ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ, 2021, том 61, № 3, с. 373–381

ОБЩИЕ ЧИСЛЕННЫЕ МЕТОДЫ

УДК 550.834

РАЗНОСТНЫЕ СХЕМЫ НА ОСНОВЕ ПРЕОБРАЗОВАНИЯ ЛАГЕРРА

© 2021 г. А. Ф. Мастрюков

630090 Новосибирск, пр-т Акад. Лаврентьева, 6, Институт вычисл. матем. и матем. геофизики СО РАН, Россия

> *e-mail: maf@omzg.sscc.ru* Поступила в редакцию 30.01.2020 г. Переработанный вариант 30.07.2020 г. Принята к публикации 18.11.2020 г.

В работе рассматриваются оптимальные разностные схемы для решения волнового уравнения с использованием преобразования Лагерра. В разностную схему уравнений для гармоник вводятся дополнительные параметры. Численные значения этих параметров получаются минимизацией погрешности разностной аппроксимации уравнения Гельмгольца. Полученные таким образом оптимальные значения параметров используются при построении разностных схем — оптимальных разностных схем. Рассмотрены оптимальные разностные схемы 2-го порядка и 4-го порядка аппроксимации. Приведены оптимальные параметры разностных схем. Значения этих параметров зависят только от отношения пространственных шагов разностной сетки. Показано, что использование оптимальных разностных схем ведет к повышению точности решения уравнений. Простая модернизация разностной схемы дает повышение эффективности алгоритма. Библ. 18. Фиг. 2. Табл. 3.

Ключевые слова: конечно-разностный метод, оптимальный, точность, электромагнитные волны, метод Лагерра.

DOI: 10.31857/S0044466921030145

1. ВВЕДЕНИЕ

При численном решении дифференциальных уравнений широко используются спектральные методы. Спектральные методы позволяют более эффективно решать задачи со сложной зависимостью параметров уравнений от времени. Например, в случае с релаксацией диэлектрической проницаемости, выраженной в интегральной форме [1], [2].

Конечно-разностный метод прост в программной реализации и экономичен [3], [4]. Но есть задачи, такие как частотное зондирование, в электроразведке [5], где предпочтительнее использовать спектральные методы.

В ряде задач спектральный метод, основанный на преобразовании Лагерра, по эффективности в несколько раз превосходит метод Фурье. Эффективность обусловлена видом уравнений для гармоник Лагерра [7], [8]. Левая часть этих уравнений не зависит от номера гармоники, а меняется только правая часть этой системы. Кроме того, система уравнений для гармоник всегда содержит только действительные переменные.

Важным показателем качества численного алгоритма является точность получаемого решения уравнений [9]. Существуют различные способы повышения точности решения, например, использование разностных схем более высокого порядка аппроксимации или построение разностных схем минимизирующих погрешность дисперсионного соотношения (dispersion-relation-preserving) [9]. Ко второму типу схем относятся так называемые оптимальные разностные схемы.

В работе оптимальными называются разностные схемы, параметры которых определяются минимизацией некого функционала. В данном случае параметры определяются минимизацией погрешности разностной аппроксимации уравнения Гельмгольца.

В работе [11] была предложена оптимальная разностная схема для решения волнового уравнения в спектральной области. В разностное уравнение 2-го порядка аппроксимации для заданной гармоники Фурье вводятся 3 дополнительных параметра. Значения этих параметров определяются минимизацией погрешности численного решения на точном аналитическом решении.

МАСТРЮКОВ

Алгоритм рассматривается при равных пространственных шагах разностной сетки. Обобщение для неравных шагов было предложено в работе [12] введением средних значений в пространственные производные. В этом случае оптимизация проводилась по 4 параметрам.

В работах [13], [14] была рассмотрена оптимальная разностная схема 2-го порядка аппроксимации для решения уравнений Максвелла и для решения волнового уравнения, основанная на разложении Лагерра по временной переменной. Здесь оптимизация проводилась по 4 параметрам.

В настоящей работе рассматриваются оптимальные разностные схемы 2-го порядка и 4-го порядка аппроксимации для решения двумерного волнового уравнения на основе преобразования Лагерра, использующие различное число параметров.

Предлагаемые оптимальные схемы являются модернизацией обычных разностных схем, но они обладают более высокой точностью и более высокой эффективностью.

