_____ МАТЕМАТИЧЕСКАЯ _____ ФИЗИКА

УДК 519.63

ОБ ОДНОМ ПОДХОДЕ К РЕШЕНИЮ ПРОСТРАНСТВЕННЫХ ЗАДАЧ ГИДРОДИНАМИКИ С УЧЕТОМ УПРУГИХ ПРОЦЕССОВ

© 2021 г. А. Ю. Круковский¹, Ю. А. Повещенко¹, В. О. Подрыга^{1,*}, П. И. Рагимли¹

¹ 125047 Москва, Миусская пл., 4, ИПМ РАН, Россия

*e-mail: PVictoria@list.ru

Поступила в редакцию 21.03.2020 г. Переработанный вариант 08.06.2020 г. Принята к публикации 18.10.2020 г.

Построена конечно-разностная аппроксимация упругих сил на разнесенных лагранжевых сетках, основанная на методе опорных операторов. Для векторов смещений на нерегулярных сетках, на топологическую и геометрическую структуру которых наложены минимальные разумные ограничения, применительно к разностным схемам для задач теории упругости построены аппроксимации операций векторного анализа. С учетом энергетического баланса среды построенные семейства интегрально-согласованных аппроксимаций операций векторного анализа достаточны для дискретного моделирования этих процессов. Рассматриваются схемы, как использующие тензор напряжений в явном виде, так и разделяющие его на шаровую и сдвиговую компоненты (давление и девиатор). Последнее используется для построения однородных алгоритмов, применимых как для твердого тела, так и для испаренной фазы. При построении аппроксимаций используется линейная теория упругости. В явном виде получены результирующие силы в пространственной геометрии. Приведены расчеты распространения звуковых волн в алюминиевой пространственно-трехмерной ортогональной пластине вследствие торцевого удара. Библ. 13. Фиг. 2.

Ключевые слова: метод опорных операторов, трехмерные конечно-разностные схемы, свойство консервативности, лагранжева сетка разнесенного типа.

DOI: 10.31857/S0044466921040062

1. ВВЕДЕНИЕ

В работе использована идея построения численной методики для сквозного расчета совокупности процессов, возникающих при воздействии на вещество, нахоляшееся первоначально в конденсированном состоянии, с высокоинтенсивным потоком энергии, переносимой излучением (см. [1]). Такого рода методики широко применяются в области физики высоких плотностей энергий. Например, взаимодействие лазерного излучения с материалом твердой мишени может протекать в различных режимах в зависимости от интенсивности воздействия и общей поглощенной энергии. Если интенсивность лазерного импульса достаточно велика, чтобы ионизировать испаренное вещество, то над поверхностью мишени возникает слой плазмы – "корона" или "подушка", в которой поглощается основная доля лазерной мошности. Перенос энергии в плотное вещество мишени происходит за счет процессов электронной и лучистой теплопроводностей, а также из-за импульса отдачи аблированной плазмы. По веществу распространяется ударная волна, амплитуда которой уменьшается по мере продвижения в глубь мишени. На некотором расстоянии от поверхности вещества температура и давление за фронтом оказываются недостаточными, чтобы осуществить фазовый переход, и вещество остается в твердом состоянии. В этом случае для корректного описания динамики мишени необходим учет упругих сил и сдвиговых напряжений.

В настоящей работе мы рассматриваем реализации дискретной модели упругих сил, основанной на методе опорных операторов (см. [2]–[9]). Тестовые расчеты проведены на трехмерных разностных сетках, состоящих из шестигранников.

