_____ ОПТИМАЛЬНОЕ _____ УПРАВЛЕНИЕ

УДК 517.977

ДИНАМИЧЕСКИЙ МЕТОД НЕВЯЗКИ В ЗАДАЧЕ РЕКОНСТРУКЦИИ ВХОДА СИСТЕМЫ С ЗАПАЗДЫВАНИЕМ В УПРАВЛЕНИИ

© 2021 г. М. С. Близорукова^{1,*}, В. И. Максимов^{1,**}

¹ 620990 Екатеринбург, ул. С. Ковалевской, 16, Институт математики и механики УрО РАН, Россия

*e-mail: msb@imm.uran.ru **e-mail: maksimov@imm.uran.ru

Поступила в редакцию 23.03.2020 г. Переработанный вариант 23.03.2020 г. Принята к публикации 18.11.2020 г.

Рассматривается задача реконструкции неизвестного входного воздействия системы нелинейных дифференциальных уравнений с запаздыванием в управлении. Представлен устойчивый к информационным помехам и погрешностям вычислений алгоритм ее решения, который основан на конструкциях теории гарантированного управления. Библ. 12.

Ключевые слова: реконструкция, система с запаздыванием, оценка погрешности.

DOI: 10.31857/S0044466921030042

1. ВВЕДЕНИЕ

В подавляющем большинстве реальных процессов, имеющих место при решении практических задач, наблюдателю доступны не все параметры и характеристики рассматриваемых объектов. При этом в случае статических по постановке задач, когда алгоритмы не учитывают возможное изменение данных в процессе счета, особых проблем не возникает. Другое дело, когда требуется восстановить неизвестные параметры в динамике синхронно с развитием процесса. Поскольку, как правило, измерения результатов наблюдений и экспериментов сопровождаются неизбежными ошибками, помехами, то применение стандартных методов в этом случае бывает затруднительно. Информация о данных расчетов в этом случае может меняться, и решение должно приниматься на основании выборки, которая очевидно ограничена, поскольку в каждый момент доступны только прошлые по времени данные, а не вся зависимость, как в апостериорных задачах, где алгоритмы обрабатывают историю измерений целиком. Эти данные требуют обработки в режиме он-лайн, что затрудняет применение обычных методов при поиске решений обратных задач и требует привлечения специальных, называемых методами регуляризации, разработанных в рамках теории некорректных задач. Упрощенно задачу динамического восстановления можно сформулировать как процедуру получения устойчивой по отношению к помехам оценки подлежащей восстановлению функциональной характеристики системы с помощью некоторого локально регуляризованного метода. При этом разрешающий алгоритм строится в классе конечно-шаговых алгоритмов, т.е. алгоритмов, учитывающих поступающую информацию в конечном числе временных узлов. Теоретическая основа одного из методов, обеспечивающих в реальном времени динамическое восстановление входного воздействия на систему, заложена в [1]–[3]. В большинстве работ по данной тематике решение задач динамического восстановления (или online реконструкции) основывается на методе локальной регуляризации экстремального сдвига с использованием сглаживающего функционала (см. [2]–[6]). Данный метод представляет собой вариант принципа управления с поводырем: в контур управления вводится дополнительная динамическая система - модель. Необходимость использовать эту систему отпадает, если в качестве метода регуляризации применять динамический метод невязки, который был предложен в [7] для систем обыкновенных дифференциальных уравнений при наличии ограничений на входное воздействие в виде выпуклого компакта и модифицирован в [8]–[10] – в случае их отсутствия. Для систем с распределенными параметрами динамический метод невязки был развит, например, в [11], а для систем с запаздыванием в фазовых координатах — в [12].

ДИНАМИЧЕСКИЙ МЕТОД НЕВЯЗКИ

2. ПОСТАНОВКА ЗАДАЧИ

Рассматривается система дифференциальных уравнений следующего вида:

$$\dot{x}(t) = f_1(t, x(t)) + f_2(t, x(t))u(t - \tau) + Bu(t), \quad t \in T = [0, \vartheta],$$
(2.1)

с начальным состоянием $x(0) = x_0$ (начальное состояние считаем фиксированным и заданным). Здесь $u \in R^r$, $t \in T$ – переменная времени, $0 < \vartheta < +\infty$, $\tau = \text{const} > 0$, B – постоянная $n \times r$ матрица, $x(t) \in R^n$ – фазовое состояние системы в момент t.

Траектория (решение) системы $x(t), t \in T$, заранее неизвестна и определяется некоторым возмущением $u(t), t \in [-\tau, \vartheta]$, которое при $t \in T$ также неизвестно. Это возмущение подчинено априорному ограничению $u(\cdot) \in P(\cdot)$, где

$$P(\cdot) = \{v(\cdot) \in L_2(T; R^r) : v(t) \in P \text{ при п.в. } t \in T\},$$
(2.2)

Р – выпуклый компакт.

