ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ, 2021, том 61, № 3, с. 475–492

_____ МАТЕМАТИЧЕСКАЯ ______ ФИЗИКА

УДК 519.635

К ВОПРОСУ О ВЗАИМОДЕЙСТВИИ ВСТРЕЧНЫХ РЕЛЯТИВИСТСКИХ ПОТОКОВ НЕЙТРАЛЬНОЙ ПЛОТНОЙ ПЛАЗМЫ¹⁾

© 2021 г. С. Л. Гинзбург, В. Ф. Дьяченко, Л. И. Михайлова¹, В. М. Чечеткин^{1,2,*}, Н. Н. Фимин^{1,**}

¹ 125047 Москва, Миусская пл., 4, ИПМ РАН, Россия ² 123056 Москва, 2-я Брестская ул., 19/18, ИАП РАН, Россия *e-mail: chechetv@gmail.com **e-mail: oberon@kiam.ru Поступила в редакцию 10.02.2020 г. Переработанный вариант 26.09.2020 г. Принята к публикации 18.11.2020 г.

Трехмерная компьютерная модель взаимодействия плазмы с электромагнитным полем в рамках уравнений Власова—Максвелла применена для расчета движения в вакууме встречных релятивистских электронейтральных потоков плотной плазмы, состоящей из электронов и протонов. Исследуется влияние начальной скорости частиц плазмы и их концентрации на процесс взаимодействия потоков. Библ. 12. Фиг. 29.

Ключевые слова: уравнение Власова, уравнения Максвелла, нейтральная плазма, электромагнитное поле, релятивистские электроны.

DOI: 10.31857/S004446692103008X

1. ВВЕДЕНИЕ

Метод встречных пучков на ускорителях заряженных частиц (коллайдерах) на долгие десятилетия стал одним из основных инструментов изучения фундаментальных свойств материи, обеспечив колоссальный прогресс в экспериментальных исследованиях физики элементарных частиц и в физике высоких энергий для получения сверхвысоких энергий. Наибольшее распространение получили ускорители на встречных электрон-электронных, электрон-позитронных и протон-протонных пучках.

Настоящая работа является продолжением работ [1]–[5] и содержит описание полученных на 3D-модели результатов расчета встречного однопролетного движения в вакууме с релятивистской скоростью двух нейтрализованных потоков плотной плазмы (плазмоидов), состоящих из электронов и протонов равной концентрации. На конкретных примерах проиллюстрирована зависимость процесса взаимодействия частиц плазмоидов через электромагнитное поле от начальной скорости частиц и их концентрации.

Полученные результаты могут быть применены, например, для построения моделей взаимодействующих газопылевых туманностей или сталкивающихся галактик, а также для моделирования процессов в коллайдерах.

2. ПОСТАНОВКА ЗАДАЧИ

Взаимодействие бесстолкновительной плазмы с электромагнитным полем описывается 3-мерной системой уравнений Власова—Максвелла [9]—[12]. При указанном ниже выборе единиц измерения эта система имеет вид

$$\frac{\partial f_{e,p}}{\partial t} + \mathbf{v}_{e,p} \bullet \frac{\partial f_{e,p}}{\partial \mathbf{x}} + q_{e,p} (\mathbf{E} + \mathbf{v}_{e,p} \times \mathbf{H}) \bullet \frac{\partial f_{e,p}}{\partial \mathbf{p}} = 0,$$

¹⁾Работа выполнена при финансовой поддержке РНФ, грант 20-11-20165.

$$\frac{\partial \mathbf{E}}{\partial t} - \nabla \times \mathbf{H} + \mathbf{j} = \mathbf{0}, \quad \nabla \bullet \mathbf{E} = \rho,$$
$$\frac{\partial \mathbf{H}}{\partial t} + \nabla \times \mathbf{E} = \mathbf{0}, \quad \nabla \bullet \mathbf{H} = 0,$$

где **E**(*t*, **x**), **H**(*t*, **x**) – соответственно векторы электрической и магнитной напряженности самосогласованного электромагнитного поля; $f_{e,p}(t, x, p)$ – функции распределения электронов (*e*) и протонов (*p*); **v**_{*e*,*p*} = $\partial w_{e,p}/\partial \mathbf{p}_{e,p}$ – скорости электронов и протонов; $w_{e,p} = [(m_{e,p})^2 + (\mathbf{p}_{e,p})^2]^{1/2}$ – $m_{e,p}$ – их кинетические энергии; $m_{e,p}$ – массы покоя и $q_{e,p}$ – заряды, соответственно, электронов и протонов плазмы.