В работе приведены параметры оптимальных разностных схем и результаты тестовых расчетов с использованием этих схем.

2. ПОСТАНОВКА ЗАДАЧИ

Будем рассматривать волновое уравнение вида

$$\frac{1}{v^2}\frac{\partial^2 E}{\partial t^2} + \gamma \frac{\partial E}{\partial t} = \frac{\partial^2 E}{\partial x^2} + \frac{\partial^2 E}{\partial z^2} + S(t, x, z)$$
(1)

в прямоугольной пространственной области при нулевых граничных и начальных условиях

$$E(t=0,x,z)=0, \quad \frac{\partial E(t=0,x,z)}{\partial t}=0.$$

Здесь S(t, x, z) – источник волн, v – скорость волны, γ – коэффициент поглощения. Величины v, γ являются функциями координат x, z.

Такое уравнение описывает как распространение упругих волн, так и распространение электромагнитных волн. В первом случае E — это давление и v — это скорость упругих волн, во втором случае E — это напряженность электрического поля и v — это скорость электромагнитных волн.

К такому же уравнению можно свести систему двумерных уравнений Максвелла. Уравнения Максвелла для электромагнитного поля в двумерном случае имеют вид [5], [15]

$$\frac{\partial H_x}{\partial z} - \frac{\partial H_z}{\partial x} = \varepsilon \frac{\partial E_y}{\partial t} + \sigma E_y + J_y, \tag{2}$$

$$\frac{\partial E_y}{\partial z} = \mu \frac{\partial H_x}{\partial t},\tag{3}$$

$$\frac{\partial E_y}{\partial x} = -\mu \frac{\partial H_z}{\partial t},\tag{4}$$

где $\mathbf{H} = (H_x, H_y, H_z)$ – напряженность магнитного поля, $\mathbf{E} = (E_x, E_y, E_z)$ – напряженность электрического поля, $\mathbf{J} = (J_x, J_y, J_z)$ – ток внешнего источника, ε – диэлектрическая проницаемость, μ – магнитная проницаемость.

Продифференцировав по времени уравнение (2) и подставив в него выражения из уравнений (3), (4), при μ = const получим для электрического поля E_y уравнение вида (1), где источник имеет вид

$$S(t, x, z) = -\mu \frac{\partial J_y}{\partial t}.$$

Систему уравнений (2)-(4) будем использовать для оценки точности решения волнового уравнения (1).

Проведем преобразование Лагерра [16] по времени уравнения (1)

$$E_n = \int_0^\infty E(t)(ht)^{-\alpha/2} l_n^\alpha(ht) d(ht),$$
(5)

РАЗНОСТНЫЕ СХЕМЫ

$$E(t) = (ht)^{\alpha/2} \sum_{n=0}^{\infty} \frac{n!}{(n+\alpha)!} E_n l_n^{\alpha}(ht),$$
(6)

375

где $l_n^{\alpha}(ht)$ — ортогональная функция Лагерра [16] степени n, α — целая константа, h — параметр преобразования Лагерра.

В результате получим уравнение для *n*-й гармоники Лагерра *E_n*:

$$\frac{\partial^2 E_n}{\partial x^2} + \frac{\partial^2 E_n}{\partial z^2} + S_n = \frac{h^2}{v^2} \left(\frac{1}{4} E_n + \sum_{k=0}^{n-1} E_k + \sum_{k=0}^{n-1} (n-1-k) E_k \right) + \gamma h \left(\frac{1}{2} E_n + \sum_{k=0}^{n-1} E_k \right).$$
(7)

Рассмотрим разностную аппроксимацию этого уравнения.

