ОБЩИЕ ЧИСЛЕННЫЕ МЕТОДЫ

УДК 519.988

ПРИМЕНЕНИЕ КУБИЧЕСКОГО СПЛАЙНА НА СЕТКЕ БАХВАЛОВА ПРИ НАЛИЧИИ ПОГРАНИЧНОГО СЛОЯ¹⁾

© 2021 г. И. А. Блатов^{1,*}, А. И. Задорин^{2,**}, Е. В. Китаева³

¹ 443010 Самара, ул. Льва Толстого, 23, Поволжский гос. ун-т телекоммуникаций и информатики, Россия ² 630090 Новосибирск, пр-т Акад. Коптюга, 4, Ин-т матем. им. С.Л. Соболева СО РАН, Россия

³ 443086 Самара, Московское шоссе, 34А, Самарский национальный исследовательский ун-т, Россия *e-mail: blatow@mail.ru

> **e-mail: zadorin@ofim.oscsbras.ru Поступила в редакцию 12.12.2020 г. Переработанный вариант 12.12.2020 г. Принята к публикации 04.08.2021 г.

Рассматривается задача кубической сплайн-интерполяции на сетке Бахвалова функций с большими градиентами. Получены оценки погрешности на классе функций с большими градиентами в экспоненциальном пограничном слое. В соответствии с полученными оценками погрешность сплайна может неограниченно возрастать при стремлении малого параметра к нулю при фиксированном числе узлов сетки. Предложен модифицированный интерполяци-

онный кубический сплайн с оценкой погрешности порядка $O(N^{-4})$ равномерно по малому параметру, где N — число узлов сетки. Библ. 10. Табл. 2.

Ключевые слова: сингулярное возмущение, пограничный слой, сетка Бахвалова, кубический сплайн, модификация, оценка погрешности.

DOI: 10.31857/S0044466921120073

1. ВВЕДЕНИЕ

Кубические сплайны широко применяются для гладкой интерполяции функций [1], [2]. При применении разностных методов к решению сингулярно возмущенных задач используются сетки, сгущающиеся в пограничном слое. При этом возникает необходимость восстановления функции для всех значений независимой переменной. В случае кусочно-равномерной сетки Г.И. Шишкина [3] в [4] получены асимптотически точные оценки погрешности и показано, что сходимость интерполяционного процесса неравномерна по малому параметру. Построен модифицированный сплайн на сетке Шишкина, погрешность которого равномерна по малому параметру.

В данной работе исследуется кубическая сплайн-интерполяция [2] на сетке Н.С. Бахвалова [5], сгущающейся в пограничном слое. Получены оценки погрешности интерполяции, которые, однако, не являются равномерными по малому параметру ε . На основе численных экспериментов показано, что при $\varepsilon \to 0$ погрешность интерполяции на погранслойной составляющей может неограниченно возрастать, и необходима разработка специальных методов интерполяции для данного класса задач. Предложен модифицированный интерполяционный сплайн, позволя-

ющий построить интерполяционный процесс, сходящийся с порядком $O(N^{-4})$ равномерно по малому параметру ε .

Обозначения. Зададим сетку интервала [0, 1]:

 $\Omega = \{x_n : x_n = x_{n-1} + h_n, n = 1, 2, \dots, N, x_0 = 0, x_N = 1\}.$

Обозначим через $S(\Omega, k, 1)$ пространство полиномиальных сплайнов степени k дефекта 1 [2] на сетке Ω . В случае необходимости будем считать разбиение Ω продолженным левее точки x = 0

¹⁾Работа выполнена при финансовой поддержке РФФИ (код проекта 20-01-00650) и программы фундаментальных исследований СО РАН 1.1.3., проект 0314-2019-0009.

с шагом $h_1 = x_1 - x_0$ и правее точки x = 1 с шагом $h_N = x_N - x_{N-1}$. Под C и C_j будем подразумевать положительные постоянные, не зависящие от параметра є и числа узлов сетки. При этом один и тот же символ C_j может обозначать разные константы. Будем писать f = O(g), если справедлива оценка $|f| \le C |g|$ и $f = O^*(g)$, если f = O(g) и g = O(f); C[a,b], $L_2[a,b]$ – пространства непрерывных и квадратично суммируемых на [a,b] функций с нормами $\|\cdot\|_{C[a,b]}$ и $\|\cdot\|_{L_2[a,b]}$ соответственно, (\cdot,\cdot) – скалярное произведение в $L_2[0,1]$. Пусть h – постоянный шаг сетки Ω вне области пограничного слоя $[0,\sigma]$.

2. ПОСТАНОВКА ЗАДАЧИ

Пусть интерполируемая функция u(x) представима в виде

$$u(x) = q(x) + \Phi(x), \quad x \in [0, 1],$$
 (2.1)

где для некоторой постоянной С₁ имеем

$$\left|q^{(j)}(x)\right| \le C_1, \quad \left|\Phi^{(j)}(x)\right| \le \frac{C_1}{\varepsilon^j} e^{-\alpha x/\varepsilon}, \quad 0 \le j \le 4,$$
(2.2)

где функции q(x) и $\Phi(x)$ в явном виде не заданы, $\alpha > 0$, $\varepsilon > 0$. Декомпозиция (2.1) справедлива для решения сингулярно возмущенной краевой задачи [3].

Зададим сетку интервала [0, 1] на основе [5].

Пусть
$$\sigma = \min\left\{\frac{1}{2}, \frac{4\varepsilon}{\alpha}\ln\frac{1}{\varepsilon}\right\}$$
 при $\varepsilon \le e^{-1}$ и $\sigma = 1/2$ при $\varepsilon > e^{-1}$.

В случае $\sigma < \frac{1}{2}$ определим узлы сетки Ω по формуле

$$x_n = g(n/N), \quad n = 0, 1, ..., N,$$
 (2.3)

где

$$g(t) = \begin{cases} -\frac{4\varepsilon}{\alpha} \ln[1 - 2(1 - \varepsilon)t], & 0 \le t \le \frac{1}{2}, \\ \sigma + (2t - 1)(1 - \sigma), & 1/2 \le t \le 1. \end{cases}$$
(2.4)

Таким образом, при $\sigma < \frac{1}{2}$ сетка Ω равномерна на промежутке [σ ,1] с шагом $h = 2(1 - \sigma)/N = O^*(1/N)$.

В случае $\sigma = \frac{1}{2}$ сетку Ω определим как равномерную с шагом 1/N.

Зададим кубический сплайн $S_3(x, u) \in S(\Omega, 3, 1)$ на сетке Ω , определяемый из условий интерполяции

$$S_3(x_n, u) = u(x_n), \quad 0 \le n \le N, \quad S'_3(0, u) = u'(0), \quad S'_3(1, u) = u'(1).$$

Целью работы является оценка погрешности сплайна $S_3(x, u)$ на сетке, заданной в соответствии с работами [5], [6], в случае функции u(x), представимой в виде (2.1), а также построение интерполяционного сплайна, позволяющего получить интерполяционный процесс, сходящийся равномерно по параметру ε .

3. ФОРМУЛИРОВКА ОСНОВНЫХ РЕЗУЛЬТАТОВ

Теорема 1. Найдутся такие постоянные C_2 , C_3 и $\beta > 0$, не зависящие от ε , N, что при $\varepsilon \le C_2 N^{-1}$ будут справедливы оценки

$$\|S_{3}(x,u) - u(x)\|_{C[x_{n},x_{n+1}]} \le C_{3} \begin{cases} N^{-4}, \quad 0 \le n \le N/2 - 2, \\ N^{-4} \ln\left(1 + \frac{1}{\varepsilon N}\right) + 1/N^{4}, \quad n = N/2 - 1, \\ \frac{N^{-5}}{\varepsilon} e^{-\beta(n-N/2)} + 1/N^{4}, \quad N/2 \le n \le N - 1. \end{cases}$$
(3.1)

Теорема 2. Для произвольной постоянной C_2 найдется такая постоянная C_4 , что при $C_2 N^{-1} \leq \varepsilon$ будет справедлива оценка

$$\|u(x) - S_3(x, u)\|_{C[0,1]} \le C_4 / N^4.$$
(3.2)

В связи с неравномерной по є сходимостью кубического сплайна $S_3(x, u)$ согласно оценкам (3.1) и результатам вычислительных экспериментов, приведенным ниже, по аналогии с [4] определим модифицированный интерполяционный сплайн. Положим $\bar{x}_n = (x_n + x_{n+1})/2, n \in [N/2 - 1, N/2], \bar{x}_n = x_n, n \in [0, N/2 - 2] \cup [N/2 + 1, N]$. Пусть $\tilde{S}_3(x, u)$ – интерполяционный кубический сплайн, определяемый из условий

$$\tilde{S}_{3}(\overline{x}_{n}, u) = u(\overline{x}_{n}), \quad n \in [0, N], \quad \tilde{S}_{3}'(0, u) = u'(0), \quad \tilde{S}_{3}'(1, u) = u'(1).$$
 (3.3)

Теорема 3. Найдутся такие не зависящие от ε , N постоянные C_2 , C, что при $\varepsilon \leq C_2 N^{-1}$ будет справедлива оценка

$$\left\| u(x) - \tilde{S}_3(x, u) \right\|_{C[0,1]} \le CN^{-4}.$$
 (3.4)

Замечание 1. Можно считать, что в теоремах 2, 3 константа C_2 одна и та же. Иначе достаточно в качестве C_2 взять минимум этих констант.

Замечание 2. В силу теорем 2, 3 применение интерполяционного сплайна $\tilde{S}_3(x, u)$ при $\varepsilon = O(N^{-1})$ и интерполяционного сплайна $S_3(x, u)$ при $N^{-1} = O(\varepsilon)$ позволяет получить равномерные по ε оценки погрешности порядка $O(N^{-4})$.

4. ВСПОМОГАТЕЛЬНЫЕ РЕЗУЛЬТАТЫ ДЛЯ ТЕОРЕМЫ 1

Как и в условии теоремы 1, в этом разделе считаем выполненным условие $\varepsilon \leq C_2/N$, где C_2 – достаточно малая константа.

Ниже, не ограничивая общности, будем считать, что в (2.2) $\alpha = 1$, так как общий случай сводится к этому заменой $\alpha x = y$ с сохранением оценок вида (2.2).

Лемма 1. При $\sigma < \frac{1}{2}$ последовательность шагов h_n при $n \le N/2$ монотонно возрастает и справедливы формулы

$$h_{n} = 4\varepsilon \ln\left(1 + \frac{2(1-\varepsilon)/N}{1-2(1-\varepsilon)\frac{n}{N}}\right), \quad h_{n-1} + h_{n} = 4\varepsilon \ln\left(1 + \frac{4(1-\varepsilon)/N}{1-2(1-\varepsilon)\frac{n}{N}}\right), \quad (4.1)$$

$$h_{n} = \begin{cases} O^{*}\left(\frac{\varepsilon}{N/2-n}\right), & 1 \le n \le N/2 - 1, \\ O^{*}\left(\varepsilon \ln\left(1 + \frac{1}{N\varepsilon}\right)\right), & n = N/2, \\ h = O^{*}(1/N), & N/2 + 1 \le n \le N. \end{cases}$$

Формула (4.1) следует из (2.3) и задания *g*(*t*), формула (4.2) следует из (4.1). Пусть

$$N_{n,1}(x) = \begin{cases} \frac{x - x_n}{x_{n+1} - x_n}, & x \in [x_n, x_{n+1}], \\ \frac{x_{n+2} - x}{x_{n+2} - x_{n+1}}, & x \in [x_{n+1}, x_{n+2}], & -1 \le n \le N - 1, \\ 0, & x \notin (x_n, x_{n+2}), \end{cases}$$
(4.3)

есть *B*-сплайн первой степени, $\|N_{n,1}\|_{L_2[0,1]} = \frac{1}{\sqrt{3}}(h_{n+1} + h_{n+2})^{1/2}$. С учетом леммы 1 $\|N_{n,1}\|_{L_{2}[0,1]} = \begin{cases} O^{*}((\varepsilon/(N/2-n))^{1/2}), & 0 \le n \le N/2 - 3, \\ O^{*}\left(\left(\varepsilon \ln\left(1+\frac{h}{\varepsilon}\right)\right)^{1/2}\right), & n = N/2 - 2, \\ O^{*}(h^{1/2}), & N/2 - 1 \le n \le N - 1. \end{cases}$ $\Pi \text{ усть } \tilde{N}_{n,1}(x) = N_{n,1}(x)/\|N_{n,1}\|_{L_{2}[0,1]}, & 0 \le n \le N - 2. \quad \Pi \text{ ри } n = -1 \quad \text{ и } n = N - 1 \quad \text{положим}$