Плотности заряда и тока:

$$\rho = \sum q_{e,p} \int f_{e,p} d^3 p, \quad \mathbf{j} = \sum q_{e,p} \int \mathbf{v}_{e,p} f_{e,p} d^3 p$$

с суммированием по сортам частиц.

Здесь и далее используется следующая система единиц: длина L – произвольный размер; скорость c (=1) – скорость света; время – L/c; масса частицы m – масса покоя электрона; импульс и энергия частицы – mc и mc^2 соответственно; напряженность поля – mc^2/eL , где e – элементарный заряд; концентрация частиц – $mc^2/4\pi e^2 L^2$; функция распределения по энергии – $L/4\pi e^2$. В этих единицах масса электрона $m_e = 1$, протона $m_p = 1836$ и $q_{e,p}$ – заряды, соответственно, электронов $q_e = (-1)$ и протонов $q_p = 1$.

Задача решалась численным методом, основные принципы алгоритма которого (метод макрочастиц для уравнения Власова и разностная схема для уравнений Максвелла с учетом запаздывающих потенциалов) изложены в [6]–[8]. Траектории частиц определяются силовым взаимодействием, обусловленным электромагнитным полем не как одномоментной суперпозицией влияния остальных частиц системы, а как интегральные величины по предшествующему данному моменту промежутку времени, т.е. являются локально-ковариантными функциями 4-потенциалов Льенара–Вихерта системы частиц, так что применение "усредняющих" преобразований Лоренца даже для небольшой группы (кластера), близких в некоторый момент частиц неправомерно (таким образом, в результате возникающей "эффективной рассинхронизации" многочастичных кластеров динамика системы хаотизуется).

Область расчета определяется параметрами 0 < x < X, 0 < y < Y, 0 < z < Z. По осям x и y заданы периодические граничные условия для компонент электромагнитного поля и координат частиц (выход частицы через границу области расчета влечет за собой ее проникновение в данную область с противоположной границы). Внешние границы закрыты для входа извне частиц и любых видов энергии.

В лабораторной системе координат использована следующая стандартная модель. В начальный момент t = 0 электромагнитное поле отсутствует. Электронейтральная плазма, состоящая из электронов и протонов равной концентрации $n_e = n_p$ частиц каждого типа, равномерно заполняет два прямоугольных параллелепипеда (плазмоида) единичной длины вдоль оси *z* и на расстоянии единица друг от друга вдоль той же оси *z*, движущихся вдоль этой оси в противоположных направлениях с заданной скоростью $|v_z|: 0 < x < 0.3, 0 < y < 0.3, 3 < z < 4$ и 0 < x < 0.3, 0 < y < 0.3, 5 < z < 6 (граничные значения X = Y = 0.3, Z = 9). Шаг по пространственным переменным равен 0.005. В расчетах движения любого плазмоида участвуют по 5760000 частиц каждого типа, если не оговорено иное (по 8 частиц электронов и протонов в расчетной ячейке).

Вдоль оси *z* задана начальная релятивистская скорость частиц. Длительность рассчитываемого процесса ограничена по времени, как правило, пятью (безразмерными) единицами.