3. АППРОКСИМАЦИЯ УРАВНЕНИЯ

Определим E_n и S_n в целых *i*, *j* узлах разностной сетки. Производные заменим конечными разностями второго порядка аппроксимации. Запишем уравнение (7) в разностном виде, используя средние значения гармоник Лагерра:

$$(\overline{E}_{i,j+1} - 2\overline{E}_{i,j} + \overline{E}_{i,j-1})/(\Delta x^{2} + (\overline{E}_{i+1,j} - 2\overline{E}_{i,j} + \overline{E}_{i-1,j})/\Delta z^{2} + S_{n,i,j} = = \frac{h^{2}}{v^{2}} \left(\frac{1}{4}\langle E_{n} \rangle + \sum_{k=0}^{n-1} \langle E_{k} \rangle + \sum_{k=0}^{n-1} (n-1-k) \langle E_{k} \rangle \right) + \gamma h \left(\frac{1}{2} \langle E_{n} \rangle + \sum_{k=0}^{n-1} \langle E_{k} \rangle \right).$$
(8)

Здесь в правой части уравнения гармоники поля заменены средними значениями по 9 точ-кам [12]:

$$\langle E_k \rangle = c E_{k,i,j} + d(E_{k,i,j+1} + E_{k,i,j-1}) + g(E_{k,i+1,j} + E_{k,i-1,j}) + e(E_{k,i+1,j+1} + E_{k,i-1,j+1} + E_{k,i-1,j-1}),$$

$$(9)$$

где *с*, *d*, *g*, *e* – весовые множители, удовлетворяющие уравнению

$$c + 2d + 2g + 4e = 1$$
 или $e = (1 - c - 2d - 2g)/4.$

В разностных производных по z использованы средние значения [12] для поля вида

$$\overline{E}_{i,j} = \frac{1-\beta}{2} E_{n,i,j+1} + \beta E_{n,i,j} + \frac{1-\beta}{2} E_{n,i,j-1},$$
(10)

и в разностных производных по х использованы средние значения вида

$$\overline{E}_{i,j} = \frac{1-\alpha}{2} E_{n,i+1,j} + \alpha E_{n,i,j} + \frac{1-\alpha}{2} E_{n,i-1,j}.$$
(11)

Разностное уравнение (8), содержащее дополнительные параметры α, β, *c*, *d*, *g*, *e*, аппроксимирует уравнение (7) со вторым порядком.

Подберем введенные параметры α, β, c, d, g, e таким образом, чтобы точность аппроксимации уравнения была наиболее высокой.

4. ВЫБОР ОПТИМАЛЬНЫХ ПАРАМЕТРОВ

Для нулевой гармоники поля $E = E_{0y}$, уравнение (7) можно представить в виде уравнения Гельмгольца. Без учета источников уравнение (7) принимает простой вид:

$$\frac{\partial^2 E}{\partial x^2} + \frac{\partial^2 E}{\partial z^2} = k_0^2 E, \quad k_0^2 = \frac{h}{2} \left(\frac{h}{2v^2} + \gamma \right).$$
(12)

В случае электромагнитных волн

$$k_0^2 = \mu \frac{h}{2} \Big(\varepsilon \frac{h}{2} + \sigma \Big).$$

ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ том 61 № 3 2021

Это уравнение на разностной сетке можно записать, применяя средние значения поля, приведенные в предыдущем разделе

$$\frac{\overline{E}_{i+1,j} - 2\overline{E}_{i,j} + \overline{E}_{i-1,j}}{\Delta z^2} + \frac{\overline{E}_{i,j+1} - 2\overline{E}_{i,j} + \overline{E}_{i,j-1}}{\Delta x^2} = k_0^2 (cE_{n,i,j} + d(E_{n,i,j+1} + E_{n,i,j-1}) + g(E_{n,i+1,j} + E_{n,i-1,j}) + e(E_{n,i+1,j+1} + E_{n,i+1,j-1}) + E_{n,i-1,j-1}).$$

Уравнение (12) имеет точное решение:

$$E = E_0 ch(k_x x) ch(k_z z), \quad k_x^2 + k_z^2 = k_0^2, \quad k_x = k_0 \sin \theta, \quad k_z = k_0 \cos \theta.$$

Подставим это решение в приведенное разностное уравнение. После простых преобразований получим уравнение

 $V^2(\theta, k) = 1.$

где

$$V^{2}(\theta, k) = \left(\left((1 - \alpha)ch\left(\frac{k\cos\theta}{r}\right) + \alpha \right) (ch(k\sin\theta) - 1) + r^{2}((1 - \beta)ch(k\sin\theta) + \beta) \left(ch\left(\frac{k\cos\theta}{r}\right) - 1 \right) \right) / \left(k^{2} \left(c/2 + d \left(ch\left(\frac{k\cos\theta}{r}\right) \right) + g \left(ch(k\sin\theta) + 2e(ch(k\sin\theta))ch\left(\frac{k\cos\theta}{r}\right) \right) \right) \right)$$
(13)

и $r = \Delta x / \Delta z$, $k = k_0 \Delta x$.