 $\tilde{N}_{-1,l}(x) = \tilde{N}_{0,l}(x+h_l), \ \tilde{N}_{N-l,l}(x) = \tilde{N}_{N-2,l}(x-h_N).$ Тогда с учетом двух последних формул получаем

$$\left\|\tilde{N}_{n,1}\right\|_{C[0,1]} = \begin{cases} O^*((\varepsilon/(N/2-n))^{-1/2}), & 0 \le n \le N/2 - 3, \\ O^*\left(\left(\varepsilon \ln\left(1+\frac{h}{\varepsilon}\right)\right)^{-1/2}\right), & n = N/2 - 2, \\ O^*(h^{-1/2}), & N/2 - 1 \le n \le N - 1. \end{cases}$$
(4.4)

Пусть $e(x) = S_3(x, \Phi) - \Phi(x)$. Изучим функцию $e''(x) = S_3''(x, \Phi) - \Phi''(x)$. Согласно [7, гл. 5], справедлива формула $S''_3(x, \Phi) = P\Phi''(x)$, где P – ортогональный в $L_2[0, 1]$ проектор на $S(\Omega, 1, 1)$. Обозначим через $\tilde{g}I(x) \in S(\Omega, 1, 1)$ линейный интерполянт $\Phi''(x)$ в узлах сетки, а через gI(x)функцию из $S(\Omega, 1, 1)$, равную $\tilde{g}I(x)$ при $x \in [0, x_{N/2-2}]$ и нулю при $x \in [x_{N/2-1}, 1]$. Очевидно, что $gI(x) \in S(\Omega, 1, 1)$. Тогда имеем

$$e''(x) = P(\Phi''(x) - gI(x)) + (gI(x) - \Phi''(x)).$$
(4.5)

Представим функцию $P(\Phi''(x) - gI(x))$ в виде

$$P(\Phi''(x) - gI(x)) = \sum_{n=-1}^{N-1} \alpha_n \tilde{N}_{n,1}(x).$$
(4.6)

Из условий ортогональности разности $S''_{3}(x, \Phi) - \Phi''(x)$ пространству $S(\Omega, 1, 1)$ получаем систему линейных уравнений для коэффициентов

$$\sum_{n=-1}^{N-1} \alpha_n(\tilde{N}_{n,1}, \tilde{N}_{k,1}) = (\Phi'' - gI, \tilde{N}_{k,1}), \hat{\rho} - 1 \le k \le N - 1.$$
(4.7)

Представим систему (4.7) в матричном виде

$$\Gamma \alpha = F, \tag{4.8}$$

где $\Gamma = \{\gamma_{nk}\} = \{(\tilde{N}_{n,1}, \tilde{N}_{k,1})\}$ – матрица Грама нормированных *B*-сплайнов, где $0 \le \gamma_{nk} \le 1$,

$$F = (F_{-1}, F_0, \dots, F_{N-1})^{\mathrm{T}}, \quad F_j = (\Phi'' - gI, \tilde{N}_{j,1}).$$
(4.9)

Лемма 2. Матрица Г имеет вид

$$\Gamma = tridiag\{a_n, c_n, b_n\}, \quad -1 \le n \le N - 1, \quad a_{-1} = b_{N-1} = 0,$$

$$a_{n+1} = b_n = O^*(1) > 0, \quad 0 \le n \le N - 2, \quad n \ne N/2 - 3, \quad n \ne N/2 - 2,$$

$$a_{N/2-1} = b_{N/2-2} = O^*\left(\left(\frac{\varepsilon \ln(1 + h/\varepsilon)}{h}\right)^{1/2}\right),$$

$$a_{N/2-2} = b_{N/2-3} = O^*\left(\left(\frac{1}{\ln(1 + h/\varepsilon)}\right)^{1/2}\right),$$

$$c_n = 1, \quad 0 \le n \le N - 2, \quad c_{-1} = c_{N-1} = 1/\sqrt{2}.$$

$$(4.10)$$

Матрица Γ имеет строгое диагональное преобладание по строкам с показателем преобладания $1/\sqrt{2}$.

Доказательство получается вычислением интегралов в (4.7) с учетом (4.2)-(4.4). Обозначим через cond₂ Γ спектральное число обусловленности Γ .

Следствие 1. Матрица Г имеет вид

$$\Gamma = \begin{pmatrix} \Gamma_{11} & \Gamma_{12} \\ \Gamma_{21} & \Gamma_{22} \end{pmatrix},$$

где Γ_{11} , Γ_{22} – трехдиагональные матрицы порядка $(N/2) \times (N/2)$ и $(N/2 + 1) \times (N/2 + 1)$ соответственно, с диагональным преобладанием по строкам с показателем преобладания $1/\sqrt{2}$, cond₂ $\Gamma = O(1)$, cond₂ $\Gamma_{ii} = O(1)$, $i = 1, 2; \Gamma_{12}$ и Γ_{21} – прямоугольные матрицы с единственным ненулевым элементом порядка $O^*\left(\left(\frac{\varepsilon \ln(1 + h/\varepsilon)}{h}\right)^{1/2}\right)$ в левом нижнем и правом верхнем углах соответственно. Матрица Γ_{11} имеет вид

$$\Gamma_{11} = \begin{pmatrix} \hat{\Gamma}_{11} & \hat{\Gamma}_{12} \\ \hat{\Gamma}_{21} & \hat{\Gamma}_{22} \end{pmatrix},$$

где $\hat{\Gamma}_{11}$ – трехдиагональная квадратная матрица порядка $(N/2 - 1) \times (N/2 - 1)$ со строгим диагональным преобладанием по строкам с показателем преобладания $1/\sqrt{2}$, $\hat{\Gamma}_{22} = 1$, $\hat{\Gamma}_{21} = (0 \cdots 0a_{N/2-2})$; $\hat{\Gamma}_{12} = \hat{\Gamma}_{21}^{T}$ – матрицы с единственным ненулевым элементом порядка $O^*((1 + h/\epsilon)^{-1/2})$.

Лемма 3. Матрицы Γ_{11}, Γ_{22} обратимы, и для элементов обратных матриц $\tilde{\gamma}_{nk}^{ii}$ при i = 1, 2 справедливы оценки $|\tilde{\gamma}_{nk}^{ii}| \leq Ce^{-\beta|n-k|}$. Аналогичные оценки справедливы для элементов матрицы $\hat{\Gamma}_{11}$. Здесь $\beta > 0, C, \beta$ не зависят от N, ε .

Доказательство. Обратимость матриц Γ_{11} , Γ_{22} и оценки элементов вытекают из строгого диагонального преобладания с показателем преобладания $1/\sqrt{2}$ и теоремы Демко [8]. Лемма доказана.

Лемма 4. Для матрицы Γ_{11}^{-1} справедливо представление

$$\Gamma_{11}^{-1} = \begin{pmatrix} \overline{\Gamma}_{11} & \overline{\Gamma}_{12} \\ \overline{\Gamma}_{21} & \overline{\Gamma}_{22} \end{pmatrix},$$

где элементы $\overline{\gamma}_{nk}^{ij}$ матриц $\overline{\Gamma}_{ij}$ при некотором $\beta > 0$, не зависящим от ϵ , N, удовлетворяют оценкам

$$\overline{\gamma}_{nk}^{11} \le C e^{-\beta|n-k|}, \quad -1 \le n, k \le N/2 - 3; \quad \left|\overline{\Gamma}_{22}\right| \le C, \tag{4.11}$$

$$\left| \overline{\gamma}_{nk}^{ij} \right| \le C(\ln(1+h/\epsilon))^{-1/2} e^{-\beta|n-k|}, \quad n = N/2 - 2, \quad -1 \le k \le N/2 - 3 \quad npu \quad i = 1, \quad j = 2; \\ k = N/2 - 2, \quad -1 \le n \le N/2 - 3 \quad npu \quad i = 2, \quad j = 1.$$
(4.12)

Доказательство. Применяя блочный метод Гаусса, находим

$$\Gamma_{11}^{-1} = \begin{pmatrix} \hat{\Gamma}_{11}^{-1} + \hat{\Gamma}_{11}^{-1} \hat{\Gamma}_{12} \tilde{\Gamma}^{-1} \hat{\Gamma}_{21} \hat{\Gamma}_{11}^{-1} & \hat{\Gamma}_{11}^{-1} \hat{\Gamma}_{12} \tilde{\Gamma}^{-1} \\ \tilde{\Gamma}^{-1} \hat{\Gamma}_{21} \hat{\Gamma}_{11}^{-1} & \tilde{\Gamma}^{-1} \end{pmatrix},$$
(4.13)

где $\tilde{\Gamma} = \hat{\Gamma}_{22} - \hat{\Gamma}_{21}\hat{\Gamma}_{11}^{-1}\hat{\Gamma}_{12}$. Здесь обратимость всех блоков и равномерная по ε , *N* ограниченность норм всех обратных матриц вытекает из следствия 1. Отсюда получаем, что и $\tilde{\Gamma}^{-1}$ равномерно ограничена по норме. Из теоремы Демко [8] получаем, что элементы матрицы $\hat{\Gamma}_{11}^{-1}$ удовлетворяют оценкам вида (4.11). С учетом этого оценки (4.11), (4.12) вытекают из (4.13) и следствия 1. Лемма доказана.

Лемма 5. Для матрицы Γ^{-1} справедливо представление

$$\Gamma^{-1} = \begin{pmatrix} \tilde{\Gamma}_{11} & \tilde{\Gamma}_{12} \\ \tilde{\Gamma}_{21} & \tilde{\Gamma}_{22} \end{pmatrix},$$

где элементы $\tilde{\gamma}_{nk}^{ij}$ матриц $\tilde{\Gamma}_{ij}$ при некоторой постоянной $\beta > 0$, не зависящей от ε , N, удовлетворяют оценкам

$$\begin{vmatrix} \tilde{\gamma}_{nk}^{11} \end{vmatrix} \le C e^{-\beta |n-k|}, \quad -1 \le n, k \le N/2 - 3; \quad \left| \tilde{\gamma}_{nk}^{22} \right| \le C e^{-\beta |n-k|}, \\ N/2 - 1 \le n, \quad k \le N - 1, \end{aligned}$$
(4.14)

$$\left| \tilde{\gamma}_{nk}^{11} \right| \le \left(\ln(1+h/\epsilon) \right)^{-1/2} C e^{-\beta |n-k|}, \quad n = N/2 - 2, \quad -1 \le k \le N/2 - 3,$$

$$u n u \quad k = N/2 - 2, \quad -1 \le n \le N/2 - 3,$$
(4.15)

$$\left|\tilde{\gamma}_{nk}^{ij}\right| \le C(\varepsilon/h)^{1/2} e^{-\beta|n-k|},\tag{4.16}$$

ede $-1 \le n \le N/2 - 3$, $N/2 - 1 \le k \le N - 1$ npu i = 1, j = 2; $-1 \le k \le N/2 - 3$, $N/2 - 1 \le n \le N - 1$ npu i = 2, j = 1;

$$\left|\tilde{\gamma}_{nk}^{ij}\right| \le \left(\frac{\varepsilon \ln(1+h/\varepsilon)}{h}\right)^{1/2} e^{-\beta|n-k|},\tag{4.17}$$

ede n = N/2 - 2, $N/2 - 1 \le k \le N - 1$ npu i = 1, j = 2; k = N/2 - 3, $N/2 - 1 \le n \le N - 1$ npu i = 2, j = 1.