Полагаем, что функция u(s), $s \in [-\tau, 0]$, известна и является непрерывной. Символом E обозначим замкнутое множество в пространстве R^n , в котором остается траектория вместе с окрестностью радиуса единица при всех $t \in T$, т.е. $\bigcup_{i \in T} S_1(x(t)) \subset E$. Здесь $S_1(a)$ – замкнутая окрестность единичного радиуса с центром в точке a. Вектор-функция f_1 и матричная функция f_2 – локально липшицевы по совокупности переменных с константами $c_j^0(Y) > 0$, j = 1, 2, т.е. для любого ограниченного множества $Y \in T \times E$ при любых $(t_1, x_1), (t_2, x_2) \in Y$ выполняются неравенства

$$|f_1(t_1, x_1) - f_1(t_2, x_2)|_n \le c_1^0 (|t_1 - t_2| + |x_1 - x_2|_n),$$

$$||f_2(t_1, x_1) - f_2(t_2, x_2)|| \le c_2^0 (|t_1 - t_2| + |x_1 - x_2|_n), \quad c_j^0 = c_j^0(Y), \quad j = 1, 2.$$

$$(2.3)$$

Здесь и далее символом $|\cdot|_n$ обозначена норма вектора в евклидовом пространстве R^n , а символом $\|\cdot\|$ – норма матрицы в пространстве $R^{n \times r}$.

В дискретные моменты времени $\tau_i \in T$, $\tau_i < \tau_{i+1}$, координаты $x(\tau_i)$ измеряются с некоторой погрешностью $h \in (0,1)$. Результаты измерений — векторы $\xi_i^h \in R^n$, удовлетворяющие неравенствам

$$\left|x(\tau_i) - \xi_i^h\right|_n \le h. \tag{2.4}$$

Требуется указать алгоритм приближенного восстановления неизвестного возмущения $u(\cdot)$ по результатам неточных измерений $x(\tau_i)$. Таким образом, рассматриваемая задача состоит в построении алгоритма, который по текущим измерениям величин $x(\tau_i)$ в "реальном времени" формирует (по принципу обратной связи) некоторую функцию $u = u^h(\cdot)$, являющуюся приближением (в метрике пространства $L_2(T; R')$) возмущения $u(\cdot)$ на отрезке [0, ϑ].

Сформулированная выше задача является задачей восстановления (реконструкции). В настоящей работе мы укажем алгоритм решения, основанный на динамическом аналоге известного в теории некорректных задач метода невязки. Суть последнего состоит, как известно, в следующем: на основании имеющейся неточной информации очерчивается некоторое множество Ω , заведомо содержащее искомый элемент. Затем в этом множестве по некоторому правилу выбирается другой элемент, служащий приближением искомого. Обычно приближающий элемент отыскивается как точка экстремума подходящего функционала. Ниже эта идея реализована для рассматриваемой задачи.

3. АЛГОРИТМ РЕШЕНИЯ ЗАДАЧИ

Перейдем к описанию алгоритма решения.

Пусть для каждого $h \in (0, 1)$ фиксировано семейство Δ_h разбиений отрезка T контрольными моментами времени $\tau_{h,i}$ на полуинтервалы $[\tau_{h,i}, \tau_{h,i+1})$:

$$\Delta_{h} = \{\tau_{h,i}\}_{i=0}^{m_{h}}, \quad \tau_{h,i+1} = \tau_{h,i} + \delta, \quad \delta = \delta(h), \quad {}_{h,0} = 0, \quad \tau_{h,m_{h}} = \vartheta.$$
(3.1)

Далее нам потребуются следующие обозначения. Символом $\left[\frac{\vartheta}{\tau}\right]$ обозначим целую часть числа $\frac{\vartheta}{\tau}$, $N = \left[\frac{\vartheta}{\tau}\right] + 1$, $|\cdot| -$ модуль числа и $(\cdot, \cdot) -$ скалярное произведение в конечномерном евклидовом пространстве.

Введем постоянные $c^0 > 0$ и *b* такие, что

$$\begin{aligned} \left| f_1(t,x) + f_2(t,x)u_1 + Bu_2 \right|_n &\leq c^0 \quad \forall t \in T, \quad u_1, u_2 \in P, \quad x \in E, \\ \left\| f_2(t,x) \right\| &\leq b \quad \forall t \in T, \quad x \in E. \end{aligned}$$
(3.2)

В таком случае, очевидно, что

$$|\dot{x}(t)|_n \le c^0$$
 при п.в. $t \in T$. (3.3)

Для простоты выкладок положим: разбиения Δ_h таковы, что числа $l = l(h) = \frac{\tau}{\delta(h)}$ являются це-

лыми. Кроме того, $\tau j \in \Delta_h$, $\forall j \in [0: N-1]$.

В дальнейшем считаем выполненным

Условие 1: rank *B* = *r*.

