T(t)$ с домножением в последней дроби числителя и знаменателя на ее знаменатель:

$$\zeta = F(w) = i\pi\alpha - \alpha \ln \frac{\sqrt{\varphi_C} - \sqrt{\varphi_C} - w}{\sqrt{\varphi_C} + \sqrt{\varphi_C} - w} + i\alpha\beta \ln \frac{w - \varphi_E}{(\sqrt{\varphi_C} - \varphi_E + \sqrt{\varphi_C} - w)^2}.$$
(69)

Подставляя сюда $w = \varphi_E + i\varepsilon$ и разлагая результат по степеням ε , получаем

$$F(\varphi_{E} + i\varepsilon) = i\frac{\ln\sqrt{1+Q}}{\pi}\ln\varepsilon + \left[\frac{\ln\sqrt{1+Q}}{2} - i\frac{\ln\sqrt{1+Q}}{\pi}\ln(4\varphi_{E} - 4\varphi_{C})\right] - \left[\frac{i\alpha\sqrt{\varphi_{C}}}{\sqrt{\varphi_{C} - \varphi_{E}}\varphi_{E}} + \frac{\ln\sqrt{1+Q}}{4\pi(\varphi_{C} - \varphi_{E})}\right]\varepsilon + O(\varepsilon^{2}), \quad \varepsilon \to 0.$$

$$(70)$$

Отсюда, в частности, следует соотношение

$$\operatorname{Re} F(\varphi_E + i\varepsilon) = \frac{\ln \sqrt{1+Q}}{2} + O(\varepsilon), \quad \varepsilon \to 0,$$

которое геометрически означает, что образ точки $w = \varphi_E + i\varepsilon$ асимптотически располагается посередине ширины вертикальной полосы на плоскости годографа.

Взяв теперь мнимую часть выражения (70) и разделив ее на -2π , мы и получим искомое количество оборотов:

$$N = \frac{\ln \sqrt{1+Q}}{2\pi^2} \ln \frac{4(\varphi_E - \varphi_C)}{\varepsilon} + O(\varepsilon^2), \quad \varepsilon \to 0,$$

полагая, что оно может принимать и дробные значения.

Из последнего соотношения вытекает асимптотика для числа N при малых Q:

$$N = \frac{Q}{4\pi^2} \ln \frac{4\pi^2 \alpha^2 (1-\alpha)(2-\alpha) I V_{\infty}}{\varepsilon Q^2 F(3,1-\alpha;3-\alpha;-1)} + \mathbb{O}(Q^2) + \mathbb{O}(\varepsilon^2), \quad \varepsilon \to 0, \quad Q \to 0,$$

где F(a, b; c; z) – гипергеометрическая функция Гаусса (см. [22]).

6.4. Найдем асимптотику размера \mathfrak{D} вихрей, образуемых нулевой линией тока в зоне замыкания каверны. Для этого прежде всего найдем, опираясь на теорию конформного отображения сингулярно деформируемых областей (см. [23]) и исходя из представления (69), асимптотику отображения $\zeta = F(w)$ вблизи точки *E* и обратим ее; в результате получим

$$w = F^{-1}(\zeta) = \varphi_E + \frac{4}{e^2}(\varphi_C - \varphi_E) \exp \frac{\zeta}{i\alpha\beta} + \mathbb{O}\left(\exp \frac{2\zeta}{i\alpha\beta}\right), \quad \zeta \to E.$$

Подставля сюда координату $\zeta = -i\pi/2$ точки *R* на плоскости ζ , находим ее образ на плоскости *w*:

$$\varphi_R = \varphi_E + \frac{4}{e^2} (\varphi_C - \varphi_E) \exp\left(\frac{-\pi^2}{\ln(1+Q)}\right) + \mathbb{O}\left[\exp\left(\frac{-2\pi^2}{\ln(1+Q)}\right)\right],\tag{71}$$