Доказательство. Применяя блочный метод Гаусса аналогично (4.13), находим

$$\Gamma^{-1} = \begin{pmatrix} \Gamma_{11}^{-1} + \Gamma_{11}^{-1} \Gamma_{12} \tilde{\Gamma}^{-1} \Gamma_{21} \Gamma_{11}^{-1} & \Gamma_{11}^{-1} \Gamma_{12} \tilde{\Gamma}^{-1} \\ \tilde{\Gamma}^{-1} \Gamma_{21} \Gamma_{11}^{-1} & \tilde{\Gamma}^{-1} \end{pmatrix},$$
(4.18)

где $\tilde{\Gamma} = \Gamma_{22} - \Gamma_{21}\Gamma_{11}^{-1}\Gamma_{12}$. Здесь обратимость всех блоков и равномерная по ε , *N* ограниченность всех обратных матриц вытекают из следствия 1. Более того, из теоремы Демко [8] вытекает, что элементы матрицы Γ_{11}^{-1} удовлетворяют оценкам вида (4.14), поэтому в силу вида матриц Γ_{12} , Γ_{21} таким же оценкам удовлетворяют и элементы матрицы $\tilde{\Gamma}$. Но для матриц, имеющих обратную, ограниченную в спектральной норме константой, не зависящей от порядка матрицы и параметров, определяющих ее элементы, в [9] было доказано, что и элементы обратной матрицы $\tilde{\Gamma}^{-1}$ удовлетворяют таким же оценкам, возможно, с другой константой $\beta_1 \in (0, 1)$, также не зависящей от N, ε . Там же было доказано, что элементы произведения двух матриц, удовлетворяющих оценкам вида (4.14), удовлетворяют таким же оценкам. Отсюда вытекают оценки (4.14).

Оценки (4.15) вытекают из (4.18), леммы 4, следствия 1 и оценок вида (4.14) для элементов $\tilde{\Gamma}^{-1}$. Докажем оценки (4.16) при i = 1, j = 2. Пусть

$$\tilde{\Gamma}^{-1} = \{ \tilde{\gamma}_{nk}, N/2 - 1 \le n, k \le N - 1 \},\$$

$$\Gamma_{12} = \{ \gamma_{nk}, 1 \le n \le N/2 - 2, N/2 - 1 \le k \le N - 1 \},\$$

 $\Gamma_{11}^{-1} = \{\tilde{\gamma}_{nk}^{l1}, 1 \le n, k \le N/2 - 2\}$. Поскольку у матрицы Γ_{12} отличен от нуля единственный элемент $\gamma_{(N/2-2)(N/2-1)}$, то, перемножая матрицы, находим для элементов матрицы $\tilde{\Gamma}_{12}$: $\tilde{\gamma}_{nk}^{l2} = \tilde{\gamma}_{n(N/2-2)}^{l1} \gamma_{(N/2-2)(N/2-1)} \tilde{\gamma}_{(N/2-2)k}$. Учитывая оценки (4.12), (4.10), (4.14) для первого, второго и третьего сомножителей соответственно, получаем (4.16). При i = 2, j = 1 оценки (4.17) получаются в силу симметрии Γ^{-1} . Лемма доказана.

Лемма 6. Для элементов F_n из (4.9) справедливы оценки

$$F_{n} = \begin{cases} O(h_{n+1}^{5/2} \varepsilon^{-4} e^{-x_{n+1}/\varepsilon}), & -1 \le n \le N/2 - 3, \\ O((\varepsilon \ln(1+h/\varepsilon))^{-1/2} \varepsilon^{-1} e^{-x_{N/2-1}/\varepsilon}), & n = N/2 - 2, \\ O(h^{-1/2} \varepsilon^{-1} e^{-x_{n}/\varepsilon}), & N/2 - 1 \le n \le N - 1. \end{cases}$$
(4.19)

Доказательство получается прямым вычислением интегралов в (4.9) с учетом (4.4) и оценки погрешности формулы линейной интерполяции.

Лемма 7. Для коэффициентов α_n в разложении $P(\Phi''(x) - gI(x))$ по $\tilde{N}_{n,1}(x)$ справедливы оценки

$$\alpha_{n} = \begin{cases} O(h_{n+1}^{5/2} \varepsilon^{-4} e^{-x_{n+1}/\varepsilon}), & -1 \le n \le N/2 - 3, \\ O((\varepsilon \ln(1+h/\varepsilon))^{-1/2} \varepsilon^{-1} e^{-x_{N/2-1}/\varepsilon}), & n = N/2 - 2, \\ O(h^{-1/2} \varepsilon^{-1} e^{-x_{N/2-1}/\varepsilon} e^{-\beta(n-N/2)}), & N/2 - 1 \le n \le N - 1. \end{cases}$$
(4.20)

Доказательство. Имеем $\alpha = \Gamma^{-1}F$. Пусть $\alpha = (\alpha^{(1)}, \alpha^{(2)}, \alpha^{(3)})$, где $\dim(\alpha^{(1)}) = N/2 - 1$, $\dim(\alpha^{(2)}) = 1$. Тогда согласно лемме 5, для произвольного $n \in [-1, N/2 - 3]$ справедливо представление

$$\alpha_n^{(1)} = \alpha_n = \sum_{k=-1}^{N/2-3} \tilde{\gamma}_{nk}^{11} F_k \tilde{\gamma}_{n(N/2-2)}^{11} + F_{N/2-2} + \sum_{k=N/2-1}^{N-1} \tilde{\gamma}_{nk}^{12} F_k.$$
(4.21)

В силу (4.14), (4.19) имеем

$$\left|\sum_{k=-1}^{N/2-3} \tilde{\gamma}_{nk}^{11} F_k\right| \leq \frac{C}{\epsilon^4} h_{n+1}^{5/2} e^{-x_{n+1}/\epsilon} \sum_{k=-1}^{N/2-3} e^{-\beta |n-k|} e^{-(x_{k+1}-x_{n+1})/\epsilon} \left(\frac{h_{k+1}}{h_{n+1}}\right)^{5/2}.$$
(4.22)

Далее, так как $h_k/h_n \le 1$ при $k \le n$, учитывая (4.2), получаем

$$\sum_{k=-1}^{n} e^{-\beta|n-k|} e^{-(x_{k+1}-x_{n+1})/\varepsilon} \left(\frac{h_{k+1}}{h_{n+1}}\right)^{5/2} \le \sum_{k=-1}^{n} e^{\beta(k-n)} e^{\sum_{s=k+1}^{n+1} h_s/\varepsilon} \left(\frac{h_{k+1}}{h_{n+1}}\right)^{5/2} \le \sum_{k=-1}^{n} e^{\beta(k-n)} e^{C\ln\frac{N/2-k+1}{N/2-n+1}} =$$

$$= \sum_{k=-1}^{n} e^{\beta(k-n)} \left(\frac{N/2-k+1}{N/2-n+1}\right)^C \le \sum_{k=-1}^{n} e^{\beta(k-n)} (n-k+1)^C \le C_1;$$

$$\sum_{k=n+1}^{N/2-3} e^{-\beta|n-k|} e^{-(x_{k+1}-x_{n+1})/\varepsilon} \left(\frac{h_{k+1}}{h_{n+1}}\right)^{5/2} \le \sum_{k=n+1}^{N/2-3} e^{\beta(n-k)} \left(\frac{N/2-n}{N/2-k}\right)^{5/2} \le C_2.$$
(4.24)

В силу (4.15), (4.19), (4.2) имеем

$$\left| \tilde{\gamma}_{n(N/2-2)}^{11} F_{N/2-2} \right| \leq \frac{C}{\epsilon^4} h_{n+1}^{5/2} e^{-x_{n+1}/\epsilon} \epsilon^4 h_{n+1}^{-5/2} e^{x_{n+1}/\epsilon} \left(\frac{\epsilon}{h} \right)^{1/2} e^{\beta(n-N/2)} \times \left(\epsilon \ln(1+h/\epsilon) \right)^{-1/2} \frac{1}{\epsilon} e^{-x_{N/2-1}/\epsilon} \leq \frac{C}{\epsilon^4} h_{n+1}^{5/2} e^{-x_{n+1}/\epsilon} \left(\frac{\epsilon}{h \ln(1+h/\epsilon)} \right)^{1/2} \left(N/2 - n \right)^{5/2} e^{-\beta|n-N/2|} e^{(x_{n+1}-x_{N/2-1})/\epsilon} \leq \frac{C}{\epsilon^4} h_{n+1}^{5/2} e^{-x_{n+1}/\epsilon}.$$
(4.25)

Учитывая (4.16), (4.19), (4.2), имеем

$$\left|\sum_{k=N/2-1}^{N-1} \tilde{\gamma}_{nk}^{12} F_k\right| \leq \frac{C}{\varepsilon^4} h_{n+1}^{5/2} e^{-x_{n+1}/\varepsilon} \sum_{k=N/2-1}^{N-1} \varepsilon^4 h_{n+1}^{-5/2} e^{x_{n+1}/\varepsilon} \left(\frac{\varepsilon}{h}\right)^{1/2} e^{-\beta|n-k|} h^{-1/2} \varepsilon^{-1} e^{-x_k/\varepsilon} \leq \frac{C}{\varepsilon^4} h_{n+1}^{5/2} e^{-x_{n+1}/\varepsilon} \sum_{k=N/2-1}^{N-1} \frac{\varepsilon}{h} (N/2-n)^{5/2} e^{(x_{n+1}-x_k)/\varepsilon} e^{-\beta|n-k|} \leq \frac{C_2}{\varepsilon^4} h_{n+1}^{5/2} e^{-x_{n+1}/\varepsilon} \sum_{k=N/2-1}^{N-1} e^{-\beta/2|n-k|} \leq \frac{C_3}{\varepsilon^4} h_{n+1}^{5/2} e^{-x_{n+1}/\varepsilon}.$$

Первая оценка в (4.20) получена. Теперь оценим $\alpha^{(2)}$. Имеем

$$\alpha^{(2)} = \sum_{k=-1}^{N/2-3} \tilde{\gamma}^{11}_{(N/2-2)k} F_k + \tilde{\gamma}^{11}_{(N/2-2)(N/2-2)} F_{N/2-2} + \sum_{k=N/2-1}^{N-1} \tilde{\gamma}^{12}_{(N/2-2)k} F_k.$$
(4.26)

Аналогично имеем

$$\left|\sum_{k=-1}^{N/2-3} \tilde{\gamma}_{(N/2-2)k}^{11} F_k\right| \leq C(\varepsilon \ln(1+h/\varepsilon))^{-1/2} \varepsilon^{-1} e^{-x_{N/2-1}/\varepsilon} \sum_{k=-1}^{N/2-3} (\varepsilon \ln(1+h/\varepsilon))^{1/2} e^{x_{N/2-1}/\varepsilon} \varepsilon (\ln(1+h/\varepsilon))^{-1/2} \times e^{-\beta |N/2-k|} h_{k+1}^{5/2} \frac{1}{\varepsilon^4} e^{-x_{k+1}/\varepsilon} \leq C_1 (\varepsilon \ln(1+h/\varepsilon))^{-1/2} \varepsilon^{-1} e^{-x_{N/2-1}/\varepsilon} \sum_{k=-1}^{N/2-3} (N/2-1-k)^{-5/2} \times e^{-\beta |N/2-k|} (N/2-k+1)^C \leq C_2 (\varepsilon \ln(1+h/\varepsilon))^{-1/2} \varepsilon^{-1} e^{-x_{N/2-1}/\varepsilon}.$$
(4.27)

БЛАТОВ и др.