В силу условия 1, можно указать число $c_* > 0$ такое, что

$$|Bu|_{n} \ge c_{*}|u|_{r} \quad \text{для всех } u \in R^{r}.$$
(3.4)

Пусть $\omega(\cdot)$ – модуль непрерывности функции u(s), $s \in [-\tau, 0]$, т.е.

$$\omega(\delta) = \sup \left\{ \left| u(s_1) - u(s_2) \right|_r : s_1, s_2 \in [-\tau, 0], \left| s_1 - s_2 \right| \le \delta \right\}.$$

Всюду ниже $\delta = \delta(h), l = l(h), \tau_i = \tau_{h,i}$.

При $i \in [0: l]$ обозначим

$$u_{i-l}^{h} = u(-\delta(i-l)).$$
(3.5)

Тогда видно, что при $i \in [1:l]$ справедливы неравенства

$$\left|\int_{\tau_{i-1}-\tau}^{\tau_i-\tau} \{u(t)-u_{i-l-1}^h\}dt\right|_r \le \delta\omega(\delta).$$
(3.6)

Введем множества ($i \ge 1, j \in [0:N]$)

$$\Omega_{h,i}^{(j)} = \left\{ v \in P : \left| (\xi_i^h - \xi_{i-1}^h) \delta^{-1} - [f_1(\tau_{i-1}, \xi_{i-1}^h) + f_2(\tau_{i-1}, \xi_{i-1}^h) u_{i-l-1}^h + Bv] \right|_n \le \sigma_h^{(j)} \right\},$$
(3.7)

где

$$\sigma_h^{(j)} = 2h\delta^{-1} + K_1\delta + K_2h + \delta^{-1}b\tilde{\lambda}_{j-1}(\delta, h),$$
(3.8)

$$K_{1} = c_{1}^{0}(1+c^{0}) + c_{2}^{0}(1+c^{0})d(P), \quad K_{2} = c_{1}^{0} + c_{2}^{0}d(P), \quad d(P) = \sup_{u \in P} |u|_{r},$$
$$\tilde{\lambda}_{-1}(\delta, h) = \delta\omega(\delta), \qquad (3.9)$$
$$\tilde{\lambda}_{j}(\delta, h) = c_{*}^{-1}[2(2+K_{2})h + 2K_{1}\delta^{2} + 3b\tilde{\lambda}_{j-1}(\delta, h)] \quad \Pi p_{\mathsf{H}} \quad j \in [0:N].$$

Считаем при $i \ge 1, j \in [0:N], \tau_i \le \vartheta - \delta$,

$$u_{i-1}^{h} = \operatorname{argmin}\left\{ \left| u \right|_{r} : u \in \Omega_{h,i}^{(j)} \right\},$$
 (3.10)

$$u^{h}(t) = u^{h}_{i-1}$$
 при $t \in \delta_{i-1} = [\tau_{i-1}, \tau_{i}).$ (3.11)

При *i* ∈ [−*l*,0] (см. (3.5))

$$u^{h}(t) = u_{i}^{h} = u(\delta i), \quad \text{если} \quad t \in (\delta i, \delta(i+1)].$$
(3.12)

Алгоритм решения рассматриваемой задачи состоит в следующем. До начала работы алгоритма фиксируется величина погрешности измерения фазового состояния системы, а именно, число $h \in (0, 1)$. Вместе с ним фиксируется равномерное разбиение Δ_h отрезка T контрольными моментами времени $\tau_i = \tau_{h,i}$. Работа алгоритма разбивается на однотипные шаги. На *i*-м шаге, в момент τ_i , на основании поступивших на начало этого шага результатов измерения ξ_i^h и ξ_{i-1}^h строится семейство множеств вида (3.7). После этого вычисляется вектор u_{i-1}^h по формуле (3.10). Затем, согласно (3.11), определяется функция u(t) при $t \in (\tau_{i-1}, \tau_i]$. Вся процедура осуществляется до момента времени ϑ .

Лемма 1. При $\tau_i \in (\tau_j, \tau_j(j+1)] \cap T$, $j \in [0:N]$, справедливы следующие соотношения:

$$\mu_i(\delta,h) \equiv \left| \int_{\tau_{i-1}}^{\tau_i} \{ u(s) - u^h(s) \} ds \right|_r \le \tilde{\lambda}_j(\delta,h),$$
(3.13)

$$\delta^{-1} \int_{\tau_{i-1}}^{\tau_i} u(t) dt \in \Omega_{h,i}^{(j)}.$$
(3.14)

Доказательство. Доказательство проведем по индукции. Пусть j = 0, $\tau_i \in (0, \tau]$. Очевидно, что для любого $x(\cdot) \in X_T = \{x(\cdot) : x(\cdot) = x(\cdot; 0, x_0, u(\cdot)), u(\cdot) \in P(\cdot)\}$ ($P(\cdot)$ определено согласно (2.2)) верно неравенство

$$|x(t_1) - x(t_2)|_n \le c^0 |t_1 - t_2|, \quad t_1, t_2 \in T.$$
 (3.15)