3. РЕЗУЛЬТАТЫ РАСЧЕТОВ

Далее приводятся результаты моделирования встречного движения потоков плотной плазмы для трех вариантов начальной скорости электронов и протонов: $|\mathbf{v}_z| = 0.99999$, 0.999 или 0.95 с концентрацией частиц $n_e = n_p = 2 \times 10^8$ и варианта $|\mathbf{v}_z| = 0.9999$ с концентрацией частиц $n_e = n_p = 2 \times 10^8$ и варианта $|\mathbf{v}_z| = 0.9999$ с концентрацией частиц $n_e = n_p = 2 \times 10^8$

Фиг. 1. (а) W – суммарная кинетическая энергия всех частиц в расчетной области, W_{el} и W_{pl} – кинетические энергии электронов и протонов первого плазмоида, U – энергия электромагнитного поля; (б) кинетические энергии W_{ei} и W_{pi} электронов и протонов каждого из плазмоидов как функции времени (здесь i = 1, 2 – номера плазмоидов).

Вариант 1. Начальная скорость всех частиц плазмоида 1 вдоль оси *z*: $\mathbf{v}_{z1} = 0.99999$, плазмоида 2: $\mathbf{v}_{z1} = (-0.99999)$. Кинетическая энергия электрона в этом случае равна 222.6 ($\gamma_e = 223.6$), кинетическая энергия протона равна 408707.

На фиг. 1а представлено поведение во времени суммарной кинетической энергии электронов и протонов обоих плазмоидов W, кинетической энергии электронов W_{el} и протонов W_{pl} первого плазмоида и энергии возникающего электромагнитного поля U. Энергии поля и частиц, ушедших из расчетной области через границы z = 0 и z = Z, по величине на несколько порядков меньше значений, изображенных на этом графике. На фиг. 16 дается сравнение кинетических энергий электронов и протонов обоих плазмоидов как функций времени.

Симметричность начальных данных для плазмоидов 1 и 2 приводит практически к совпадению в поведении кинетических энергий их однотипных частиц (см. фиг. 16). Похожая ситуация наблюдается и в других, рассмотренных ниже, вариантах расчета.

К моменту времени $t_0 = 0.54$ первоначальная суммарная кинетическая энергия протонов обоих плазмоидов распределилась между протонами, электронами и электромагнитным полем таким образом, что все суммарные энергии как электронов, так и протонов каждого из плазмоидов равны между собой. Энергия электромагнитного поля U близка к сумме кинетических энергий электронов и протонов плазмоида.

На фиг. 2 показаны функции распределения по кинетической энергии всего ансамбля электронов F_{el} и протонов F_{pl} плазмоида 1 на три момента времени. Для каждого типа частиц эти функции заметно отличаются от первоначальных дельта-функций. Очевидно наличие двух процессов: заметное торможение протонов и столь же заметное ускорение электронов. Появляются значительно "убегающие" вперед по энергии частицы обоих типов. Аналогичная картина наблюдается в поведении функций распределения по энергии и для частиц второго плазмоида.

На фиг. З изображены функции распределения электронов F_{ei} и протонов F_{pi} плазмоидов 1 и 2 по кинетической энергии *w* при t = 5. Практически распределения по энергии однотипных частиц разных плазмоидов совпадают.

Далее на фиг. 4–10 показана эволюция во времени проекций фазовых портретов (p_x , z) (аналогичных (p_y , z)) и (p_z , z) электронов и протонов обоих плазмоидов (t = 0, 1, 3, 5), рассчитанная при участии 720000 частиц каждого типа в любом плазмоиде (по одной частице электрона и протона на расчетную ячейку). На фиг. 4 даны проекции фазовых портретов (p_z , z) электронов и протонов обоих плазмоидов при t = 0 ((p_x , z) = (p_y , z) = 0).

На фиг. 5 показаны проекции фазовых портретов (p_x, z) всех частиц обоих плазмоидов на момент времени t = 1.

Фиг. 2. Функции распределения электронов F_{el} и протонов F_{pl} плазмоида 1 по энергии *w* на моменты времени 1) t = 0.3, 2) t = 0.5, 3) t = 1 (в логарифмическом масштабе).

Фиг. 3. Функции распределения по энергии *w* электронов F_{ei} (а) и протонов F_{pi} (б) плазмоидов 1 и 2 при t = 5.