Так как норма Γ^{-1} равномерно ограничена, то $\left|\tilde{\gamma}_{(N/2-2)(N/2-2)}^{11}\right| \leq C$. Учитывая (4.19), имеем

$$\begin{aligned} \left| \tilde{\gamma}_{(N/2-2)(N/2-2)}^{11} F_{N/2-2} \right| &\leq C(\varepsilon \ln(1+h/\varepsilon))^{-1/2} \varepsilon^{-1} e^{-x_{N/2-1}/\varepsilon}, \end{aligned}$$
(4.28)
$$\begin{aligned} \left| \sum_{k=N/2-1}^{N-1} \tilde{\gamma}_{(N/2-2)k}^{12} F_k \right| &\leq C(\varepsilon \ln(1+h/\varepsilon))^{-1/2} \varepsilon^{-1} e^{-x_{N/2-1}/\varepsilon} \times \\ &\times \left((\varepsilon \ln(1+h/\varepsilon))^{1/2} \varepsilon e^{x_{N/2-1}/\varepsilon} (\varepsilon \ln(1+h/\varepsilon))^{1/2} h^{-1/2} e^{-x_{N/2-1}/\varepsilon} + \right. \end{aligned}$$
(4.29)
$$+ \sum_{k=N/2}^{N-1} (\varepsilon \ln(1+h/\varepsilon))^{1/2} \varepsilon e^{x_{N/2-1}/\varepsilon} (\varepsilon \ln(1+h/\varepsilon))^{1/2} e^{-\beta |N/2-k|} h^{-1/2} \varepsilon^{-1} e^{-x_{k}/\varepsilon} \right) \leq \\ &\leq C_2 (\varepsilon \ln(1+h/\varepsilon))^{-1/2} \varepsilon^{-1} e^{-x_{N/2-1}/\varepsilon}. \end{aligned}$$

Наконец,

$$\alpha^{(3)} = \sum_{k=-1}^{N/2-3} \tilde{\gamma}_{nk}^{21} F_k + \tilde{\gamma}_{n(N/2-2)}^{21} F_{N/2-2} + \sum_{k=N/2-1}^{N-1} \tilde{\gamma}_{nk}^{22} F_k, \qquad (4.30)$$

$$\left|\sum_{k=-1}^{N/2-3} \tilde{\gamma}_{nk}^{21} F_k\right| \le C h^{-1/2} \varepsilon^{-1} e^{-x_{N/2-1}/\varepsilon} e^{-\beta(n-N/2)} \sum_{k=-1}^{N/2-3} h^{1/2} \varepsilon e^{x_{N/2-1}/\varepsilon} e^{\beta(n-N/2)} \left(\frac{\varepsilon}{h}\right)^{1/2} h_k^{5/2} \varepsilon^{-4} e^{-x_{k+1}/\varepsilon};$$
(4.31)

$$\sum_{k=-1}^{N/2-3} h^{1/2} e^{x_{N/2-1}/\varepsilon} e^{\beta(n-N/2)} \left(\frac{\varepsilon}{h}\right)^{1/2} h_k^{5/2} \varepsilon^{-3} e^{-x_{k+1}/\varepsilon} = \sum_{k=-1}^{N/2-3} h_k^{5/2} \varepsilon^{-5/2} e^{\beta(k-N/2)} \times e^{(x_{N/2-1}-x_{k+1})/\varepsilon} \le C_1 \sum_{k=-1}^{N/2-3} (N/2-k)^{-5/2} e^{\beta(k-N/2)} (N/2-k-1)^C \le C_2,$$
(4.32)

$$\begin{aligned} |\gamma_{n(N/2-2)}^{21}F_{N/2-2}| &\leq Ch^{-1/2}\varepsilon^{-1}e^{-x_{N/2-1}/\varepsilon}e^{-\beta(n-N/2)}h^{1/2}\varepsilon e^{x_{N/2-1}/\varepsilon}e^{\beta(n-N/2)}\left(\frac{\varepsilon}{h}\ln(1+h/\varepsilon)\right)^{1/2}e^{-\beta(n-N/2)} \times \\ &\times (\varepsilon\ln(1+h/\varepsilon))^{-1/2}\varepsilon^{-1}e^{-x_{N/2-1}/\varepsilon} = Ch^{-1/2}\varepsilon^{-1}e^{-x_{N/2-1}/\varepsilon}e^{-\beta(n-N/2)}; \end{aligned}$$
(4.33)

$$\left|\sum_{k=N/2-1}^{N-1} \tilde{\gamma}_{nk}^{22} F_k\right| \le C_1 h^{-1/2} \varepsilon^{-1} e^{-x_{N/2-1}/\varepsilon} e^{-\beta(n-N/2)} \sum_{k=N/2-1}^{N-1} h^{1/2} \varepsilon e^{x_{N/2-1}/\varepsilon} e^{\beta(n-N/2)} e^{-\beta|n-k|} h^{-1/2} \varepsilon^{-1} e^{-x_k/\varepsilon}.$$
(4.34)

Покажем, что последняя сумма в (4.34) является равномерно ограниченной. Эту сумму запишем в виде

$$\sum_{k=N/2-1}^{N-1} e^{\frac{x_{N/2-1}-x_k}{\varepsilon}} e^{\beta(n-N/2)} e^{-\beta|n-k|} = \sum_{k=N/2-1}^{n} (\cdots) + \sum_{k=n+1}^{N-1} (\cdots) = \Sigma_1 + \Sigma_2.$$
(4.35)

Тогда

$$\Sigma_{1} = \sum_{k=N/2-1}^{n} e^{\frac{x_{N/2-1}-x_{k}}{\varepsilon}} e^{\beta(k-N/2)} = e^{-\beta} + \sum_{k=N/2}^{n} e^{-(k-N/2)\frac{h}{\varepsilon} + \beta(k-N/2)} = e^{-\beta} + \sum_{k=N/2}^{n} e^{-(k-N/2)(h/\varepsilon - \beta)} \le C_{1}, \quad (4.36)$$

если $h/\epsilon \ge 2\beta$. Далее, при $h/\epsilon \ge \beta$ имеем

$$\Sigma_{2} = \sum_{k=n+1}^{N-1} e^{\frac{x_{N/2-1}-x_{k}}{\varepsilon}} e^{\beta(2n-k-N/2)} \le \sum_{k=n+1}^{N-1} e^{-2\beta(k-n)} \le C_{1}.$$
(4.37)

Утверждение леммы следует из (4.21)-(4.37).

Лемма 8. Найдутся такие константы $C > 0, \beta > 0$, не зависящие от ε , N, что будут справедливы оценки

$$\|P(\Phi'' - gI)(x)\|_{C[x_n, x_{n+1}]} = \begin{cases} O\left(\frac{C}{\epsilon^4} h_{n+1}^2 e^{-x_n/\epsilon}\right), & 0 \le n \le \frac{N}{2} - 2, \\ O\left(\frac{C}{\epsilon^2 \ln(1 + h/\epsilon)} e^{-x_{N/2-1}/\epsilon}\right), & n = \frac{N}{2} - 1, \\ O\left(\frac{1}{\epsilon h} e^{-\frac{x_{N/2-1}}{\epsilon}} e^{-\beta|n-\frac{N}{2}|}\right), & \frac{N}{2} \le n \le N. \end{cases}$$
(4.38)

Доказательство. Поскольку в каждом узле x_n отличен от нуля только один *B*-сплайн $N_{n-1,1}$, то справедливо равенство $P(\Phi'' - gI)(x_n) = \alpha_{n-1}\tilde{N}_{n-1,1}(x_n)$. Отсюда, из леммы 7 и оценок (4.4) следует утверждение леммы.

Лемма 9. Пусть $e(x) = S_3(x, \Phi) - \Phi(x)$. Справедливы оценки

$$\left\| e^{\prime\prime}(x) \right\|_{C[x_n, x_{n+1}]} \le \frac{C}{\epsilon^4} h_{n+1}^2 e^{-x_n/\epsilon}, \quad 0 \le n \le \frac{N}{2} - 2.$$
(4.39)

Доказательство. В силу (4.5), (4.38) достаточно оценить $||gI(x) - \Phi''(x)||_{C[x_n, x_{n+1}]}$. Это выражение представляет собой погрешность формулы линейной интерполяции на интервале $[x_n, x_{n+1}]$, поэтому для него справедлива оценка (4.39). Это доказывает лемму.

5. ВСПОМОГАТЕЛЬНЫЕ РЕЗУЛЬТАТЫ ДЛЯ ТЕОРЕМЫ 2

Как и в ограничениях теоремы 2, в этом разделе предполагаем, что $\varepsilon \ge C_2 N^{-1}$.

Лемма 10. При $\sigma < \frac{1}{2}$ последовательность шагов h_n , $n \le N/2$, монотонно возрастает и справедливы оценки

$$h_n = \begin{cases} O^* \left(\frac{h}{1 + (h/\epsilon)(N/2 - n)} \right), & 1 \le n \le N/2, \\ O^*(h), & N/2 + 1 \le n \le N. \end{cases}$$
(5.1)

Доказательство. В силу (2.3), при $1 \le n \le N/2$ имеем

$$h_n = -4\varepsilon \ln\left(1 - 2(1 - \varepsilon)\frac{n}{N}\right) + 4\varepsilon \ln\left(1 - 2(1 - \varepsilon)\frac{n - 1}{N}\right) = 4\varepsilon \ln\left(1 + \frac{2(1 - \varepsilon)/N}{1 - 2(1 - \varepsilon)n/N}\right) = O^*\left(\varepsilon \frac{1 - \varepsilon}{\varepsilon N/2 + (1 - \varepsilon)(N/2 - n)}\right) = O^*\left(\frac{h}{1 + (h/\varepsilon)(N/2 - n)}\right),$$

и первая оценка в (5.1) доказана. Вторая оценка очевидна, так как при $N/2 + 1 \le n \le N$ шаги сетки имеют одинаковую длину *h*. Лемма доказана.

Рассмотрим *B*-сплайн (4.3). Тогда
$$\|N_{n,1}\|_{L_2[0,1]} = \frac{1}{\sqrt{3}} (h_{n+1} + h_{n+2})^{1/2}$$
, и с учетом (5.1) $\|N_{n,1}\|_{L_2[0,1]} = O^*(h_{n+1}^{1/2})$, $-1 \le n \le N - 1$.

Пусть $\tilde{N}_{n,1}(x) = N_{n,1}(x) / \left\| N_{n,1} \right\|_{L_2[0,1]}$. Тогда

$$\|\tilde{N}_{n,1}\|_{C[0,1]} = O^*(h_{n+1}^{-1/2}), \quad -1 \le n \le N-1.$$
 (5.2)

Пусть $e(x) = S_3(x, \Phi) - \Phi(x)$. Повторяя рассуждения, приведенные после леммы 1, и используя те же обозначения, приходим к системе уравнений вида (4.7).

Лемма 11. Матрица Г из (4.8) имеет вид:

$$\begin{split} \Gamma &= tridiag\{a_n, c_n, b_n\}, \quad -1 \le n \le N - 1, \quad a_{-1} = b_{N-1} = 0, \\ a_{n+1} &= b_n = O^*(1) > 0, \quad 0 \le n \le N - 2, \\ c_n &= 1, \quad 0 \le n \le N - 2, \quad c_{-1} = c_{N-1} = \frac{1}{\sqrt{2}}. \end{split}$$

Матрица Γ *имеет строгое диагональное преобладание по строкам с показателем преобладания* $1/\sqrt{2}$. Доказательство получается вычислением интегралов в (4.7) с учетом (5.1), (5.2).

Лемма 12. Матрица Γ обратима, и для элементов обратной матрицы $\Gamma^{-1} = {\check{\gamma}_{nk}}$ справедливы оценки

$$\left|\widetilde{\gamma}_{nk}\right| \le C e^{-\beta|n-k|}, \quad \beta > 0.$$
(5.3)

Доказательство. Обратимость матрицы Γ и оценки элементов вытекают из строгого диагонального преобладания с показателем преобладания $1/\sqrt{2}$ и теоремы Демко [8]. Лемма доказана.

Лемма 13. Для элементов *F*_n справедливы оценки

$$F_n = O(h_{n+1}^{5/2} \varepsilon^{-4} e^{-x_n/\varepsilon}), \quad -1 \le n \le N - 1.$$
(5.4)

Доказательство получается прямым вычислением интегралов в (4.9), с учетом (5.2) и оценок погрешности линейной интерполяции.