Поэтому при $t \in [\tau_{i-1}, \tau_i]$, ввиду (2.4), (3.3), (2.3) и (3.15), справедливы соотношения

$$\left| f_{1}(t, x(t)) - f_{1}(\tau_{i-1}, \xi_{i-1}^{h}) \right| \leq c_{1}^{0} \left(t - \tau_{i-1} + \left| x(t) - \xi_{i}^{h} \right|_{n} \right) \leq \\ \leq c_{1}^{0} \left(t - \tau_{i-1} + h + \int_{\tau_{i-1}}^{\tau_{i}} \left| \dot{x}(t) \right|_{n} dt \right) \leq c_{1}^{0} (\delta + h + c^{0} \delta),$$
(3.16)

$$\left| f_2(t, x(t))u - f_2(\tau_{i-1}, \xi_{i-1}^h)u \right| \le c_2^0(\delta + h + c^0\delta)d(P) \quad \forall u \in P.$$
(3.17)

Заметим, что, ввиду (3.5), (3.12),

$$\int_{i-1}^{t_i} u^h(t-\tau) dt = \delta u^h_{i-l-1}.$$

В таком случае, в силу (3.2), (3.17) имеем

$$\begin{aligned} \left| \int_{\tau_{i-1}}^{\tau_{i}} f_{2}(t,x(t))u(t-\tau)dt - \int_{\tau_{i-1}}^{\tau_{i}} f_{2}(\tau_{i-1},\xi_{i-1}^{h})u_{i-l-1}^{h}dt \right|_{n} \leq \\ \leq b \int_{\tau_{i-1-\tau}}^{\tau_{i}-\tau} \left| u(t) - u_{i-l-1}^{h} \right|_{r} dt + \left| \int_{\tau_{i-1}}^{\tau_{i}} \left\{ f_{2}(t,x(t)) - f_{2}(\tau_{i-1},\xi_{i-1}^{h})u_{i-l-1}^{h} \right\} dt \right|_{n} \leq \\ \leq b \int_{\tau_{i-1-\tau}}^{\tau_{i}-\tau} \left| u(t) - u_{i-l-1}^{h} \right|_{r} dt + c_{2}^{0} (\delta + h + c^{0} \delta) d(P) \delta. \end{aligned}$$
(3.18)

Из (3.2), (3.16) и (3.18) вытекает неравенство

$$\begin{vmatrix} \delta^{-1} \int_{\tau_{i-1}}^{\tau_{i}} \left[f_{1}(t, x(t)) + f_{2}(t, x(t))u(t-\tau) + Bu(t) \right] dt - \left[f_{1}(\tau_{i-1}, \xi_{i-1}^{h}) + f_{2}(\tau_{i-1}, \xi_{i-1}^{h})u_{i-l-1}^{h} + B\delta^{-1} \int_{\tau_{i-1}}^{\tau_{i}} u(t)dt \right] \end{vmatrix}_{n} \leq K_{1}\delta + K_{2}h + \delta^{-1}b \begin{vmatrix} \tau_{i} - \tau \\ \int_{\tau_{i-1} - \tau}^{\tau_{i}} \left\{ u(t) - u_{i-l-1}^{h} \right\} dt \end{vmatrix}_{r}.$$

$$(3.19)$$

Теперь учтем, что первое слагаемое в (3.19) под знаком нормы, равное, очевидно, $(x(\tau_i) - x(\tau_{i-1}))\delta^{-1}$, отклоняется от $(\xi_i^h - \xi_{i-1}^h)\delta^{-1}$ не более, чем на $2h\delta^{-1}$ (см. (2.4)). В таком случае, учитывая неравенства (3.6) и (3.19), а также (3.8) и (3.9), заключаем, что справедливы включения (3.14). Проверим справедливость неравенств (3.13) при $j = 0, \tau_i \in (0, \tau]$. В силу включения $u_{i-1}^{h} \in \Omega_{hi}^{(0)}$ (см. (3.7), (3.10), (3.12)) имеет место неравенство

$$\left| B \int_{\tau_{i-1}}^{\tau_i} u^h(t) dt - \xi_i^h + \xi_{i-1}^h - \delta\{f_1(\tau_{i-1}, \xi_{i-1}^h) + f_2(\tau_{i-1}, \xi_{i-1}^h) u_{i-1-l}^h\} \right|_n \le \delta \sigma_h^{(0)},$$
(3.20)

где, очевидно, имеем

$$\int_{\tau_{i-1}}^{\tau_i} u^h(t) dt = \delta u^h_{i-1}$$

Кроме того,

$$\left|\xi_{i}^{h}-\xi_{i-1}^{h}-\int_{\tau_{i-1}}^{\tau_{i}}\left[f_{1}(t,x(t))+f_{2}(t,x(t))u(t-\tau)+Bu(t)\right]dt\right|\leq 2h.$$
(3.21)

Заметим, что имеет место равенство

$$\left| B \int_{\tau_{i-1}}^{\tau_i} \{ u^h(t) - u(t) \} dt \right|_n = \left| x(\tau_i) - x(\tau_{i-1}) - \int_{\tau_{i-1}}^{\tau_i} \{ f_1(t, x(t)) + f_2(t, x(t)) u(t-\tau) \} dt - B u^h_{i-1} \delta \right|_n.$$
(3.22)

.