а подставив в то же представление координату $\zeta = -i\pi/2 + \ln \sqrt{1+Q}$ точки *L* на плоскости ζ , находим образ последней на *w*:

$$\varphi_L = \varphi_E - \frac{4}{e^2} (\varphi_C - \varphi_E) \exp\left(\frac{-\pi^2}{\ln(1+Q)}\right) + \mathbb{O}\left[\exp\left(\frac{-2\pi^2}{\ln(1+Q)}\right)\right].$$
(72)

Теперь, чтобы вычислить искомый размер \mathfrak{D} , разложим подынтегральное выражение (65) в окрестности точки $w = \varphi_E$, проинтегрируем полученный результат от φ_L до φ_R и подставим полученные соотношения (71) и (72). В итоге получим

$$\mathfrak{D} = l \frac{8\pi^2 \alpha^2 (1-\alpha)(2-\alpha)}{e^2 F(3,1-\alpha;3-\alpha;-1)} Q^{-2} \exp\left(\frac{-\pi^2}{Q}\right) [1+\mathfrak{O}(Q)]$$

6.5. Установим асимптотику убывания относительной (т.е. отнесенной к длине стенки клина *l*) ширины следа $\widetilde{\mathfrak{S}}(x)$ при $x \to +\infty$. Для этого найдем разложение подынтегрального выражения (65) вблизи бесконечности по дробным степеням *w*, имеющее вид

$$\frac{1}{\sqrt{1+Q}} \left[1 - \frac{2i\alpha(1+\beta^2)}{3\beta^2} \frac{\varphi_C^{3/2}}{w^{3/2}} + \mathbb{O}(w^{-5/2}) \right].$$

Тогда, проинтегрировав его, получаем разложение функции $f^{-1}(w)$ вблизи точки $w = \infty$

$$z = f^{-1}(w) = \frac{1}{V_Q \sqrt{1+Q}} \left[w + \frac{4i\alpha(1+\beta^2)}{3\beta^2} \frac{\varphi_C^{3/2}}{w^{1/2}} + \mathbb{O}(w^{-3/2}) \right], \quad w \to \infty$$

Чтобы получить поведение относительной ширины следа $\mathfrak{S}(x)$ при $x \to +\infty$, положим в найденном разложении $w \to +\infty$ и выделим в нем вещественную x(w) и мнимую y(w) части:

$$x(w) = \frac{w}{V_Q \sqrt{1+Q}} + \mathbb{O}(w^{-2}), \quad y(w) = \frac{1}{V_Q \sqrt{1+Q}} \frac{4\alpha(1+\beta^2)}{3\beta^2} \frac{\varphi_C^{3/2}}{w^{1/2}} + \mathbb{O}(w^{-3/2}).$$

Выражая из первого равенства зависимость w(x) и подставляя ее во второе, получаем уравнение y(x) для границы следа, умножив которое на два и разделив на l, находим асимптотику относительной ширины следа

$$\mathfrak{S}(x) = \frac{\alpha(1+\beta^2)}{3\beta^2(1+Q)^{3/4}(\tau I_0)^{3/2}} \left(\frac{x}{l}\right)^{-1/2} + \mathfrak{O}((x/l)^{-2}), \quad x \to +\infty.$$
(73)

Отсюда, тем же путем, что и выше, находим первый (по малости Q) член разложения этой асимптотики в виде

$$\mathfrak{S}(x) \sim Q^{-2} (x/l)^{-1/2}.$$

6.6. Выведем асимптотику коэффициента сопротивления¹³ $C_x^T(Q)$ при малых числах кавитации Q. Будем исходить из выражения (57) для этой величины. Используя разложение параметра β из формулы (36) по степеням Q, последовательно получаем аналогичные разложения для величины τ из (52) и интегралов I_0 , I_1 из (54), (56). Подставляя эти разложения в (57), устанавливаем искомую асимптотику в виде

$$\mathbf{C}_{x}^{T}(Q) = (1+Q)[\mathbf{C}_{x}^{H} + E_{2}^{T}Q^{2} + \mathbb{O}(Q^{3})], \quad Q \to 0,$$
(74)