Лемма 14. Найдется достаточно малая постоянная C_2 , что при $1/N \le C_2 \varepsilon$ для коэффициентов α_n в (4.6) справедливы оценки

$$|\alpha_n| \le C h_{n+1}^{5/2} \varepsilon^{-4} e^{-x_n/\varepsilon}, \quad -1 \le n \le N - 1.$$
 (5.5)

Доказательство. В силу (5.3), (5.4) имеем

$$\begin{aligned} |\alpha_{n}| &\leq \left| \sum_{k=-1}^{N-1} \breve{\gamma}_{nk} F_{nk} \right| \leq \sum_{k=-1}^{N-1} |\breve{\gamma}_{nk}| \cdot |F_{nk}| \leq C \sum_{k=-1}^{N-1} e^{-\beta|n-k|} h_{k+1}^{5/2} \varepsilon^{-4} e^{-x_{k}/\varepsilon} = \\ &= C h_{n+1}^{5/2} \varepsilon^{-4} e^{-x_{n}/\varepsilon} \sum_{k=-1}^{N-1} e^{-\beta|n-k|} e^{(x_{n}-x_{k})/\varepsilon} \left(\frac{h_{k+1}}{h_{n+1}}\right)^{5/2}. \end{aligned}$$
(5.6)

Покажем, что сумма в (5.6) ограничена константой. Имеем

$$\sum_{k=-1}^{N-1} e^{-\beta|n-k|} e^{(x_n - x_k)/\varepsilon} \left(\frac{h_{k+1}}{h_{n+1}}\right)^{5/2} = \sum_{k=-1}^{n} (\cdots) + \sum_{k=n+1}^{N-1} (\cdots) = \Sigma_1 + \Sigma_2.$$
(5.7)

Оценим Σ_1 . В силу (5.1) получаем при n > k

$$\frac{x_n - x_k}{\varepsilon} = \frac{h_{k+1} + \dots + h_n}{\varepsilon} \le \frac{C_3}{N\varepsilon} (n - k) \le (\beta/2)(n - k),$$
(5.8)

если $\varepsilon \ge 2C_3/(N\beta)$. Это условие выполнится, если задать $C_2 = \beta/(2C_3)$. Учитываем, что в силу (5.1) $h_{k+1}/h_{n+1} = O(1)$, поэтому при таком задании C_2

$$\Sigma_1 \le C_4. \tag{5.9}$$

Наконец, в силу (5.1) при $n \le k$ имеем

$$\frac{h_{k+1}}{h_{n+1}} \le C \max\left\{\frac{|N/2 - n| + 1}{|N/2 - k| + 1}, k - n, 1\right\} \le C(k - n + 1).$$
(5.10)

Поэтому

$$\Sigma_2 \le C_5 \sum_{k=n+1}^{N-1} e^{-\frac{\beta}{2}|n-k|} (k-n+1)^{5/2} \le C_6.$$
(5.11)

Из (5.6)-(5.11) вытекает (5.5). Лемма доказана.

Лемма 15. Пусть для произвольных постоянных C_2 , C_3 выполняется оценка $C_2 \varepsilon \le 1/N \le C_3 \varepsilon$. Тогда найдется постоянная C такая, что будут справедливы оценки:

$$|\alpha_n| \le C \begin{cases} h_{n+1}^{5/2} e^{-4} e^{-x_n/\varepsilon}, & -1 \le n \le N/2 - 1, \\ h^{5/2}, & N/2 \le n \le N - 1 \end{cases}.$$
(5.12)

Доказательство. Пусть $-1 \le n \le N/2 - 1$. Оценим $|\alpha_n|$, используя соотношения (5.6), (5.7). В силу (5.1) имеем

$$\frac{x_n - x_k}{\varepsilon} = \frac{h_{k+1} + \dots + h_n}{\varepsilon} \le C \left(\frac{1}{N/2 - k} + \dots + \frac{1}{N/2 - n} \right) \le C_4 \ln \frac{N/2 - k}{N/2 - n}.$$
(5.13)

Поэтому с учетом того, что $(N/2 - k)/(N/2 - n) \le n - k + 1$, для Σ_1 из (5.7) имеем

$$\Sigma_1 \le C_5 \sum_{k=-1}^n e^{-\beta |n-k|} (n-k+1)^{C_4} \le C_6,$$
(5.14)

а оценка (5.11) для Σ_2 сохраняет силу. Итак, Σ_1 , Σ_2 ограничены сверху постоянной. С учетом (5.6) получаем оценку (5.12) при $-1 \le n \le N/2 - 1$.

Рассмотрим случай $n \ge N/2$. По аналогии с (5.6) с учетом $h_{k+1}/h \le C$ имеем

$$|\alpha_n| \le Ch^{5/2} \varepsilon^{-4} e^{-x_{N/2-1}/\varepsilon} \sum_{k=-1}^{N-1} e^{(-\beta|n-k| + (x_{N/2-1} - x_k)/\varepsilon)}.$$
(5.15)

Далее аналогично (5.7) представим

$$\sum_{k=-1}^{N-1} e^{(-\beta|n-k|+(x_{N/2-1}-x_k)/\varepsilon)} = \sum_{k=-1}^{N/2-1} (\cdots) + \sum_{k=N/2}^{N-1} (\cdots) = \Sigma_1 + \Sigma_2.$$
(5.16)

Очевидно, что $\Sigma_2 \leq C$, так как $x_{N/2-1} - x_k < 0$. Оценим Σ_1 . При $n \geq N/2$ имеем

$$\Sigma_{1} \leq \sum_{k=-1}^{N/2-1} e^{(-\beta|N/2-1-k|+(x_{N/2-1}-x_{k})/\varepsilon)}.$$
(5.17)

Оценивая $(x_{N/2-1} - x_k)/\varepsilon$ по аналогии с (5.13), получаем, что оценка для Σ_1 соответствует (5.14) при n = N/2 - 1. Итак, для некоторой постоянной C_8 будет $\Sigma_1 \leq C_8$.

По условию леммы $1/N \le C_3 \varepsilon$, поэтому с учетом (2.3), (2.4) получаем, что $\varepsilon^{-4} e^{-x_{N/2-1}} \le C$. Теперь оценка (5.12) при $n \ge N/2$ следует из (5.15)–(5.17). Лемма доказана.

Лемма 16. Пусть для некоторой постоянной C_2 будет $1/N \le C_2 \varepsilon$. Тогда найдется такая постоянная C, что будут справедливы оценки

$$\|P(\Phi'' - gI)(x)\|_{C[x_n, x_{n+1}]} \le C \begin{cases} h_{n+1}^2 \varepsilon^{-4} e^{-x_n/\varepsilon}, & -1 \le n \le N/2 - 1, \\ h^2, & N/2 \le n \le N - 1. \end{cases}$$
(5.18)

Доказательство. Поскольку в каждом узле x_n отличен от нуля только один *B*-сплайн $N_{n-1,1}$, то справедливо равенство $P(\Phi'' - gI)(x_n) = \alpha_{n-1}\tilde{N}_{n-1,1}(x_n)$. Отсюда, из лемм 14, 15 и оценок (5.2) следует утверждение леммы.

Лемма 17. Пусть для некоторой постоянной $C_2 1/N \le C_2 \varepsilon$. Тогда справедливы оценки

$$\|e''(x)\|_{C[x_n,x_{n+1}]} \le C \begin{cases} h_{n+1}^2 \varepsilon^{-4} e^{-x_n/\varepsilon}, & -1 \le n \le N/2 - 1, \\ h^2, & N/2 \le n \le N - 1. \end{cases}$$
(5.19)

Доказательство. В силу (4.5), (5.18) достаточно оценить $\|gI(x) - \Phi''(x)\|_{C[x_n, x_{n+1}]}$. Но оценка этого выражения вытекает из оценки погрешности формулы линейной интерполяции на отрезке $[x_n, x_{n+1}]$ и соответствует (5.19). Лемма доказана.

6. ВСПОМОГАТЕЛЬНЫЕ РЕЗУЛЬТАТЫ ДЛЯ ТЕОРЕМЫ 3

Рассмотрим модифицированный сплайн $\tilde{S}_3(x, u)$ из (3.3). Обозначим через $N_{n,l}(x)$ нормализованный *B*-сплайн степени *l* на сетке Ω [2]. Для функций $N_{n,l}(x)$ справедливы следующие формулы (см. [2, с. 31]):

$$N_{n,l}(x) = \frac{x - x_n}{x_{n+l} - x_n} N_{n,l-1}(x) + \frac{x_{n+l+1} - x}{x_{n+l+1} - x_{n+1}} N_{n+1,l-1}(x),$$
(6.1)

$$N'_{n,l}(x) = \frac{l}{x_{n+l} - x_n} N_{n,l-1}(x) - \frac{l}{x_{n+l+1} - x_{l+1}} N_{n+1,l-1}(x).$$
(6.2)

ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ том 61 № 12 2021

Представим $\tilde{S}_3(x, u)$ в виде

$$\tilde{S}_3(x,u) = \sum_{n=-3}^{N-1} \alpha_n N_{n,3}(x).$$

Далее коэффициенты α_n соответствуют разложению сплайна $\tilde{S}_3(x, u)$. Из условий интерполяции (3.3) получаем систему уравнений для коэффициентов:

$$\sum_{n=-3}^{N-1} \alpha_n N'_{n,3}(0) = u'(0), \qquad \sum_{n=-3}^{N-1} \alpha_n N'_{n,3}(1) = u'(1),$$

$$\sum_{n=-3}^{N-1} \alpha_n N_{n,3}(\overline{x}_k) = u(\overline{x}_k), \quad -3 \le k \le N.$$
(6.3)

Преобразуем систему (6.3) в соответствии с [10]. Для этого вычислим значения входящих в нее кубических сплайнов и их производных по формулам (6.1), (6.2) и исключим из двух первых и двух последних уравнений неизвестные α_{-3} и α_{N-1} . В результате формулы для α_{-3} и α_{N-1} будут иметь вид

$$\alpha_{-3} = \left(\frac{1}{2} - \frac{3h_1}{2(2h_1 + h_2)}\right)\alpha_{-2} + \frac{3h_1}{2h_1 + h_2}\alpha_{-1} - 2hu'(0), \quad \alpha_{N-1} = \alpha_{N-3} + 2h_Nu'(1), \quad (6.4)$$

а система уравнений для остальных коэффициентов примет вид

$$A\alpha = U, \tag{6.5}$$

где $A = \{a_{nk}\}, -2 \le n, k \le N - 2, -$ матрица порядка $(N + 1) \times (N + 1), U = (U_{-2}, U_{-1}, \dots, U_{N-2})^{\mathrm{T}}$. Ненулевые элементы матрицы A имеют вид

$$a_{k(k-1)} = \frac{h_{k+3}^{2}}{(h_{k+1} + h_{k+2} + h_{k+3})(h_{k+2} + h_{k+3})}, \quad a_{kk} = \frac{h_{k+3}(h_{k+1} + h_{k+2})}{(h_{k+1} + h_{k+2} + h_{k+3})(h_{k+2} + h_{k+3})} + \frac{h_{k+2}(h_{k+3} + h_{k+4})}{(h_{k+2} + h_{k+3} + h_{k+4})(h_{k+2} + h_{k+1})}, \quad (6.6)$$

$$a_{k(k+1)} = \frac{h_{k+2}^{2}}{(h_{k+2} + h_{k+3} + h_{k+4})(h_{k+2} + h_{k+3})}, \quad k \in [-1, N/2 - 4],$$

 $a_{k(k-1)} = a_{k(k+1)} = 1/6, \quad a_{kk} = 2/3, \quad k \in [N/2 - 3, N/2], \quad a_{(-2)(-2)} = \frac{1}{2} + \frac{h_2}{2(2h_1 + h_2)},$ (6.7)

$$a_{(-2)(-1)} = \frac{h_1}{2h_1 + h_2}, \quad a_{(N-2)(N-3)} = \frac{1}{3}, \quad a_{(N-2)(N-2)} = \frac{2}{3},$$

$$a_{\left(\frac{N}{2}-3\right)\left(\frac{N}{2}-4\right)} = \frac{h_{\frac{N}{2}}^{2}}{8\left(h_{\frac{N}{2}-2} + h_{\frac{N}{2}-1} + h_{\frac{N}{2}}\right)\left(h_{\frac{N}{2}-1} + h_{\frac{N}{2}}\right)},\tag{6.8}$$

$$a_{\left(\frac{N}{2}-3\right)\left(\frac{N}{2}-3\right)} = \frac{\left(\frac{h_{N-2}}{2} + \frac{h_{N-1}}{2} + \frac{h_{N}}{2}\right)h_{N}}{4\left(\frac{h_{N-2}}{2} + \frac{h_{N-1}}{2} + \frac{h_{N}}{2}\right)\left(\frac{h_{N-1}}{2} + \frac{h_{N}}{2}\right)} + \frac{\left(\frac{h_{N}}{2} + \frac{h_{N-1}}{2} + \frac{h_{N-1}}{2}\right)\left(\frac{h_{N-1}}{2} + \frac{h_{N-1}}{2}\right)}{2\left(\frac{h_{N-1}}{2} + \frac{h_{N-1}}{2} + \frac{h_{N-1}}{2}\right)} + \frac{\left(\frac{h_{N}}{2} + \frac{h_{N-1}}{2}\right)^{2}}{2\left(\frac{h_{N-1}}{2} + \frac{h_{N-1}}{2} + \frac{h_{N-1}}{2}\right)\left(\frac{h_{N-1}}{2} + \frac{h_{N-1}}{2}\right)},$$
(6.9)

ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ том 61 № 12 2021

$$a_{\left(\frac{N}{2}-3\right)\left(\frac{N}{2}-2\right)} = \frac{\left(\frac{h_N}{2}/2 + h_{\frac{N}{2}-1}\right)^2}{2\left(\frac{h_N}{2} + h_{\frac{N}{2}} + h_{\frac{N}{2}+1}\right)\left(\frac{h_N}{2} + h_{\frac{N}{2}}\right)} + \frac{h_N}{2}\left(\frac{h_N}{2} + h_{\frac{N}{2}+1}\right)\left(\frac{h_N}{2} + h_{\frac{N}{2}+1}\right)\left(\frac{h_N}{2} + h_{\frac{N}{2}+1}\right) + \frac{h_N}{2}\left(\frac{h_N}{2} + h_{\frac{N}{2}+1}\right)\left(\frac{h_N}{2} + h_{\frac{N}{2}+1}\right)\left(\frac{h_N}{2}$$

$$+\frac{\left(\frac{h_{N}}{2}/2+h_{N-1}\right)\left(\frac{h_{N}}{2}/2+h_{N-1}\right)}{2\left(\frac{h_{N-1}}{2}+h_{N-1}\right)\left(\frac{h_{N-1}}{2}+h_{N-1}\right)\left(\frac{h_{N-1}}{2}+h_{N-1}\right)}+\frac{\left(\frac{h_{N-2}}{2}+h_{N-1}+h_{N-1}/2\right)h_{N-1}}{4\left(\frac{h_{N-2}}{2}+h_{N-1}+h_{N-1}/2\right)\left(\frac{h_{N-1}}{2}+h_{N-1}/2\right)},$$

$$a_{(N-3)(N-1)}=\frac{h_{N-2}^{2}}{2},$$

$$(6.11)$$

$$h_{\left(\frac{N}{2}-3\right)\left(\frac{N}{2}-1\right)} = \frac{2}{8\left(h_{\frac{N}{2}+2} + h_{\frac{N}{2}+1} + h_{\frac{N}{2}}\right)\left(h_{\frac{N}{2}+1} + h_{\frac{N}{2}}\right)},\tag{6.11}$$

$$a_{\left(\frac{N}{2}-2\right)\left(\frac{N}{2}-3\right)} = \frac{h_{\frac{N}{2}+1}}{8\left(h_{\frac{N}{2}-1} + h_{\frac{N}{2}} + h_{\frac{N}{2}+1}\right)\left(h_{\frac{N}{2}} + h_{\frac{N}{2}+1}\right)},\tag{6.12}$$

$$a_{\left(\frac{N}{2}-2\right)\left(\frac{N}{2}-2\right)} = \frac{\left(\frac{h_{N-1}}{2} + \frac{h_{N}}{2} + \frac{h_{N-1}}{2}\right)h_{N-1}}{4\left(\frac{h_{N-1}}{2} + \frac{h_{N}}{2} + \frac{h_{N-1}}{2}\right)\left(\frac{h_{N}}{2} + \frac{h_{N-1}}{2}\right)} + \left(\frac{h_{N}}{2} + \frac{h_{N}}{2}\right)\left(\frac{h_{N}}{2} + \frac{h_{N}}{2}\right) + \left(\frac{h_{N}}{2} + \frac{h_{N}}{2}\right) + \left(\frac{h_$$

$$+\frac{\left(\frac{h_{N+1}/2+h_{N+2}}{2(h_{N+1}+h_{N+1}+h_{N+2})}\right)\left(\frac{h_{N+1}/2+h_{N}}{2}\right)}{2\left(\frac{h_{N}}{2}+h_{N+1}+h_{N+2}\right)\left(\frac{h_{N}}{2}+h_{N+1}+h_{N+1}\right)}+\frac{\left(\frac{h_{N+1}/2+h_{N+2}}{2(h_{N}+h_{N+1}+h_{N+2})}\right)\left(\frac{h_{N+1}}{2+1}+h_{N+2}\right)}{2\left(\frac{h_{N+1}/2+h_{N+2}}{2(h_{N+1}+h_{N+2})}\right)\left(\frac{h_{N+1}/2+h_{N+2}}{2(h_{N+1}+h_{N+2})}\right)},$$

$$a_{\left(\frac{N}{2}-2\right)\left(\frac{N}{2}-1\right)} = \frac{\left(\frac{1}{2} + h_{\frac{N}{2}+1} + h_{\frac{N}{2}+2}\right)\left(h_{\frac{N}{2}} + h_{\frac{N}{2}+2}\right)}{2\left(h_{\frac{N}{2}} + h_{\frac{N}{2}+2}\right)\left(h_{\frac{N}{2}} + h_{\frac{N}{2}+2}\right)} + \frac{\left(h_{\frac{N}{2}+3} + h_{\frac{N}{2}+2}\right)\left(h_{\frac{N}{2}+3} + h_{\frac{N}{2}+2}\right)}{\left(h_{\frac{N}{2}+3} + h_{\frac{N}{2}+2} + h_{\frac{N}{2}+1}/2\right)h_{\frac{N}{2}+1}} + \frac{h_{\frac{N}{2}+2}}{2\left(h_{\frac{N}{2}} + h_{\frac{N}{2}+1} + h_{\frac{N}{2}+2}\right)\left(h_{\frac{N}{2}+2} + h_{\frac{N}{2}+1}\right)} + \frac{h_{\frac{N}{2}+2}}{\left(h_{\frac{N}{2}+3} + h_{\frac{N}{2}+2} + h_{\frac{N}{2}+1}/2\right)h_{\frac{N}{2}+1}} + \frac{h_{\frac{N}{2}+2}}{2\left(h_{\frac{N}{2}+3} + h_{\frac{N}{2}+2} + h_{\frac{N}{2}+1}/2\right)h_{\frac{N}{2}+1}} + \frac{h_{\frac{N}{2}+3}}{2\left(h_{\frac{N}{2}+3} + h_{\frac{N}{2}+3} + h_{\frac{N}{2}+3}\right)h_{\frac{N}{2}+1}} + \frac{h_{\frac{N}{2}+3}}{2\left(h_{\frac{N}{2}+3} + h_{\frac{N}{2}+3} + h_{\frac{N}{2}+3}\right)h_{\frac{N}{2}+1}} + \frac{h_{\frac{N}{2}+3}}{2\left(h_{\frac{N}{2}+3} + h_{\frac{N}{2}+3}\right)h_{\frac{N}{2}+3}} + \frac{h_{\frac{N}{2}+3}}{2\left(h_{$$

$$+\frac{1}{4\left(h_{\frac{N}{2}+3}+h_{\frac{N}{2}+2}+h_{\frac{N}{2}+1}\right)\left(h_{\frac{N}{2}+2}+h_{\frac{N}{2}+1}\right)},$$

$$a_{\left(\frac{N}{2}-2\right)\left(\frac{N}{2}\right)} = \frac{h_{\frac{N}{2}+1}^{2}}{8\left(h_{\frac{N}{2}+3}+h_{\frac{N}{2}+2}+h_{\frac{N}{2}+1}\right)\left(h_{\frac{N}{2}+2}+h_{\frac{N}{2}+1}\right)},$$
(6.15)

$$a_{\left(\frac{N}{2}-1\right)\left(\frac{N}{2}-2\right)} = \frac{h_{\frac{N}{2}+2}^2}{\left(h_{\frac{N}{2}+2} + h_{\frac{N}{2}+1} + h_{\frac{N}{2}}\right)\left(h_{\frac{N}{2}+2} + h_{\frac{N}{2}+1}\right)},\tag{6.16}$$

$$a_{\left(\frac{N}{2}-1\right)\left(\frac{N}{2}-1\right)} = \frac{\left(h_{\frac{N}{2}}+h_{\frac{N}{2}+1}\right)h_{\frac{N}{2}+2}}{\left(h_{\frac{N}{2}}+h_{\frac{N}{2}+1}+h_{\frac{N}{2}+2}\right)\left(h_{\frac{N}{2}+1}+h_{\frac{N}{2}+2}\right)} + \frac{\left(h_{\frac{N}{2}+3}+h_{\frac{N}{2}+2}\right)h_{\frac{N}{2}+1}}{\left(h_{\frac{N}{2}+3}+h_{\frac{N}{2}+2}+h_{\frac{N}{2}+1}\right)\left(h_{\frac{N}{2}+1}+h_{\frac{N}{2}+2}\right)},$$

$$h_{N}^{2}$$
(6.17)

$$a_{(\frac{N}{2}-1)\frac{N}{2}} = \frac{h_{\frac{N}{2}+1}}{\left(h_{\frac{N}{2}+1} + h_{\frac{N}{2}+2} + h_{\frac{N}{2}+3}\right)\left(h_{\frac{N}{2}+1} + h_{\frac{N}{2}+2}\right)}.$$
(6.18)

ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ том 61 № 12 2021

Элементы вектора U имеют вид

$$U_{-2} = u(0) + \frac{1}{3}h_1u'(0), \quad U_n = u(x_{n+2}), \quad -1 \le n \le N - 3, \quad U_{N-2} = u(1) - \frac{1}{3}hu'(1).$$
(6.19)

Учитывая, что в силу (4.1) имеем $h_2 = h_1(1 + O(1/N))$, из (6.7) находим, что в строке с номером (-2) матрица *A* будет иметь диагональное преобладание с показателем преобладания 1/3 + O(1/N). Отсюда же следует диагональное преобладание с показателем 1/3 в строках с номерами $k \in [N/2, N-2]$.

Далее в силу (6.6) при $k \in [-1, N/2 - 4]$ имеем

$$a_{kk} - a_{(k)(k-1)} - a_{(k)(k+1)} = \frac{h_{k+3}(h_{k+1} + h_{k+2} - h_{k+3})}{(h_{k+1} + h_{k+2} + h_{k+3})(h_{k+2} + h_{k+3})} + \frac{h_{k+2}(h_{k+3} + h_{k+4} - h_{k+2})}{(h_{k+2} + h_{k+3} + h_{k+4})(h_{k+2} + h_{k+1})}.$$
(6.20)

Но в силу (4.1) получаем

$$h_{k+1} + h_{k+2} - h_{k+3} = 4\varepsilon \ln\left(1 + \frac{4(1-\varepsilon)/N}{1-2\varepsilon(k+2)/N}\right) - 4\varepsilon \ln\left(1 + \frac{2(1-\varepsilon)/N}{1-2\varepsilon(k+3)/N}\right).$$
(6.21)

Далее,

$$\frac{1-2\varepsilon(k+3)/N}{2(1-\varepsilon)/N} - \frac{1-2\varepsilon(k+2)/N}{4(1-\varepsilon)/N} > 0.$$

Поэтому $h_{k+1} + h_{k+2} - h_{k+3} > 0$ при $k \le N/2 - 4$. Отсюда в силу (6.20), (6.21) и того, что последовательность h_k возрастает, имеем

$$a_{kk} - a_{k(k-1)} - a_{k(k+1)} \ge \frac{h_{k+2}(h_{k+3} + h_{k+4} - h_{k+2})}{(h_{k+2} + h_{k+3} + h_{k+4})(h_{k+2} + h_{k+1})} \ge \frac{h_{k+2}h_{k+4}}{(h_{k+2} + h_{k+3} + h_{k+4})(h_{k+2} + h_{k+1})} \ge \frac{h_{k+2}h_{k+4}}{3h_{k+4}2h_{k+2}} \ge \frac{1}{6}, \quad k \in [-1, N/2 - 4]$$

Осталось рассмотреть строки с номерами N/2 - 3, N/2 - 2, N/2 - 1.