Фиг. 4. Проекции фазовых портретов (p_z , z) электронов и протонов при t = 0.

На фиг. 6 представлены проекции фазовых портретов (p_z, z) всех частиц обоих плазмоидов на момент времени t = 1.

На фиг. 7 даны проекции фазовых портретов (p_x, z) всех частиц обоих плазмоидов на момент времени t = 3.

На фиг. 8 изображены проекции фазовых портретов (p_z, z) всех частиц обоих плазмоидов на время t = 3.

Фиг. 5. Проекции фазовых портретов (p_x, z) электронов и протонов плазмоида 1 (а) и плазмоида 2 (б).

Фиг. 6. Проекции фазовых портретов (p_z, z) электронов и протонов плазмоида 1 (а) и плазмоида 2 (б).

На фиг. 9 показаны проекции фазовых портретов (p_x, z) всех частиц обоих плазмоидов на момент времени t = 5.

На фиг. 10 представлены проекции фазовых портретов (p_z, z) электронов и протонов обоих плазмоидов на время t = 5.

Фиг. 7. Проекции фазовых портретов (p_x , z) электронов и протонов плазмоида 1 (а) и плазмоида 2 (б).

Фиг. 9. Проекции фазовых портретов (p_x, z) электронов и протонов плазмоида 1 (а) и плазмоида 2 (б).

Фиг. 10. Проекции фазовых портретов (p_z, z) частиц плазмоида 1 (а) и плазмоида 2 (б).

Фиг. 11. Проекции фазовых портретов (p_x , z) (а) и фазовых портретов (p_z , z) (б) частиц плазмоида 1 при t = 1.

Фиг. 12. Проекции фазовых портретов (p_x, z) (а) и фазовых портретов (p_z, z) (б) частиц плазмоида 1 при t = 3.

Фиг. 13. Проекции фазовых портретов (p_x , z) (а) и фазовых портретов (p_z , z) (б) частиц плазмоида 1 при t = 5.

Фиг. 14. Распределения погонной концентрации f_{ei} , f_{pi} (на фиг. 14а и 146 соответственно) макрочастиц обоих плазмоидов (i = 1, 2); на фиг. 14в приводятся распределения погонной концентрации f_{el} , f_{pl} электронов и протонов первого плазмоида при t = 5.

Проекции фазовых портретов на фиг. 11–13 для первого плазмоида и погонные концентрации на фиг. 14 получены при расчетах с 5760000 частицами каждого типа в плазмоиде (т.е. частиц в 8 раз больше, чем для получения фиг. 4–10, так как в расчетной ячейке по 8 частиц каждого типа вместо одной).

Фиг. 15. W – суммарная кинетическая энергия всех частиц в расчетной области, W_{el} и W_{pl} – кинетические энергии электронов и протонов первого плазмоида, U – энергия электромагнитного поля.

Фиг. 16. Функции распределения электронов F_{el} (а) и протонов F_{pl} (б) плазмоида 1 по кинетической энергии *w* на моменты времени 1) t = 0.075, 2) t = 0.1, 3) t = 0.125 (в логарифмическом масштабе).

Фиг. 17. Функции распределения электронов F_{ei} (а), протонов F_{pi} (б) плазмоидов i = 1 и i = 2 по кинетической энергии *w* на момент времени t = 5; на фиг. 17в показаны сравнительные величины F_{ei} и F_{pi} .

Как показывает сравнение приведенных выше графиков проекций фазовых портретов частиц первого плазмоида на один и тот же момент времени, рассчитанных с разным количеством частиц в расчетной ячейке, их качественные отличия несущественны, что отнюдь не очевидно для других вариантов расчета.

131072.

131072.

(a)

Фиг. 18. Проекции фазовых портретов (*p_x*, *z*) для электронов (а) и протонов (б) частиц плазмоида 1 при *t* = 1; проекции фазовых портретов (*p*_z, *z*) электронов (в) и протонов (г) частиц этого же плазмоида в этот же момент времени.