Будем искать параметры α , β , *c*, *d*, *g*, *e*, требуя максимально точного выполнения равенства $V^2(\theta, k) = 1$ в пределах допустимых значений θ , *k*.

Для этого определим функционал

$$F(u) = F(\alpha, \beta, c, d, g, e) = \int \int (1 - V(\theta, k))^2 d\theta dk,$$
(14)

где $u = (\alpha, \beta, c, d, g, e)$ – вещественный вектор искомых параметров.

Пределы интегрирования по углу $\theta = [0, \pi/2]$. Пределы интегрирования по второй переменной от k = 0 до k = K. Величина k определяет отношение шага разностной сетки Δx к характерному размеру $1/k_0$ изменения решения. Поэтому брать величину верхнего предела интегрирования K значительно больше единицы не имеет смысла по причине очевидной потери точности.

Будем искать точку минимума функционала (14) при заданных значениях r, K по параметрам α , β , c, d, g, e.

Для минимизации функционала будем использовать итерационный метод Ньютона [17]. Этот метод требует вычисления первой и второй производных функционала F(u). Производные F(u) по параметрам α , β , c, d, g, e легко вычисляются, так как выражение под интегралом и функция $V(\theta, k)$ имеют явный вид.

Минимальное значение функционала F(u) при заданных значениях r, K обозначим $I(r, K) = \min F(u)$. Значения параметров α , β , c, d, g в точке минимума функционала F(u) будем называть оптимальными параметрами.

В табл. 1 приведены оптимальные значения параметров α , β , c, d, g и интеграла I(r, K), полученные при e = 0, c = 1 - 2d - 2g, т.е. при минимизации по 5 параметрам. Учет $e \neq 0$ дает незначительное (около 20%) уменьшение значения интеграла I(r, K).

При заданном $r = \Delta x / \Delta z$, с ростом верхнего предела K, минимальное значение I(r, K) в промежутке от K = 0 до $K \approx 0.3$ падает от единицы до $I \approx 10^{-5}$, в промежутке от $K \approx 0.3$ до $K \approx 2.5$ растет в 30–40 раз. Малые K соответствуют слабо меняющимся решениям уравнения (12).

При заданном верхнем пределе *K* с ростом *r* минимальное значение I(r, K) растет менее, чем на 30% в промежутке r = [1, 3]. Зависимость от *r* значения I(r, K) и определяемых параметров α , β , *c*, *d*, *g* носит монотонный характер.

Приводимые здесь разностные аппроксимации уравнения Гельмгольца используют различное число точек сетки. Шаблон разностной схемы без оптимальных параметров является 5-то-

α	β	С	d	g	I(r, K)	r	K
0.8465	0.8465	0.6782	0.08044	0.08044	5.88e-05	1	1
0.8613	0.8613	0.6916	0.07708	0.07708	2.61e-04	1	1.5
0.8981	0.8981	0.7283	0.06790	0.06790	1.35e-03	1	2.5
0.4985	0.9966	0.6752	0.08187	0.08051	5.96e-05	1.5	1
0.5046	1.0105	0.6852	0.08013	0.07722	2.64e-04	1.5	1.5
0.5207	1.0467	0.7133	0.07511	0.06820	1.37e-03	1.5	2.5
0.3184	0.9735	0.6744	0.08227	0.08052	7.10e-05	2	1
0.3215	0.9860	0.6834	0.08102	0.07725	3.14e-04	2	1.5
0.3296	1.018	0.7083	0.07757	0.06827	1.60e-03	2	2.5

Таблица 1

Таблица 2

С	d	g	I(r, K)	r	K
0.7554	0.06114	0.06114	4.65e-02	1	1
0.7621	0.05946	0.05946	4.01e-02	1	1.5
0.7825	0.05435	0.05435	2.62e-02	1	2.5
0.7673	0.05005	0.06625	4.25e-02	1.5	1
0.7710	0.05062	0.06384	3.78e-02	1.5	1.5
0.7828	0.05151	0.05707	2.73e-02	1.5	2.5
0.7974	0.03316	0.06811	3.68e-02	2	1
0.7983	0.03531	0.06551	3.30e-02	2	1.5
0.8022	0.04061	0.05826	2.46e-02	2	2.5

чечным, а шаблон разностной схемы с оптимальными параметрами является 9-точечным. Увеличение числа точек ведет к увеличению числа вычислительных операций.