Пусть $\overline{a}_{nk} = \lim_{\epsilon/h \to 0} a_{nk}$. Учитывая, что при $k \le N/2 - 1 \lim_{\epsilon/h \to 0} \frac{h_k}{h_{N/2}} = 0$, при $k \ge N/2 + 1 \lim_{\epsilon/h \to 0} \frac{h_{N/2}}{h_k} = 0$, из (6.5)–(6.18) получаем, что

$$\overline{a}_{(N/2-3)(N/2-4)} = \frac{1}{8}, \quad \overline{a}_{(N/2-3)(N/2-3)} = \frac{7}{8}, \quad \overline{a}_{(N/2-3)(N/2-2)} = \overline{a}_{(N/2-3)(N/2-1)} = 0,$$

$$\overline{a}_{(N/2-2)(N/2-3)} = \frac{1}{8}, \quad \overline{a}_{(N/2-2)(N/2-2)} = \frac{19}{32}, \quad \overline{a}_{(N/2-2)(N/2-1)} = \frac{25}{96}, \quad \overline{a}_{(N/2-2)(N/2)} = \frac{1}{48},$$

$$\overline{a}_{(N/2-1)(N/2-2)} = \frac{1}{4}, \quad \overline{a}_{(N/2-1)(N/2-1)} = \frac{7}{12}, \quad \overline{a}_{(N/2-1)(N/2)} = \frac{1}{6}.$$

Таким образом, доказано, что при достаточно малых ε/h в строках с номерами N/2 - 3, N/2 - 2, N/2 - 1 также будет диагональное преобладание с показателем преобладания, не зависящим от ε , *h*.

Итак, доказана

Лемма 18. Найдутся такие константы $C_2 > 0$, r > 0, не зависящие от ε , N, что при $\varepsilon \le C_2 N^{-1}$ матрица A имеет строгое диагональное преобладание по строкам с показателем преобладания r.

Изучим аппроксимационные свойства пространства $S(\Omega, 3, 1)$.

Лемма 19. Пусть функция u(x) удовлетворяет оценкам (2.2). Тогда найдется такая функция $gp_3(x) \in S(\Omega, 3, 1)$, что будут справедливы оценки

$$\left\| u(x) - gp_3(x) \right\|_{C[0,1]} \le CN^{-4},\tag{6.22}$$

ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ том 61 № 12 2021

$$\left\|h_{n+1}(u'(x) - gp'_{3}(x))\right\|_{C[x_{n}, x_{n+1}]} \le CN^{-4}, \quad n = 0, N - 1.$$
(6.23)

Доказательство. В соответствии с [2] для кубического сплайна справедлива оценка погрешности

$$|S_3(x,u) - u(x)| \le \frac{5}{384} \left\| u^{(4)} \right\|_{C[0,1]} \max_n h_n^4, \quad x \in [0, 1].$$
(6.24)

Согласно (2.2), $|q^{(4)}(x)| \le C_1$, поэтому в соответствии с (6.24) имеем

$$|S_3(x,q) - q(x)| \le CN^{-4}, \quad x \in [0,1].$$
 (6.25)

В соответствии с (6.25) остается оценить погрешность на составляющей $\Phi(x)$. Тогда при обосновании будем считать, что $u(x) = \Phi(x)$, $\alpha = 1$. Будем считать функцию u(x) продолженной левее точки x = 0 и правее точки x = 1 многочленами Тейлора третьей степени с центрами в x = 0 и x = 1 соответственно. Обозначим через P_3 множество всех многочленов третьей степени. Тогда, согласно [7, с. 137], существует такая функция $gp_3(x) \in S(\Omega, 3, 1)$, что справедливы оценки

$$\|u(x) - gp_3(x)\|_{C[x_n, x_{n+1}]} \le C \inf_{g \in P_3} \|u(x) - g(x)\|_{C[x_{n-2}, x_{n+3}]}.$$
(6.26)

Зафиксируем произвольный отрезок $[x_n, x_{n+1}]$. Обозначим через $P_n(x)$ многочлен Тейлора степени 3 функции u(x) с центром разложения в точке x_{n+3} . Имеем

$$u(x) = P_n(x) + \frac{1}{3!} \int_{x_{n+3}}^{x} (x-s)^3 u^{(4)}(s) ds.$$
(6.27)

Из (6.27), (2.2) получаем для $0 \le n \le N - 1$

$$\|u(x) - P_n(x)\|_{C[x_n, x_{n+1}]} \le C \int_{x_n}^{x_{n+3}} (s - x_n)^3 \varepsilon^{-4} e^{-s/\varepsilon} ds = C e^{-x_n/\varepsilon} \frac{1}{\varepsilon} \int_{x_n}^{x_{n+3}} \left(\frac{s - x_n}{\varepsilon}\right)^3 e^{-\frac{s - x_n}{\varepsilon}} ds.$$
(6.28)

Но в силу (2.3) имеем

$$e^{-x_n/\varepsilon} = \left(1 - 2(1 - \varepsilon)\frac{n}{N}\right)^4 = 16\left(\frac{N/2 - n + \varepsilon n}{N}\right)^4, \quad 0 \le n \le N/2.$$
(6.29)

Из (6.28), (6.29), (4.2), учитывая, что $\varepsilon N \le C_2$, при $0 \le n \le N/2 - 4$ получаем

$$\|u(x) - P_n(x)\|_{C[x_n, x_{n+1}]} \le Ce^{-x_n/\varepsilon} \frac{1}{\varepsilon^4} (x_{n+3} - x_n)^4 \le C_1 e^{-x_n/\varepsilon} \frac{1}{\varepsilon^4} h_n^4 \le C_3 \frac{1}{(N/2 - n)^4} \left(\frac{N/2 - n + \varepsilon n}{N}\right)^4 \le C_4 N^{-4}, \quad 0 \le n \le N/2 - 4.$$
(6.30)

При $N/2 - 3 \le n \le N - 1$ имеем

$$\|u(x) - P_n(x)\|_{C[x_n, x_{n+1}]} \le Ce^{-x_n/\varepsilon} \frac{1}{\varepsilon} \int_{x_n}^{x_{n+3}} \left(\frac{s - x_n}{\varepsilon}\right)^3 e^{\frac{s - x_n}{\varepsilon}} ds \le C_1 e^{-x_n/\varepsilon} \le$$

$$\le C_1 e^{-x_{N/2-3}/\varepsilon} = 16C_1 \left(\frac{3 + \varepsilon(N/2 - 3)}{N}\right)^4 \le CN^{-4}, \quad N/2 - 3 \le n \le N - 1.$$

$$(6.31)$$

Из (6.30), (6.31), (6.26) получаем (6.22).

Докажем (6.23). Для этого заметим, что в силу (6.22), (6.30), (6.31) будет

$$\|gp_3(x) - P_n(x)\|_{C[x_n, x_{n+1}]} \le C_2 N^{-4}, \quad 0 \le n \le N - 1.$$

Но функция ($gp_3(x) - P_n(x)$) на отрезке [x_n, x_{n+1}] есть многочлен третьей степени. Поэтому в силу эквивалентности норм в пространстве многочленов третьей степени на фиксированном отрезке будем иметь

$$\left\|gp'_{3}(x) - P'_{n}(x)\right\|_{C[x_{n}, x_{n+1}]} \le \frac{C}{h_{n+1}} \left\|gp_{3}(x) - P_{n}(x)\right\|_{C[x_{n}, x_{n+1}]} \le \frac{C_{3}}{h_{n+1}} N^{-4}.$$
(6.32)

Далее, дифференцируя равенство (6.27), получаем

$$u'(x) = P'_n(x) + \frac{1}{2!} \int_{x_{n+3}}^{x} (x-s)^2 u^{(4)}(s) ds.$$
(6.33)

Повторяя для (6.33) выкладки, проделанные с (6.27) при доказательстве (6.22), находим

$$\left\| u'(x) - P'_n(x) \right\|_{C[x_n, x_{n+1}]} \le C_3 \frac{1}{\varepsilon} N^{-3}, \quad 0 \le n \le N - 1.$$
(6.34)

Из (6.32), (6.34), учитывая соотношение $h_1 = O(\varepsilon N^{-1})$, получаем (6.23) при n = 0. При n = N - 1будет $\left\| u^{(4)}(x) \right\|_{C[x_{N-1},x_N]} \le C$ и $\left\| u'(x) - P'_n(x) \right\|_{C[x_n,x_{n+1}]} \le C_3 N^{-3}$, откуда аналогично получаем (6.23) при n = N - 1. Лемма доказана.

7. ДОКАЗАТЕЛЬСТВО ТЕОРЕМ

Доказательство теоремы 1. В соответствии с [2] для интерполяционного кубического сплайна $S_3(x, u) \in S(\Omega, 3, 1)$ справедлива оценка погрешности (6.24).

В соответствии с представлением (2.1) $S_3(x,u) = S_3(x,q) + S_3(x,\Phi)$, а для погрешности сплайна на составляющей q(x) справедлива оценка (6.25). Остается оценить $\|S_3(x,\Phi) - \Phi(x)\|_{C[x_n,x_{n+1}]}$ для каждого сеточного интервала.

В случае $\sigma = 1/2$ параметр є ограничен положительной константой снизу, поэтому в соответствии с (6.24), (2.2) сплайн $S_3(x, \Phi)$ имеет погрешность порядка $O(N^{-4})$ равномерно по є. Поэтому ниже будем предполагать, что $\sigma < 1/2$ и є $< e^{-1}$.

Вначале докажем оценки (3.1) для $n \le \frac{N}{2} - 2$. Зафиксируем $n \in \left[0, \frac{N}{2} - 2\right]$. Пусть $e(x) = S_3(x, \Phi) - \Phi(x)$. Тогда, поскольку $e(x_n) = e(x_{n+1}) = 0$, то, рассматривая e(x) как решение краевой задачи e''(x) = e''(x) с нулевыми краевыми условиями на интервале $[x_n, x_{n+1}]$, получаем

$$e(x) = \int_{x_n}^{x_{n+1}} G(x,s)e''(s)ds,$$
(7.1)

где функция Грина имеет вид

$$G(x,s) = \frac{1}{x_{n+1} - x_n} \begin{cases} (x - x_n)(x_{n+1} - s), & x_n \le x \le s, \\ (s - x_n)(x_{n+1} - x), & s < x \le x_{n+1}. \end{cases}$$

Поскольку $|G(x, s)| \le h_{n+1}$, то из (4.39), (4.2), (2.3) получаем

$$\|e(x)\|_{C[x_n,x_{n+1}]} \le h_{n+1} \int_{x_n}^{x_{n+1}} |e''(s)| ds \le h_{n+1}^2 \|e''(s)\|_{C[x_n,x_{n+1}]} \le \frac{C}{\varepsilon^4} e^{-x_n/\varepsilon} h_{n+1}^4 \le \frac{C}{(N/2-n)^4} \left(1-2(1-\varepsilon)\frac{n}{N}\right)^4 = \frac{16C}{N^4} \frac{(N/2-n+\varepsilon N)^4}{(N/2-n)^4} \le \frac{C_1}{N^4}.$$

С учетом оценки (6.25) получаем оценку (3.1) для $n \le \frac{N}{2} - 2$.

При $n \ge N/2 - 1$ имеем

$$\|e(x)\|_{C[x_n,x_{n+1}]} \le h_{n+1} \left(\int_{x_n}^{x_{n+1}} |\Phi''(s)| ds + \int_{x_n}^{x_{n+1}} |S_3''(s,\Phi)| ds \right).$$
(7.2)

Далее, при n = N/2 - 1 имеем

$$\int_{x_n}^{x_{n+1}} |\Phi''(s)| ds \le \frac{C}{\varepsilon^2} \int_{x_n}^{x_{n+1}} e^{-\frac{s}{\varepsilon}} ds \le \frac{C}{\varepsilon} e^{-\frac{x_n}{\varepsilon}} \le \frac{C}{\varepsilon N^4}, \quad n = N/2 - 1.$$
(7.3)

Учитывая (4.38) и то, что gI(x) = 0 при $x \ge x_{N/2-1}$, т.е. $P(\Phi'' - gI)(x) = S_3''(x, \Phi)$, получаем

$$\int_{x_n}^{x_{n+1}} \left| S_3''(s,\Phi) \right| ds \le C \varepsilon \ln(1+h/\varepsilon) \frac{1}{\varepsilon^2 \ln(1+h/\varepsilon)} e^{-x_{N/2-1}/\varepsilon} \le \frac{C}{\varepsilon N^4}, \quad n = N/2 - 1.$$
(7.4)

Из (7.2), (7.3), (7.4), (6.25) получаем оценку (3.1) для $n = \frac{N}{2} - 1$.