В таком случае, учитывая (3.20)-(3.22), заключаем, что справедлива цепочка неравенств

$$\begin{aligned} \left| B \int_{\tau_{i-1}}^{\tau_i} \{ u^h(t) - u(t) \} dt \right|_n &\leq 2h + \delta \sigma_h^{(0)} + \\ + \left| \int_{\tau_{i-1}}^{\tau_i} \left\{ f_1(t, x(t)) - f_1(\tau_{i-1}, \xi_{i-1}^h) + f_2(\tau_{i-1}, \xi_{i-1}^h) u_{i-1-l}^h + f_2(t, x(t)) u(t-\tau) \right\} dt \right|_n &\leq \\ &\leq 2h + \delta \sigma_h^{(0)} + \int_{\tau_{i-1}}^{\tau_i} \left| f_1(t, x(t)) - f_1(\tau_{i-1}, \xi_{i-1}^h) \right|_n dt + b \left| \int_{\tau_{i-1}-\tau}^{\tau_i-\tau} \{ u^h(t) - u(t) \} dt \right|_r + \\ &+ \left| \int_{\tau_{i-1}}^{\tau_i} \{ f_2(t, x(t)) - f_2(\tau_i, \xi_{i-1}^h) \} u(t-\tau) dt \right|_n. \end{aligned}$$

Ввиду неравенств (3.16), имеют место соотношения

$$\int_{\tau_{i-1}}^{\tau_i} \left| f_1(t, x(t)) - f_1(\tau_{i-1}, \xi_{i-1}^h) \right|_n dt \le c_1^0 \delta(\delta + h + c^0 \delta).$$

В свою очередь, в силу (3.17) справедливы неравенства

1 -

$$\left| \int_{\tau_{i-1}}^{\tau_i} \{ f_2(t, x(t)) - f_2(\tau_i, \xi_{i-1}^h) \} u(t-\tau) dt \right|_n \le c_2^0 \delta(\delta + h + c^0 \delta) d(P).$$

.

Следовательно, верны оценки

$$B\int_{\tau_{i-1}}^{\tau_i} \{u^h(t) - u(t)\}dt \bigg|_n \le \lambda_i(h, \delta),$$
(3.23)

где

$$\lambda_i(h,\delta) = 2\delta\sigma_h^{(0)} + b\mu_{i-l}(\delta,h).$$

Причем (см. (3.6)) при $i \in [1: l], \mu_{i-l}(\delta, h) = \delta \omega(\delta)$. Из (3.23), учитывая (3.4), при $\tau_i \in (0, \tau]$ получаем

$$\mu_i(\delta,h) \le c_*^{-1}\lambda_i(h,\delta) = c_*^{-1}(2\delta\sigma_h^{(0)} + b\mu_{i-l}(\delta,h)).$$
(3.24)

Заметим, что при $\tau_i \in [0, \tau)$ из (3.24) вытекают оценки

$$\mu_i(\delta,h) \le C_1 h + C_2 \delta^2 + 3c_*^{-1} b \delta \omega(\delta),$$

где $C_1 = 2c_*^{-1}(2 + K_2)$, $C_2 = 2c_*^{-1}K_1$. Справедливость неравенства (3.13) при j = 0, $\tau_i \in (0, \tau]$, установлена. Пусть эти неравенства верны при $\tau_i \in (\tau(j-1), \tau j]$, $j \ge 1$. Докажем, что эти же неравенства справедливы при $\tau_i \in (j\tau, (j+1)\tau]$. Видно, что и в этом случае неравенства (3.23) останутся справедливыми. Однако при этом $\lambda_i(h, \delta) = 2\delta\sigma_h^{(j)} + b\mu_{i-l}(\delta, h)$, где, очевидно, $\mu_{i-l}(\delta, h) \le \tilde{\lambda}_{j-1}(\delta, h)$. Следовательно верны неравенства

$$\begin{split} \left| B \int_{\tau_{i-1}}^{\tau_i} \{ u^h(t) - u(t) \} dt \right|_n &\leq 2\delta \sigma_h^{(j)} + b\tilde{\lambda}_{j-1}(\delta, h). \text{ Значит при } \tau_i \in (j\tau, (i+1)\tau] \\ \mu_i(\delta, h) &\leq c_*^{-1}(2\delta \sigma_h^{(j)} + b\tilde{\lambda}_{j-1}(\delta, h)). \end{split}$$