На фиг. 14а—б представлена погонная концентрация электронов f_{ei} (где i = 1, 2 – номера плазмоидов) и протонов f_{ni} обоих плазмоидов, на фиг. 14в – погонная концентрация электронов и протонов плазмоида $\hat{1}$ вдоль оси *z* на момент времени *t* = 5.

Фигуры проекций фазовых портретов и фиг. 14 демонстрируют взаимопроникновение и смешение частиц обоих плазмоидов. Электроны и протоны плазмы заполняют практически всю расчетную область, причем если электроны со сравнительно близкой концентрацией частиц разных плазмоидов вдоль оси z, то v протонов при одной и той же координате z погонные концентрации прямой частиц разных плазмоидов заметно различаются и примерно симметричны относительно z = 4.5. Нечто похожее на симметрию концентраций имеет место и для электронов разных плазмоидов относительно той же прямой z = 4.5.

Минимальное время до столкновения пучков в данном варианте расчета и всех следующих можно считать равным $0.5/|v_z|$.

Изменение начальной скорости движения частиц, при прочих равных условиях основного варианта расчета, заметно влияет на картину их поведения в расчетной области, что демонстрируют варианты расчета 2 с $|V_z| = 0.999$ ($\gamma_e = 22.37$) и 3 с $|V_z| = 0.95$ ($\gamma_e = 3.2$). Полная кинетическая энергия системы в начальный момент t = 0 существенно уменьшается (примерно в 10 и 100 раз соответственно) по сравнению с аналогичной энергией первого варианта расчета.

Вариант 2. Начальная скорость частиц плазмоидов $|V_{\tau}| = 0.999$ (кинетическая энергия электронов равна 21.37, протонов – 39228), начальная концентрация частиц $n_e = n_p = 2 \times 10^8$.

В любом из двух плазмоидов по 5760000 частиц каждого типа, т.е. по 8 частиц электронов и протонов в расчетной ячейке. На фиг. 15 дана зависимость от времени суммарной кинетической энергии электронов и протонов обоих плазмоидов, кинетической энергии электронов и протонов первого плазмоида и энергии возникающего электромагнитного поля. Аналогично первому варианту расчета к моменту времени $t_0 \sim 0.14$ первоначальная кинетическая энергия протонов

Фиг. 19. Проекции фазовых портретов (p_x , z) для электронов (a) и протонов (б) частиц плазмоида 1 при t = 3; проекции фазовых портретов (p_z , z) для электронов (в) и протонов (г) частиц этого же плазмоида в этот же момент времени.

перераспределяется между протонами, электронами и электромагнитным полем. Все суммарные энергии протонов или электронов каждого из плазмоидов равны между собой и примерно на 10% меньше энергии электромагнитного поля U. Однако затем электроны в общей сложности получают от протонов небольшую дополнительную кинетическую энергию.

Как показывают дальнейшие расчеты, с уменьшением начальной скорости частиц плазмы это отличие суммарной энергии всех электронов от суммарной энергии всех протонов для $t > t_0$ увеличивается.

На фиг. 16 изображены функции распределения по кинетической энергии w электронов F_{el} и протонов F_{pl} плазмоида 1 на три момента времени, на фиг. 17 — эти же функции распределения по энергии w для частиц плазмоидов 1 и 2 при t = 5. В этом варианте также наблюдается процесс заметного ускорения электронов и торможения протонов, и есть "убегающие" вперед по энергии частицы обоих типов, как электроны, так и протоны.

На фиг. 18–20 представлены на три момента времени проекции фазовых портретов (p_x, z) и (p_z, z) электронов и протонов первого плазмоида. Эволюцию проекций фазовых портретов частиц второго плазмоида можно представить как симметричное отражение относительно плоскости z = 4.5 соответствующих портретов частиц первого плазмоида.

На фиг. 21а представлена погонная концентрация электронов f_{ei} и протонов f_{pi} обоих плазмоидов вдоль оси *z*, на фиг. 216 — погонные концентрации f_{e1} и f_{p1} (обе фигуры в момент времени t = 5).