где

$$\mathbf{C}_{x}^{H} = 1 - \frac{(1-\alpha)(2-\alpha)}{(1+\alpha)(2+\alpha)} \frac{F(3,1+\alpha;3+\alpha;-1)}{F(3,1-\alpha;3-\alpha;-1)},$$

$$E_{2}^{T} = \frac{(1-\alpha)(2-\alpha)}{\pi^{2}\alpha(1+\alpha)(2+\alpha)F(3,1-\alpha;3-\alpha;-1)} \times \left[\frac{F(4,1+\alpha;4+\alpha;-1)}{3+\alpha} + \frac{F(3,1+\alpha;3+\alpha;-1)F(4,1-\alpha;4-\alpha;-1)}{(3-\alpha)F(3,1-\alpha;3-\alpha;-1)}\right].$$
(75)

Отметим, что в асимптотике (74) первый коэффициент C_x^H , определяемый формулой (75), является общим для всех исследованных в [5] и настоящей работе схем, начиная со схемы Гельмгольца–Кирхгофа, поэтому он отмечен верхним индексом *H*. Вид асимптотики для этих схем отличается только коэффициентом при O^2 .

В табл. 2 для различных значений угла $\pi \alpha$, измеряемого в градусах, приведены величины коэффициентов \mathbf{C}_x^H , E_2^Z , E_2^R , E_2^T , где верхние индексы Z, R и T соответствуют схемам Жуковского– Рошко, Рябушинского и Тулина.

6.7. Построим теперь асимптотики для относительной длины \mathfrak{L} и относительной ширины \mathfrak{M} каверны. Будем исходить из выражений (63) и (64) для этих величин. Используя разложение параметра β из формулы (36) по степеням Q и аналогичное разложение для γ , найдем разложения для μ и η , определяемых из (46). Подставляя эти результаты в представления (60), (61) для интегралов I_2 , I_3 , выраженных через функцию Лауричеллы, и используя формулы (см. [12], [24]) аналитического продолжения в окрестность особой точки $z_k = 1$ для всех трех аргументов этой функции, а результат — в (63) и (64), устанавливаем искомые асимптотики:

¹³В связи с тем, что ниже рассматриваются коэффициенты сопротивления для разных схем, мы будем отмечать принадлежность к этим схемам следующими верхними индексами: *H* – для схемы Гельмгольца–Кирхгофа, *Z* – для схемы Жуковского–Рошко, *R* – для схемы Рябушинского, *T* – для рассматриваемой схемы Тулина.

α180°	\mathbf{C}_x^H	E_2^Z	E_2^R	E_2^T
5	0.105176	2.684677	2.013508	2.176117
10	0.199376	1.201306	0.900980	0.973742
20	0.359547	0.480931	0.360698	0.389828
30	0.488563	0.256427	0.192320	0.207852
40	0.592678	0.153498	0.115124	0.124421
45	0.636973	0.121763	0.091322	0.098698
50	0.676796	0.097708	0.073281	0.079199
60	0.744787	0.064510	0.048383	0.052290
70	0.799727	0.043563	0.032672	0.035311
80	0.844074	0.029812	0.022359	0.024165
90	0.879802	0.020532	0.015399	0.016643
100	0.908505	0.014146	0.010610	0.011467
110	0.931478	0.009692	0.007269	0.007856
120	0.949771	0.006557	0.004917	0.005315
130	0.964244	0.004340	0.003255	0.003518
135	0.970273	0.003488	0.002616	0.002827

Таблица 2. Коэффициенты C_x^H и E_2 для различных схем

$$\mathfrak{L} = \frac{31(1-\alpha)(2-\alpha)\alpha^2}{\pi\sin(\pi\alpha)F(3,1-\alpha;3-\alpha;-1)}\frac{1}{Q^2} + \mathfrak{O}(1), \quad Q \to 0,$$

$$\mathfrak{W} = \frac{6\pi(1-\alpha)(2-\alpha)\alpha^2}{5\sin(\pi\alpha)F(3,1-\alpha;3-\alpha;-1)}\frac{1}{Q} + \mathfrak{O}(1), \quad Q \to 0.$$

Таким образом, при убывании числа кавитации Q относительная длина \mathfrak{L} каверны растет значительно быстрее, чем ее относительная ширина \mathfrak{M} .