Отсюда следуют неравенства (3.13). Заметим, что неравенства (3.19) справедливы при всех $\tau_i \in \Delta_h$. Кроме того, ввиду (3.13), при всех $\tau_i \in (\tau_j, \tau_i(j+1)] \cap T$, $j \in [0:N]$, имеем

$$\mu_{i-l}(\delta,h) \le \tilde{\lambda}_{j-1}(\delta,h). \tag{3.25}$$

Поэтому включение (3.14) при $j \in [1:N]$, $\tau_i \in (\tau_j, \tau_i(j+1)] \cap T$, следует из (3.19) и (3.25). Лемма доказана.

По индукции нетрудно показать, что при $j \in [0:N]$

$$\tilde{\lambda}_{j}(\delta,h) = c_{j}^{(1)}h + c_{j}^{(2)}\delta^{2} + c_{j}^{(3)}\delta\omega(\delta), \qquad (3.26)$$

где

$$c_{j}^{(1)} = 2(2+K_{1})c_{*}^{-1}\sum_{k=0}^{j}(c_{*}^{-1}3b)^{k}, \quad c_{j}^{(2)} = 2K_{1}c_{*}^{-1}\sum_{k=0}^{j}(c_{*}^{-1}3b)^{k}, \quad c_{j}^{(3)} = (c_{*}^{-1}3b)^{j+1}.$$

Рассмотрим систему вида

$$\dot{w}^{h}(t) = f_{1}(\tau_{i},\xi_{i}^{h}) + f_{2}(\tau_{i},\xi_{i}^{h})u_{i-l}^{h} + Bu_{i}^{h}, \quad t \in \delta_{i} = [\tau_{i},\tau_{i+1}), \quad \tau_{i} = \tau_{h,i}, \quad (3.27)$$

$$w^{h}(\tau_{1}) = \xi_{0}^{h}, \quad i \in [1:m-1], \quad m = m_{h}.$$
 (3.28)

Положим $w^h(t) = \xi_0^h$ при $t \in \delta_0$.

Проверим равномерную сходимость траекторий модели $w^h(\cdot) \kappa x(\cdot)$ при $h \to 0$. Для этого достаточно установить неравенства

$$\varepsilon(\tau_i) \equiv |x(\tau_i) - w^h(\tau_i)|_n \le v(h), \quad i \in [1:m],$$

где

 $m = m_h$, $v(h) \to 0$ при $h \to 0$.

Лемма 2. При всех $\tau_i \in (\tau_j, \tau_j(j+1)] \cap [\tau_1, \vartheta], j \in [0:N]$, справедливы неравенства

$$\varepsilon(\tau_i) \leq h + c^0 \delta + \tilde{c}_j^{(1)} h \delta^{-1} + \tilde{c}_j^{(2)} \delta + \tilde{c}_j^{(3)} \omega(\delta),$$

ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ том 61 № 3 2021

где

$$\tilde{c}_{j}^{(1)} = \tau b c_{j}^{(1)} + 4\tau + \tau K_{2}, \quad \tilde{c}_{j}^{(2)} = \tau K_{1} + \tau b c_{j}^{(2)}, \quad \tilde{c}_{j}^{(3)} = \tau b c_{j}^{(3)}.$$

Доказательство. При *i* = 1 с учетом (2.4), (3.3), (3.28) получаем

$$\varepsilon(\tau_1) = |x(\tau_1) - w^h(\tau_1)|_n = |\xi_0^h - x(\tau_1)|_n \le |\xi_0^h - x(\tau_1)|_n + |x(\tau_1) - x_0|_n \le h + c^0 \delta.$$
(3.29)

В свою очередь, при $\tau_i \in (\tau j, \tau (j+1)]$, т.е. $i \in (lj, l(j+1)]$, верны неравенства

$$\varepsilon(\tau_i) \le \left| x(\tau_j) - w^h(\tau_j) \right|_n + \varphi_{ji}, \tag{3.30}$$

где

$$\varphi_{ji} = \left| \sum_{k=lj}^{i-1} \int_{\tau_k}^{\tau_{k+1}} \left\{ f_1(t, x(t)) + f_2(t, x(t))u(t-\tau) + Bu(t) - f_1(\tau_k, \xi_k^h) - f_2(\tau_k, \xi_k^h)u_{k-l}^h - Bu_k^h \right\} dt \right|_n.$$

При этом

$$\varphi_{ji} \leq \left| \sum_{k=lj}^{i-1} \left\{ \xi_{k+1}^h - \xi_k^h + \delta [f_1(\tau_k, \xi_k^h) + f_2(\tau_k, \xi_k^h) u_{k-l}^h + B u_k^h] \right\} \right|_n + 2(i-1-lj)\delta h.$$
(3.31)