Если положить $\alpha = 1$, $\beta = 1$, и искать минимум интеграла по трем параметрам, то шаблон такой оптимальной схемы остается 5-точечным, как и обычная схема 2-го порядка. Такая простая модернизация обычной схемы 2-го порядка не меняет структуры матрицы системы разностных уравнений (8).

В табл. 2 приведены оптимальные значения параметров c, d, g для разных значений величины $r = \Delta x / \Delta z$ и при разных верхних пределах интегрирования по k в формуле (14). Указаны также значения интеграла I(r, K), полученные при этих значениях параметров. Эти значения интеграла, как и ранее, нормированы на величину интеграла для неоптимальной схемы.

Зависимость интеграла I(r, K) от r, K существенно отличается от случая, приведенного в табл. 1. При заданном r, с ростом верхнего предела K, минимальное значение I(r, K) падает от единицы до $I \approx 2 \times 10^{-2}$, в промежутке K = [0, 2.5]. При заданном верхнем пределе K, с ростом r минимальное значение I(r, K) меняется менее, чем на 30% в промежутке r = [1, 3].

Значения интеграла I(r, K) при K = 2.5 примерно на порядок больше, чем в случае минимизации по 5 параметрам, приведенным в предыдущей таблице. При уменьшении K эта разница возрастет до трех порядков, т.е. схема с 5 параметрами позволяет достичь более глубокой минимизации I(r, K), чем схема с 3 параметрами, но с ростом K разница быстро уменьшается.

Как и для разностной схемы 2-го порядка для разностных схем 4-го порядка можно также построить оптимальную разностную схему. Рассмотрим разностную аппроксимацию четвертого порядка уравнения (12) вида

$$\frac{16(E_{i+1,j} + E_{i-1,j}) - (E_{i+2,j} + E_{i-2,j}) - 30E_{i,j}}{12\Delta z^2} - \frac{16(E_{i,j+1} + E_{i,j-1}) - (E_{i,j+1} + E_{i,j-1}) - 30E_{i,j}}{12\Delta x^2} = (15)$$
$$= k_0^2 \left(cE_{i,j} + d(4(E_{i,j+1} + E_{i,j-1})/6 - (E_{i,j+2} + E_{i,j-2})/6) + g\left(4(E_{i+1,j} + E_{i-1,j})/6 - (E_{i+2,j} + E_{i-2,j})/6\right) \right)$$

ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ том 61 № 3 2021

С	d	g	I(r, K)	r	K
0.8897	0.05513	0.05513	2.48e-02	1	1
0.8961	0.05191	0.05191	2.13e-02	1	1.5
0.9043	0.04781	0.04781	1.84e-02	1	2
0.8952	0.04812	0.05667	1.85e-02	1.5	1
0.8993	0.04747	0.05313	1.60e-02	1.5	1.5
0.9049	0.04638	0.04864	1.38e-02	1.5	2
0.9184	0.02465	0.05693	1.58e-02	2	1
0.9208	0.02584	0.05334	1.37e-02	2	1.5
0.9245	0.02671	0.04878	1.19e-02	2	2

Таблица 3

Шаблон этой схемы является 9-точечным. Введение трех параметров c, d, g при c = 1 - d - g не увеличивает числа точек схемы. Выписав для этого случая уравнения (13), (14) и проведя минимизацию по этим трем параметрам, получим оптимальные параметры, которые приведены в табл. 3.

При заданном r, с ростом верхнего предела K, минимальное значение I(r, K) падает от единицы до $I \approx 10^{-2}$, в промежутке K = [0, 2]. При заданном верхнем пределе K, с ростом r минимальное значение I(r, K) падает в 2.5 раза в промежутке r = [1, 3]. При K > 2.1 точка минимума I(r, K) не определяется.