При внешнем сходстве проекций фазовых портретов однотипных частиц на один и тот же момент времени в вариантах расчета 2 и 1 (например, фиг. 20 и фиг. 13) это лишь качественная характеристика распределения частиц, но не количественная, так как распределения погонных

Фиг. 20. Проекции фазовых портретов (p_x , z) для электронов (a) и протонов (б) частиц плазмоида 1 при t = 5; проекции фазовых портретов (p_z , z) для электронов (b) и протонов (г) частиц этого же плазмоида в этот же момент времени.

Фиг. 21. Распределение f_{ei} (а) и f_{pi} (б) погонной концентрации частиц обоих плазмоидов при t = 5; на фиг. 21в – сравнение распределений погонной концентрации f_{ei} и f_{pi} частиц первого (аналогично второго) плазмоида в этот же момент времени.

Фиг. 22. W – суммарная кинетическая энергия всех частиц в расчетной области, W_{el} и W_{pl} – кинетические энергии электронов и протонов первого плазмоида, U – энергия электромагнитного поля.

Фиг. 23. Функции распределения электронов F_{el} (а) и протонов F_{pl} (б) плазмоида 1 по кинетической энергии *w* на моменты времени 1) t = 0.0375, 2) t = 0.05, 3) t = 0.0625 в логарифмическом масштабе.

Фиг. 24. Функции распределения электронов f_{ei} (а) и протонов f_{pi} (б) плазмоидов i = 1 и i = 2 по кинетической энергии на момент времени t = 5.

концентраций частиц вдоль оси z на один и тот же момент времени заметно различаются (фиг. 21а и фиг. 14а). К моменту времени t = 5 основная масса частиц обоих плазмоидов сосредоточена на интервале $1.5 \le z \le 7.5$ (см. фиг. 21а). Кривые погонных концентраций однотипных частиц разных плазмоидов симметричны относительно $z \approx 4.5$. Заметен выход частиц из расчетной области в направлении, обратном изначально заданному направлению скорости частиц, но в этом направлении граница по z для частиц заметно ближе.

Фиг. 25. Проекции фазовых портретов (p_x , z) для электронов (a) и протонов (б) частиц плазмоида 1 при t = 1; проекции фазовых портретов (p_z , z) для электронов (в) и протонов (г) частиц плазмоида 1 в тот же момент времени.

Фиг. 26. Проекции фазовых портретов (p_x , z) для электронов (a) и протонов (б) частиц плазмоида 1 при t = 3; проекции фазовых портретов (p_z , z) для электронов (в) и протонов (г) частиц плазмоида 1 в тот же момент времени.

Фиг. 27. Проекции фазовых портретов (p_x , z) для электронов (a) и протонов (б) частиц плазмоида 1 при t = 5; проекции фазовых портретов (p_z , z) для электронов (в) и протонов (г) частиц плазмоида 1 в тот же момент времени.

В варианте 2 электроны и протоны любого плазмоида в расчетной области вдоль оси *z* распределены примерно одинаково (фиг. 216).

Вариант 3. Далее представлен стандартный для настоящей работы набор графиков по результатам расчета варианта при тех же, что и в варианте 1, значениях основных параметров задачи, включая по 8 электронов и протонов в расчетной ячейке, но с начальной скоростью частиц $|V_z| = 0.95$ и конечным временем расчета t = 7. При t = 0 кинетическая энергия электронов равна 2.2, протонов – 4039.

К моменту $t_0 = 0.08$ (см. фиг. 22) суммарные кинетические энергии как электронов, так и протонов каждого из плазмоидов сравнялись между собой, а энергия электромагнитного поля U равна примерно половине этой энергии. В дальнейшем электроны приобрели заметно большую суммарную кинетическую энергию, чем осталась у протонов (см. фиг. 22). Как и в других вариантах расчета, электроны заметно ускоряются, протоны заметно тормозятся (см. фиг. 23). На фиг. 24 представлены функции распределения электронов и протонов каждого из плазмоидов дов по энергии w на момент времени t = 5.