Так как $u_k^h \in \Omega_{h,k}^{(j)}$, то, в силу (3.7), из (3.31) получаем

$$\varphi_{ji} \le \left| \delta \sum_{k=lj}^{i} \sigma_h^{(j)} \right|_n + 2l\delta h \le \delta l \sigma_h^{(j)} + 2l\delta h = \tau \sigma_h^{(j)} + 2\tau h.$$
(3.32)

Поэтому для каждого $i \in (lj, l(j+1)]$, т.е. $\tau_i \in (\tau j, \tau (j+1)]$, вследствие (3.8), (3.30), (3.32), получаем

$$\varepsilon(\tau_i) \le \varepsilon(\tau_j) + 2\tau h + \tau \delta^{-1}(2h + K_1 \delta^2 + K_2 h \delta + b \tilde{\lambda}_{j-1}(\delta, h)) \le \varepsilon(\tau_j) + \nu^{(j)}(\delta, h).$$
(3.33)

Здесь

$$v^{(j)}(\delta,h) = \tau \delta^{-1} \{2h + K_1 \delta^2 + K_2 h \delta + b \tilde{\lambda}_{j-1}(\delta,h)\} + 2\tau h = \tilde{c}_j^{(1)} h \delta^{-1} + \tilde{c}_j^{(2)} \delta + \tilde{c}_j^{(3)} \omega(\delta).$$

При j = 0 в (3.33) вместо $\varepsilon(0)$ стоит $\varepsilon(\tau_1)$. Видно, что справедливы неравенства

$$\tilde{\lambda}_{j}(\delta,h) \leq \tilde{\lambda}_{j+1}(\delta,h).$$
 (3.34)

Таким образом, при всех $i \in (lj, l(j + 1)]$, в силу (3.26), (3.34), (3.33), справедливы неравенства

$$\varepsilon(\tau_i) \leq \varepsilon(\tau_j) + \nu^{(j)}(\delta, h) \leq \varepsilon(\tau_1) + \sum_{k=0}^{j} \nu^{(k)}(\delta, h) \leq \varepsilon(\tau_1) + j\nu^{(j)}(\delta, h).$$

Отсюда следует утверждение леммы. Лемма доказана.

На основании лемм 1 и 2 стандартным образом (см., например, [2], [3]) доказывается

Теорема 1. Пусть $\delta(h) \to 0$, $h\delta^{-1}(h) \to 0$ при $h \to 0$. Тогда имеет место сходимость

$$u^{h}(\cdot) \rightarrow u(\cdot)$$
 e $L_{2}(T; R^{r})$ npu $h \rightarrow 0.$

4. ОЦЕНКА СКОРОСТИ СХОДИМОСТИ АЛГОРИТМА

При некоторых дополнительных условиях может быть выписана оценка скорости сходимости (см. ниже теорему 2). Установим эту оценку. Для этого нам понадобятся две леммы.

Лемма 3 (см. [3, с. 29]). Пусть $u(\cdot) \in L_{\infty}(T_*; \mathbb{R}^n), v(\cdot) \in W(T_*; \mathbb{R}^n), T_* = [a, b], -\infty < a < b < +\infty,$

$$\left|\int_{a}^{\bullet} u(\tau) d\tau\right|_{n} \leq \varepsilon, \quad \left|v(t)\right|_{n} \leq K \quad \forall t \in T_{*}.$$

Тогда при всех $t \in T_*$ *верно неравенство*

$$\left|\int_{a}^{t} (u(\tau), v(\tau)) d\tau\right| \leq \varepsilon (K + \operatorname{var}(T_{*}; v(\cdot))).$$

389

Здесь символ var($T_*; v(\cdot)$) означает вариацию функции $v(\cdot)$ на отрезке T_* , а символ $W(T_*; R^n)$ – множество функций $y(\cdot) : T_* \to R^n$ с ограниченной вариацией.

Лемма 4. Справедливо неравенство

$$\sup_{t \in T} \left| \int_{0}^{t} \{ u^{h}(s) - u(s) \} ds \right|_{r} \le \Phi(\delta, h) = K_{3} h \delta^{-1} + K_{4} \delta + K_{5} \omega(\delta).$$
(4.1)

Здесь

$$K_3 = \sum_{j=0}^{N} c_{1j}, \quad K_4 = \sum_{j=0}^{N} c_{2j}, \quad K_5 = \sum_{j=0}^{N} c_{3j}$$

Доказательство. Имеет место соотношение

$$\int_{\tau_{i}}^{t} \{u^{h}(s) - u(s)\} ds \bigg|_{r} \le 2d(P)\delta, \quad t \in [\tau_{i}, \tau_{i+1}).$$
(4.2)

Из (3.26), (4.2) и леммы 1 вытекает справедливость неравенств

$$\sup_{t \in [\tau_j, \tau_j(j+1))} \left| \int_{\tau_j}^t \{ u^h(s) - u(s) \} ds \right|_r \le c_{1j} h \delta^{-1} + c_{2j} \delta + c_{3j} \omega(\delta),$$
(4.3)

где $c_{1j} = \tau c_j^{(1)}, c_{2j} = \tau c_j^{(2)} + 2d(P), c_{3j} = \tau c_j^{(3)}$. Неравенство (4.1) вытекает из (4.2), (4.3). Лемма доказана.