Аналогично при $n \ge N/2$

$$\int_{x_n}^{x_{n+1}} |\Phi''(s)| ds \leq \frac{C}{\varepsilon^2} \int_{x_n}^{x_{n+1}} e^{-\frac{s}{\varepsilon}} ds \leq \frac{C}{\varepsilon} e^{-\frac{x_n}{\varepsilon}} = \frac{C}{\varepsilon} e^{-\frac{x_{N/2}}{\varepsilon}} e^{-\frac{x_n - x_{N/2}}{\varepsilon}} \leq \frac{C_1}{\varepsilon} N^{-4} e^{-(n-N/2)\frac{h}{\varepsilon}} \leq \frac{C_1}{\varepsilon N^4} e^{-\beta(n-N/2)}.$$
(7.5)

Учитывая, что при $n \ge N/2$, согласно сказанному выше, $S''_3(x, \Phi) = P\Phi''(x), gI(x) = 0$ и учитывая (4.38), получаем

$$\int_{x_n}^{x_{n+1}} \left| S_3''(s, \Phi) \right| ds \le Ch \frac{1}{\epsilon h} e^{-x_{N/2-1}/\epsilon} e^{-\beta |n-\frac{N}{2}|} \le \frac{C}{\epsilon N^4} e^{-\beta |n-\frac{N}{2}|}.$$
(7.6)

Из (7.5), (7.6), леммы 1 и (6.25) следуют оценки (3.1) при *n* ≥ *N*/2. Теорема 1 доказана полностью.

Доказательство теоремы 2. Оценку (3.2) получим на основе оценивания погрешности на каждом интервале $[x_n, x_{n+1}]$. Для погрешности e(x) на интервале $[x_n, x_{n+1}]$ справедливо соотношение (7.1). На основе (7.1), (5.19) получаем

$$\|e(x)\|_{C[x_n,x_{n+1}]} \le h_{n+1} \int_{x_n}^{x_{n+1}} |e''(s)| ds \le h_{n+1}^2 \|e''(s)\|_{C[x_n,x_{n+1}]} \le C \begin{cases} h_{n+1}^4 \varepsilon^{-4} e^{-x_n/\varepsilon}, & 0 \le n \le N/2 - 1, \\ N^{-4}, & N/2 \le n \le N - 1. \end{cases}$$
(7.7)

Из (2.3), (2.4), (5.1), (7.7) находим при $n \le \frac{N}{2} - 1$

$$\|e(x)\|_{C[x_n,x_{n+1}]} \le C \left(1 - 2(1-\varepsilon)\frac{n}{N}\right)^4 \left(\frac{1/N}{1 + \frac{1}{\varepsilon N}(N/2 - n)}\right)^4 = \frac{16C}{N^4} \frac{(N/2 - n + \varepsilon n)^4}{(N + \frac{N/2 - n}{\varepsilon})^4} \le \frac{C_1}{N^4}.$$

Отсюда получаем оценку (3.2) при $x \in [x_n, x_{n+1}], n \le \frac{N}{2} - 1.$

При $N/2 \le n \le N - 1$ оценка (3.2) непосредственно вытекает из (7.7). Теорема 2 доказана.

Доказательство теоремы 3. Введем в рассмотрение $err(x) = \tilde{S}_3(x,u) - gp_3(x)$, где $gp_3(x) - функ-$ ция из леммы 19. Представим ее в виде

$$\operatorname{err}(x) = \sum_{n=-3}^{N-1} \beta_n N_{n,3}(x).$$

Тогда аналогично (6.3)–(6.5) для коэффициентов β_n получаем систему

$$A\beta = ERR \tag{7.8}$$

ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ том 61 № 12 2021

ε	N							
	2^4	2 ⁵	2 ⁶	2^{7}	2 ⁸	2 ⁹		
10^{-1}	1.33×10^{-4}	1.02×10^{-5}	6.99×10^{-7}	4.52×10^{-8}	2.89×10^{-9}	1.82×10^{-10}		
10^{-2}	1.72×10^{-4}	1.06×10^{-5}	6.74×10^{-7}	7.95×10^{-8}	8.80×10^{-9}	8.12×10^{-9}		
10^{-3}	4.82×10^{-4}	1.37×10^{-5}	7.04×10^{-7}	4.38×10^{-8}	2.71×10^{-9}	1.64×10^{-10}		
10^{-4}	6.35×10^{-3}	1.88×10^{-4}	5.45×10^{-6}	1.56×10^{-7}	4.45×10^{-9}	1.72×10^{-10}		
10^{-5}	7.22×10^{-2}	2.19×10^{-3}	6.62×10^{-5}	1.98×10^{-6}	5.86×10^{-8}	1.71×10^{-9}		
10^{-6}	7.73×10^{-1}	2.38×10^{-2}	7.28×10^{-4}	2.22×10^{-5}	6.76×10^{-7}	2.05×10^{-8}		
10^{-7}	8.06	2.49×10^{-1}	7.70×10^{-3}	2.37×10^{-4}	7.29×10^{-6}	2.24×10^{-7}		
10^{-8}	83.1	2.58	7.98×10^{-2}	2.47×10^{-3}	7.64×10^{-5}	2.36×10^{-6}		

Таблица 1. Погрешность интерполяционного кубического сплайна $S_3(x, u)$

и условия

$$\beta_{-3} = \left(\frac{1}{2} - \frac{3h_{\rm l}}{2(2h_{\rm l} + h_2)}\right)\beta_{-2} + \frac{3h_{\rm l}}{2h_{\rm l} + h_2}\beta_{-1} - 2h_{\rm l}\mathrm{err'}(0),$$

$$\beta_{N-1} = \beta_{N-3} + 2h_N\mathrm{err'}(1).$$
(7.9)

С учетом условий интерполяции для сплайна $\tilde{S}_3(x, u)$ имеем

$$\operatorname{err}'(0) = u'(0) - gp'_3(0), \quad \operatorname{err}'(1) = u'(1) - gp'_3(1),$$
 (7.10)

$$ERR = \{ERR_n\}, \quad ERR_n = u(x_{n+2}) - gp_3(x_{n+2}), \quad -2 \le n \le N - 2, \tag{7.11}$$

причем в силу леммы 19 и (7.10), (7.11) справедливы оценки

$$\max\{|h_{1} \cdot \operatorname{err}'(0)|, |h_{N} \cdot \operatorname{err}'(1)|\} \le CN^{-4}, \quad \max_{-2 \le n \le N-2} |ERR_{n}| \le CN^{-4}.$$
(7.12)

Из леммы 18, (7.8), (7.9), (7.12) получаем, что $\max_{-3 \le n \le N-1} |\beta_n| \le CN^{-4}$, откуда следует, что

$$\|\operatorname{err}(x)\|_{C[x_n, x_{n+1}]} \le CN^{-4}, \quad 0 \le n \le N - 1.$$
 (7.13)

Из (7.13) и леммы 19 получаем оценку (3.4) теоремы 3.

8. РЕЗУЛЬТАТЫ ЧИСЛЕННЫХ ЭКСПЕРИМЕНТОВ

Зададим функцию вида (2.1):

$$u(x) = \cos\frac{\pi x}{2} + e^{-\frac{x}{\varepsilon}}, \quad x \in [0, 1].$$

Результаты расчетов сведены в две таблицы. В таблицах приведены максимальные погрешности сплайновой интерполяции, вычисленные в узлах сгущенной сетки, получающейся из исходной расчетной сетки разбиением каждого ее сеточного интервала на 10 равных частей.

В табл. 1 приведены погрешности сплайна $S_3(x, u)$ на сетке Бахвалова в зависимости от є и N. Результаты вычислений согласуются с оценками теоремы 1. Из таблицы видно, что погрешность возрастает при уменьшении є для фиксированного N при є < 1/N. Этот результат аналогичен результату, установленному в [4] для интерполяционного кубического сплайна на сетке Шишкина.

Теперь остановимся на погрешности модифицированного сплайна $\tilde{S}_3(x, u)$, определяемого на основе условий интерполяции (3.3). В табл. 2 приведены погрешности и вычисленные порядки точности для модифицированного сплайна. Результаты вычислений согласуются с погрешностью сплайна порядка $O(N^{-4})$.

ПРИМЕНЕНИЕ КУБИЧЕСКОГО СПЛАЙНА

-	N							
ε	2 ⁴	2 ⁵	2 ⁶	2 ⁷	2 ⁸	2 ⁹		
10^{-1}	2.21×10^{-4}	1.85×10^{-5}	1.35×10^{-6}	9.09×10^{-8}	5.02×10^{-9}	3.78×10^{-10}		
		3.57	3.78	3.89	3.94	3.97		
10^{-2}	1.67×10^{-4}	1.09×10^{-5}	1.00×10^{-6}	1.16×10^{-7}	1.45×10^{-8}	1.47×10^{-9}		
		3.93	3.45	3.11	3.00	3.31		
10^{-3}	1.89×10^{-4}	1.10×10^{-5}	6.49×10^{-7}	4.06×10^{-8}	2.59×10^{-9}	2.16×10^{-10}		
		4.10	4.09	4.00	3.96	3.59		
10^{-4}	2.25×10^{-4}	1.35×10^{-5}	8.05×10^{-7}	4.74×10^{-8}	2.77×10^{-9}	1.61×10^{-10}		
		4.05	4.07	4.09	4.10	4.10		
10^{-5}	2.46×10^{-4}	1.51×10^{-5}	9.19×10^{-7}	5.57×10^{-8}	3.35×10^{-9}	2.00×10^{-10}		
		4.03	4,04	4.04	4.05	4.07		
10^{-6}	2.58×10^{-4}	1.60×10^{-5}	9.84×10^{-7}	6.05×10^{-8}	3.71×10^{-9}	2.26×10^{-10}		
		4.02	4.02	4.02	4.03	4.03		
10^{-7}	$2.66 \cdot 10^{-4}$	1.65×10^{-5}	1.02×10^{-6}	6.33×10^{-8}	3.91×10^{-9}	2.41×10^{-10}		
		4.01	4.01	4.01	4.02	4.02		
10^{-8}	2.71×10^{-4}	$1.68\cdot 10^{-5}$	1.05×10^{-6}	6.50×10^{-8}	4.03×10^{-9}	2.50×10^{-10}		
		4.01	4.01	4.01	4.01	4.01		

Таблица 2. Погрешность модифицированного кубического сплайна

9. ЗАКЛЮЧЕНИЕ

Впервые проведен анализ погрешности кубического сплайна на сетке Бахвалова при наличии экспоненциального пограничного слоя. Получена оценка погрешности сплайна, из которой следует, что погрешность может неограниченно расти с уменьшением значения малого параметра. Проведена модификация кубического сплайна, основанная на сдвиге двух точек интерполя-

ции, при которой оценка погрешности становится порядка $O(N^{-4})$ равномерно по малому параметру. Приведены результаты вычислительных экспериментов, согласующиеся с полученными оценками погрешностей.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Ahlberg J.H., Nilson E.N., Walsh J.L.* The theory of splines and their applications. New York: Academic Press, 1967.
- 2. Завьялов Ю.С., Квасов Б.И., Мирошниченко В.Л. Методы сплайн-функций. М.: Наука, 1980.
- 3. *Шишкин Г.И*. Сеточные аппроксимации сингулярно возмущенных эллиптических и параболических уравнений. Екатеринбург: УрО РАН, 1992.
- 4. *Блатов И.А., Задорин А.И., Китаева Е.В.* Об интерполяции кубическими сплайнами функций с большими градиентами в пограничном слое // Ж. вычисл. матем. и матем. физ. 2017. Т. 57. № 1. С. 9–28.
- 5. Бахвалов Н.С. К оптимизации методов решения краевых задач при наличии пограничного слоя // Ж. вычисл. матем. и матем. физ. 1969. Т. 9. № 4. С. 841–890.
- 6. Linβ T. Layer-Adapted Meshes for Reaction-Convection-Diffusion Problems. Berlin: Springer, 2010.
- 7. Бор К.Де. Практическое руководство по сплайнам. М.: Радио и связь, 1985.
- 8. *Demko S.* Inverses of band matrices and local convergence of spline projections // SIAM J. Numer. Anal. 1977. V. 14. № 4. P. 616–619.
- 9. *Блатов И.А.* О методах неполной факторизации для систем с разреженными матрицами // Ж. вычисл. матем. и матем. физ. 1993. Т. 33. № 7. С. 819–836.
- 10. Волков Ю.С. О нахождении полного интерполяционного сплайна через В-сплайны // Сибирские электронные матем. изв. 2008. Т. 5. С. 334–338.