СПИСОК ЛИТЕРАТУРЫ

- 1. Биркгофф Г., Сарантонелло Э. Струи, следы, каверны. М.: Мир, 1964.
- 2. Гуревич М.И. Теория струй идеальной жидкости. М.: Наука, 1979.
- 3. *Franc J.-P., Michel J.-M.* Fundamentals of cavitation. Series: Fluid Mechanics and its Applications, V. 76. Dordrecht: Springer, 2004.
- 4. *Terentiev A.G., Kirschner I.N., Uhlman J.S.* The hydrodynamics of cavitating flows. Hoboken, NJ: Backbone Publ. Co, 2011.
- 5. *Власов В.И., Скороходов С.Л.* Аналитическое решение задачи о кавитационном обтекании клина. I // Ж. вычисл. матем. и матем. физ. 2020. Т. 60. № 12. С. 2098–2121.
- 6. *Tulin M.P.* Supercavitating flows—small perturbation theory. В кн.: "Приложения теории функций в механике сплошной среды". Тр. Международ. симп. в Тбилиси, 17–23 сентября 1963 г. Т. 2. М.: Наука, 1965. С. 403–439.
- Gilbarg D. Jets and cavities. Handbuch der Physik. Bd. 9. Berlin-Göttingen-Heidelberg: Springer, 1960. S. 311-443.
- 8. Brennen Ch.E. Cavitation and bubble dynamics. NY, Oxford: Oxford Univ. Press, 1995.
- 9. *Karn A., Roger E.A.A., Hong J.* An experimental investigation into supercavity closure mechanisms // J. Fluid Mech. 2016. V. 789. P. 259–284.
- 10. Миллер У. Симметрии и разделение переменных. М.: Мир, 1981.
- 11. Exton H. Multiple hypergeometric functions and application. NY: J. Willey & Sons inc, 1976.
- Безродных С.И. Гипергеометрическая функция Лауричеллы F_D^(N), задача Римана–Гильберта и некоторые приложения // Успехи матем. наук. 2018. Т. 73. Вып. 6 (444). С. 3–94.
- 13. Tulin M.P. Supercavitating flows-small perturbation theory // J. Ship. Res. 1964. V. 7. № 3. P. 16–37.

- 14. Эфрос Д.А. Гидродинамическая теория плоско-параллельного кавитационного течения // Докл. АН СССР. 1946. Т. 51. № 4. С. 263–266.
- 15. Лаврентьев М.А., Шабат Б.В. Методы теории функций комплексного переменного. М.: Наука, 1987.
- 16. Гогиш Л.В., Степанов Г.Ю. Отрывные и кавитационные течения. Основные свойства и расчетные модели. М.: Наука, 1990.
- 17. Савелов А.А. Плоские кривые. Систематика, свойства, применение. М.: ГИФМЛ, 1960.
- 18. *Жуковский Н.Е.* Видоизменение метода Кирхгофа для определения движения жидкости в двух измерениях при постоянной скорости, данной на неизвестной линии тока // Матем. сборник. 1890. Т. 15. № 1. С. 121–276.
- 19. *Барский И.Л*. Асимптотические оценки для течений со свободными границами // Ж. вычисл. матем. и матем. физ. 1972. Т. 12. № 3. С. 686–699.
- 20. Коппенфельс В., Штальман Ф. Практика конформных отображений. М.: Изд-во иностр. лит-ры, 1963.
- 21. Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы. М.: Наука, 1987.
- 22. Бейтмен Г., Эрдейи А. Высшие трансцендентные функции. Гипергеометрическая функция. Функции Лежандра. М.: Наука, 1973.
- 23. Власов В.И. Краевые задачи в областях с криволинейной границей. М.: ВЦ АН СССР, 1987.
- 24. *Bezrodnykh S.I.* Analytic continuation of Lauricella's functions $F_A^{(N)}$, $F_B^{(N)}$ and $F_D^{(N)}$ // Integral Transforms and Special Functions. 2020. V. 31. Nº 11. P. 921–940.