Теорема 2. Пусть выполнены условия теоремы 1, n = r, $u(\cdot) \in W(T; R^r)$. Тогда справедлива оценка

$$\left|u(\cdot)-u^{h}(\cdot)\right|_{L_{2}(T;R')}^{2} \leq C\Phi(\delta,h), \tag{4.4}$$

где постоянная C не зависит от h, δ .

Доказательство. В силу (3.10), (3.14) справедливы неравенства

$$|u_{i-1}^{h}|_{r} \leq \delta^{-1} \int_{\tau_{i-1}}^{\tau_{i}} |u(t)|_{r} dt, \quad i \in [1:m-1]$$

Отсюда получаем

$$\int_{\tau_{i-1}}^{\tau_i} |u^h(t)|_r^2 dt = |u_{i-1}^h|_r^2 \delta \le \left| \delta^{-1} \int_{\tau_{i-1}}^{\tau_i} u(t) dt \right|_r^2 \delta \le \int_{\tau_{i-1}}^{\tau_i} u |(t)|_r^2 dt.$$

В силу (3.11) из последнего неравенства имеем

$$\left| u^{h}(\cdot) \right|_{L_{2}(T;R^{r})}^{2} \leq \left| u(\cdot) \right|_{L_{2}(T;R^{r})}^{2}.$$
(4.5)

Далее, учитывая (4.5), получаем

$$\left|u(\cdot) - u^{h}(\cdot)\right|_{L_{2}(T;R')}^{2} = \left|u(\cdot)\right|_{L_{2}(T;R')}^{2} - 2\int_{0}^{\vartheta} (u(t), u^{h}(t))dt + \left|u^{h}(\cdot)\right|_{L_{2}(T;R')} \le 2\int_{0}^{\vartheta} (u(t), u(t) - u^{h}(t))dt.$$
(4.6)

Из (4.6) в силу лемм 3 и 4 получаем (4.5). Теорема доказана.

СПИСОК ЛИТЕРАТУРЫ

- 1. Osipov Yu.S., Kryazhimskii A.V. Inverse problems for ordinary differential equations: dynamical solutions. Gordon and Breach, 1995.
- 2. Осипов Ю.С., Васильев Ф.П., Потапов М.М. Основы метода динамической регуляризации. М.: МГУ, 1999.

ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ том 61 № 3 2021

- 3. *Осипов Ю.С., Кряжимский А.В., Максимов В.И.* Методы динамического восстановления входов управляемых систем. Екатеринбург. УрО РАН, 2011.
- 4. *Осипов Ю.С., Кряжимский А.В., Максимов В.И.* Некоторые алгоритмы динамического восстановления входов // Тр. Ин-та матем. и мех. УрО РАН. 2011. Т. 17. № 1. С. 129–161.
- 5. *Осипов Ю.С., Кряжимский А.В., Максимов В.И.* Метод экстремального сдвига Н.Н. Красовского и задачи граничного управления // Автоматика и телемехан. 2009. № 4. С. 18–30.
- 6. *Максимов В.И.* Реконструкция возмущения нелинейной системы при измерении части координат фазового вектора // Ж. вычисл. матем. и матем. физ. 2019. Т. 59. № 11. С. 14–23.
- 7. *Кряжимский А.В., Осипов Ю.С.* Качественные вопросы теории дифференциальных уравнений и управляемых систем. Свердловск: УрО АН СССР, 1988. С. 34–44.
- 8. Близорукова М.С., Максимов В.И. Об одном алгоритме динамической реконструкции входных воздействий при измерении части координат // Ж. вычисл. матем. и матем. физ. 2011. Т. 51. № 6. С. 1007–1017.
- 9. *Близорукова М.С.* Динамический метод невязки в задаче реконструкции неизвестных характеристик системы второго порядка // Изв. Ин-та матем. и информатики Удмуртского государственного университета. 2019. Т. 53. С. 48–60.
- 10. *Максимов В.И*. Динамический метод невязки в задаче реконструкции входа // Ж. вычисл. матем. и матем. физ. 2004. Т. 44. № 2. С. 297–307.
- 11. *Maksimov V.I.* Some dynamical inverse problems for hyperbolic systems // Control and Cybernetics. 1996. V. 25. No 3. P. 465–481.
- 12. *Близорукова М.С.* О моделировании входа в системе с запаздыванием // Прикл. матем. и информатика. 2000. № 5. С. 105–115.