На фиг. 25–27 представлена эволюция во времени проекций фазовых портретов (p_x, z) (аналогичных (p_y, z)) и (p_z, z) электронов и протонов первого плазмоида.

На фиг. 28, 29 представлено распределение погонной концентрации частиц обоих плазмоидов при t = 5 и t = 7. Они существенно отличаются от аналогичных распределений в предыдущих вариантах расчета с 8 частицами каждого типа в расчетной ячейке. Основная масса частиц сконцентрирована в ограниченной области, довольно близкой к области их первоначального распределения. Важную роль играет взаимодействие частиц через электромагнитное поле, которое определяет структуру распределения заряженных частиц.

Фиг. 28. Распределение погонной концентрации электронов (а) и протонов (б) обоих плазмоидов при t = 5.

Фиг. 29. Распределение погонной концентрации электронов (а) и протонов (б) обоих плазмоидов при t = 7.

4. ЗАКЛЮЧЕНИЕ И ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В работе приведены результаты моделирования встречного движения в вакууме электронейтральных потоков плотной ($n_e = n_p = 2 \times 10^8$) плазмы, состоящей из электронов и протонов равной концентрации, с релятивистскими скоростями $|V_z| = 0.99999$, 0.999 и 0.95 и варианта с $|V_z| = 0.999$ и концентрацией частиц $n_e = n_p = 2 \times 10^7$.

Для всех вариантов: 1) характерно практическое отсутствие различия в поведении кинетических энергий однотипных частиц (электронов и протонов) обоих плазмоидов в силу симметричности начальных данных; 2) перераспределение ко времени t_0 начальной суммарной кинетической энергии протонов между протонами, электронами и возникающим электромагнитным полем, суммарные энергии как протонов, так и электронов разных плазмоидов практически совпадают между собой; 3) установлено, что, чем меньше начальная скорость частиц $|V_2|$, при одной и той же начальной концентрации частиц, тем меньше время t_0 и тем большую по сравнению с протонами суммарную кинетическую энергию приобретают электроны в дальнейшем; 4) с уменьшением начальной скорости частиц уменьшается по сравнению с энергией частиц максимальная энергия электромагнитного поля; 5) во всех просчитанных до момента времени t = 5 вариантах имеет место различная степень взаимопроникновения потоков.

В первом и втором вариантах расчета частицы обоих плазмоидов ко времени t = 5 практически заполнили всю расчетную область; в третьем за то же время t = 5 частицы занимают лишь некоторую ограниченную область в окрестности первоначального распределения частиц (это связано с существенной разницей в первоначальной скорости частиц первого/второго и третьего вариантов), и только к моменту t = 7 почти заполнили расчетную область.

В силу симметричности начальных данных часть графиков построена по информации только для одного первого плазмоида.

Отметим, что во всех расчетах закон сохранения энергии выполняется с большой точностью (погрешность не более 1%).

Интересным представляется сравнить результаты проведенных расчетов по взаимодействию плазмоидов с использованием формализма самосогласованного поля Власова с возможными

ГИНЗБУРГ и др.

расчетами, основанными на применении уравнений Ландау—Максвелла для электронейтральной системы протонов и электронов. Наиболее вероятными различиями в данном случае, по-видимому, будут следующие: существенное увеличение анизотропии функций распределения частиц при столкновении плазмоидов (что связано с фактическим отсутствием коллективного взаимодействия через электромагнитное поле в плазме на расстояниях больше эффективного радиуса рассеяния частиц друг на друге); значительная перестройка энергетического спектра процесса (это связано с дискретным характером рассеяния системы заряженных частиц данного плазмоида на аналогичной системе встречного плазмоида); электромагнитное поле при расчете взаимодействия плазмоидов с помощью уравнений Ландау будет проявляться в основном в виде тормозного излучения в узком конусе с осью вдоль линии движения встречных пучков.