5. РЕЗУЛЬТАТЫ ЧИСЛЕННЫХ РАСЧЕТОВ

Решение уравнения (1) спектральным методом Лагерра, полученное с использованием оптимальных параметров, будем сравнивать с решением системы уравнений (2)—(4) высокоточным [18] конечно-разностным методом (7-го порядка аппроксимации по времени и 6-го порядка аппроксимации по пространству).

Источник тока брался в виде

$$J_{y} = f(t)\delta(z - z_{s}),$$

$$f(t) = J_{0} \exp\left(-\frac{(2\pi f_{0}(t - t_{0}))^{2}}{\gamma^{2}}\right) \sin\left(2\pi f_{0}(t - t_{0})\right),$$
(16)

где f_0 — несущая частота источника, t_0 — момент центра импульса источника, z_s — точка расположения источника.

В преобразовании Лагерра использовались 310 гармоник Лагерра, параметры $\alpha = 1, h = 100$.

Точность решения оценивалась по величине относительной погрешности решения *D*, которая определялась выражением

$$D(t) = \frac{\int_{0}^{\infty} |E_{y}(z,t) - E_{0y}(z,t)| dz}{\int_{0}^{\infty} |E_{0y}(z,t)| dz},$$
(17)

здесь $E_y = E$ — решение уравнения (1), полученное с использованием разложения Лагерра, E_{0y} — решение уравнений (2)—(4), полученное с использованием конечно-разностной схемы. На графиках, приведенных ниже, решение этой конечно-разностной схемой показано сплошной линией.

На фиг. 1 показано прохождение электромагнитной волны от точечного источника (E_y – компоненты поля) через слой, расположенный в однородной среде. Шаг разностной схемы

Фиг. 1. Решение уравнения неоптимальной (а) и оптимальной (б) разностными схемами 2-го порядка аппроксимации.

 $\Delta x = 0.05$. Точками показано расположение слоя в среде. Сплошная линия соответствует решению уравнений (2)–(4).

На фиг. 1а штрихованная линия соответствует решению обычной, неоптимальной разностной схемой 2-го порядка. Указана величина погрешности *D* для этого решения.

На фиг. 16 штриховая линия соответствует решению оптимальной разностной схемой 2-го порядка с тремя оптимальными параметрами, приведенными в табл. 2, при r = 1.5, K = 2.5. Здесь величина погрешности D примерно в два раза меньше, чем в случае использования неоптимальной схемы фиг. 1а.

Видно, что оптимальная разностная схема с тремя оптимальными параметрами дает более точное решение. Простая модернизация разностной схемы ведет также и к повышению эффективности алгоритма. В данном случае это дает сокращение времени счета на несколько первых процентов.

На этой же фигуре приведено решение оптимальной разностной схемой 2-го порядка аппроксимации с 5 оптимальными параметрами, приведенными в табл. 1, и решение разностной схемой 4-го порядка аппроксимации без оптимальных параметров. Для сравнения приведены погрешности *D*2 и *D*4 для этих алгоритмов. Эти решения графически совпадает с решением уравнений (2)–(4).

На фиг. 2 показано прохождение электромагнитной волны от точечного источника (E_y – компоненты поля) через слой, расположенный в однородной среде. Шаг разностной схемы $\Delta x = 0.07$. Точками показано расположение слоя в среде.

Фиг. 2. Решение уравнения неоптимальной (штриховая линия) и оптимальной (сплошная линия) разностными схемами 4-го порядка аппроксимации.

Сплошная линия соответствует решению уравнений (2)–(4), штриховая линия соответствует решению разностной схемой 4-го порядка без оптимальных параметров. Указана величина погрешности для этого решения D4, ниже указана величина погрешности D для решения оптимальной схемой с тремя оптимальными параметрами, приведенными в табл. 3 при r = 1.5, K = 2.0. Погрешности D в четыре раза меньше погрешности D4.

Решение разностной схемой с тремя оптимальными параметрами, графически неотличимо от решения уравнений (2)—(4). Как и в случае, показанном на фиг. 1, здесь оптимальная разностная схема дает сокращение времени счета на несколько первых процентов.

Для сравнения, эта задача решалась с использованием оптимальной разностной схемы 2-го порядка с 5 оптимальными параметрами из табл. 1, при r = 1.5, K = 2.5. На этой фигуре приведена только погрешность D2 этого решения. Разница величин D2 и D4 менее 30%, но схема 2-го порядка в этом варианте оказывается на 20-25% экономичнее схемы 4-го порядка.

6. ЗАКЛЮЧЕНИЕ

Использование оптимальных разностных схем позволяет повысить точность решения уравнения в сравнении с обычными схемами 2-го порядка аппроксимации. Это верно и для разностных схем 4-го порядка аппроксимации. Оптимальные схемы с 5 оптимальными параметрами дают более точное решение, чем оптимальные схемы с 3 оптимальными параметрами. Оптимальные схемы с 3 оптимальными параметрами требуют простой модернизации обычных неоптимальных разностных схем, но повышают точность решения задачи и сокращают время счета задачи. Значения оптимальных параметров зависят только от отношения пространственных шагов разностной схемы.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Luebbers R., Hansberger F.P.* FDTD for Nth-order dispersive media // IEEE Trans. Ant Propog. 1992. V. 40. P. 1297–1301.
- 2. *Turner G., Siggins A.F.* Constant Q attenuation of subsurface radar pulses // Geophysics. 1994. V. 59. P. 1192–1200.
- 3. Bergmann T., Johan O.A. Robertsson, Klaus Holliger. Finite difference modeling of electromagnetic wave in dispersive and attenuating media // Geophysics. 1998. V. 63. P. 856–867.

- Bergmann T., Joakim O. Blanch, Johan O.A. Robertsson, Klaus Holliger. A simplified Lax-Wendroff correction for staggered-grid FDTD modeling of electromagnetic wave in frequency-dependent media // Geophysics. 1999. V. 64. P. 1369–1377.
- 5. Электроразведка. Справочник геофизика / Под ред. А.Г. Тархова. М.: Недра, 1980. С. 518.
- 6. *Конюх Г.В., Михайленко Б.Г.* Применение интегрального преобразования Лагерра при решении динамических задач сейсмики // Труды ИВМ и МГ. Матем. моделирование в геофизике. Новосибирск. 1998. № 5. С. 107–112.
- 7. *Мастрюков А.Ф., Михайленко Б.Г.* Численное моделирование распространения электромагнитных волн в неоднородных средах с затуханием на основе спектрального преобразования Лагерра // Геология и геофиз. 2003. Т. 44. № 10. С. 1060–1069.
- 8. *Мастрюков А.Ф., Михайленко Б.Г.* Моделирование распространения электромагнитных волн в релаксационных средах на основе спектрального преобразования Лагерра // Геология и геофиз. 2006. Т. 47. № 3. С. 397–407.
- 9. Голуб Дж., Ван Лоун Ч. Матричные вычисления. М.: Мир, 1999. С. 548.
- 10. *Tam C.K., Webb J.C.* Dispersion-relation-preserving finite difference schemes for computational acoustics // J. Comput. Phys. 1993. V. 107. № 2. P. 262–281.
- 11. Jo C.H., Shin C., Suh H.S. An optimal 9-point, finite-difference, frequency-space, 2-d scalar wave extrapolator // Geophys. 1996. V. 61. P. 529–537.
- 12. *Chen J.B.* An average derivative optimal scheme for frequency-domain scalar wave equation // Geophys. 2012. V. 77. P. T201–T210.
- 13. *Мастрюков А.Ф., Михайленко Б.Г.* Оптимальные разностные схемы для уравнений Максвелла при решении прямых задач электромагнитных зондирований // Геология и геофиз. 2015. Т. 56. № 9. С. 1713–1722.
- 14. *Мастрюков А.Ф.* Оптимальные разностные схемы для волнового уравнения // Сиб. Ж. вычисл. матем. 2016. № 5. С. 107–112.
- 15. Ландау Л.Д., Лифшиц Е.М. Электродинамика сплошных сред. М.: Наука, 1982. С. 620.
- 16. Справочник по специальным функциям / Под ред. М. Абрамовица и И. Стиган. М.: Наука, 1979. С. 832.
- 17. Васильев Ф.П. Численные методы решения экстремальных задач. М.: Наука, 1980. С. 518.
- 18. *Ghris M., Fornberg B., Driscoll T.A.* Staggered time integrator for wave equations // SIAM J. Numer. Analys. 2000. V. 38. P. 718–741.