Относительно интерпретации полученных результатов в астрофизических приложениях можно предварительно отметить следующее: взаимопроникновение релятивистских плазменных образований приводит к возникновению нелинейных эффектов ускорения электронов и перекачки существенной доли кинетической энергии частиц плазмоидов в электромагнитное излучение. Изучение этих эффектов, безусловно, даст толчок к объяснению до сих пор неясных астрофизических феноменов, связанных, среди прочего, с синхротронным излучением, эволюцией газопылевых структур, в частности, в окрестностях сверхновых и активных черных дыр. Другим перспективным направлением моделирования взаимодействия встречных плазмоидов заряженных частиц является физика процессов в коллайдерах при больших плотностях пучков.

СПИСОК ЛИТЕРАТУРЫ

- 1. Гинзбург С.Л., Дьяченко В.Ф. Численное исследование неустойчивости релятивистского потока плазмы: Препринты ИПМ им. М.В. Келдыша РАН. 2009. № 20. 8 с. URL: http://library.keldysh.ru/preprint.asp?id=2009-20
- 2. *Дьяченко В.Ф., Гинзбург С.Л.* Численное исследование неустойчивости потока плазмы // Матем. моделирование. 2011. Т. 23. № 12. С. 151–155.
- 3. Чечеткин В.М., Дьяченко В.Ф., Гинзбург С.Л., Палейчик В.В., Фимин Н.Н., Судариков А.Л. К вопросу о механизме возникновения жесткого космического гамма-излучения джетов активных ядер галактик // Астрономический ж. 2009. Т. 86. № 6. С. 546–554.
- 4. Vereshchagin G., Chechetkin V.M., Dyachenko V.F., Ginzburg S.L., Fimin N.N., Ruffini R., Siutsou I. On kinetic instabilities in collisionless ultrarelativistic streaming cold electron-proton plasma // American Physical Society, 2009, APS April Meeting, May 2–5.
- 5. Гинзбург С.Л., Дьяченко В.Ф., Чечеткин В.М. Численное исследование неустойчивости нейтрального потока плотной плазмы: Препринты ИПМ им. М.В. Келдыша. 2014. № 87. 13 с. URL:http://library.keldysh.ru/preprint.asp?id=2014-87
- 6. *Дьяченко В.Ф.* О расчетах задач бесстолкновительной плазмы // Ж. вычисл. матем. и матем. физ. 1985. № 4. С. 611–627.
- 7. Дьяченко В.Ф. Десять лекций по физической математике. М.: Факториал, 1997.
- 8. Чечеткин В.М., Дьяченко В.Ф., Гинзбург С.Л., Орлов Ю.Н., Фимин Н.Н. Моделирование динамики бесстолкновительной ультрарелятивистской электрон-протонной плазмы в самосогласованном электромагнитном поле: Препринты ИПМ им. М.В. Келдыша. 2016. № 87. 13 с. URL: http://library.keldysh.ru/preprint.asp?id=2016-87
- 9. Веденяпин В.В., Фимин Н.Н., Чечеткин В.М. К вопросу о выводе уравнения Власова-Максвелла-Эйнштейна и его связь с космологическим лямбда-членом // Вестн. МГОУ. Сер. Физика-математика. 2019. № 2. С. 24–48.
- Vedenyapin V.V., Fimin N.N., Pershin I.S. The Vlasov-Maxwell-Einstein equations and its cosmological applications // Global J. Sci. Front. Res. A. 2019. V. 4A. P. 11–22.
- 11. Веденяпин В.В., Фимин Н.Н., Негматов М.А. Уравнения типа Власова и Лиувилля, их микроскопические, энергетические и гидродинамические следствия // Изв. РАН. Сер. матем. 2017. Т. 81. № 3. С. 45–82.
- 12. Веденяпин В.В., Фимин Н.Н., Негматов М.А. Уравнения Лиувилля и Власова. Их микроскопические и гидродинамические следствия. М.: ИПМ им. М.В. Келдыша РАН. 2016.