2. ПОСТАНОВКА ЗАДАЧИ И ФИЗИЧЕСКИЕ ПРИБЛИЖЕНИЯ

Движение вещества с учетом упругих сил и сдвиговых напряжений определяется уравнением неразрывности, балансами импульса и энергии, имеющими в лагранжевых переменных следующий вид:

$$\frac{\partial \eta}{\partial t} = \eta \operatorname{div} \mathbf{v},\tag{2.1}$$

$$\rho \frac{\partial \mathbf{v}}{\partial t} = \operatorname{div} \boldsymbol{\sigma} = -\nabla P + \operatorname{div} \boldsymbol{\zeta}, \tag{2.2}$$

$$\rho \frac{\partial \xi}{\partial t} = \operatorname{tr}(\sigma t_v) = -P \operatorname{div} \mathbf{v} + \operatorname{tr}(\zeta t_v) - \operatorname{div} \mathbf{W} + q, \qquad (2.3)$$

$$\rho \frac{\partial}{\partial t} \left(\xi + \frac{\mathbf{v}^2}{2} \right) = -\operatorname{div}(P\mathbf{v}) + \operatorname{div}(\zeta \mathbf{v}) - \operatorname{div} \mathbf{W} + q.$$
(2.4)

Здесь *t* – время, $d/dt = \partial/\partial t + \mathbf{v}\nabla$ – субстанциональная производная, tr() – след тензора, **v** – вектор скорости, $t_{\mathbf{v}} = \frac{1}{2} \left(\frac{d\mathbf{v}}{d\mathbf{r}} + \nabla \mathbf{v} \right)$ – симметризованный тензор скоростей деформаций, ρ – плотность, $\eta = 1/\rho$ – удельный объем, *P* – давление, ξ – удельная внутренняя энергия, учитывающая деформационные процессы, **W** – поток тепла, *q* – объемная плотность мощности сторонних источников.

Приведение тензора напряжений к виду с разделенными шаровой (*P*) и сдвиговой (девиатор – ζ) компонентами:

$$\sigma = -P\delta + \zeta, \quad P = -\frac{1}{3}\mathrm{tr}(\sigma)$$

 $(\delta$ — метрический тензор), является необходимым шагом для построения однородной разностной схемы, применимой как для твердого вещества, где вклады от диагонального ($-P\delta$) и недиагонального (ζ) членов (отвечающих за объемные и сдвиговые деформации соответственно) сравнимы, так и для плазмы, где сдвиговые напряжения отсутствуют, но для корректного описания зависимости давления от плотности необходимо использование сложных моделей (см. [10]). Таким образом, вклады сдвиговых деформаций (div ζ) аппроксимируются либо на недеформированной сетке (см. [11]), либо в условиях отсутствия сдвиговой компоненты (модуль сдвига $\mu = 0$), что покрывает всю область параметров для вещества.

Тензор напряжений при твердотельных деформациях имеет вид (см. [11])

$$\sigma = 2\mu t_{\rm U} + \nu \operatorname{tr}(t_{\rm U})\delta, \quad t_{\rm U} = \frac{1}{2} \left(\frac{d\mathbf{U}}{dr} + \nabla \mathbf{U} \right).$$

Здесь μ (модуль сдвига) и v — неотрицательные коэффициенты Ламе, U — вектор смещений относительно недеформированной сетки, $t_{\rm U}$ — симметризованный тензор смещений. В то же время в твердом теле, а также жидкости или плазме (в которых $\mu = 0$) всегда справедливо

$$\sigma = -P\delta + \zeta, \quad \zeta = 2\mu \left(t_{\rm U} - \frac{1}{3} {\rm tr}(t_{\rm U})\delta\right).$$

При адиабатических деформациях внутренняя энергия единицы массы тела представима в виде (см. [11])

$$\xi = \frac{k_{ad}}{2\rho} (\operatorname{tr}(t_{\mathrm{U}}))^2 + \frac{1}{4\mu\rho} \operatorname{tr}(\zeta)^2 = \varepsilon(\rho, T) + \frac{1}{4\mu\rho} \operatorname{tr}(\zeta)^2,$$

где k_{ad} – адиабатический модуль сжатия. Зависимость внутренней энергии от плотности и температуры $\varepsilon(\rho, T)$ считается заданной.

ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ том 61 № 4 2021

Фиг. 1. Построение базисов.

3. МЕТОД ОПОРНЫХ ОПЕРАТОРОВ ДЛЯ АППРОКСИМАЦИИ УПРУГИХ ПРОЦЕССОВ

3.1. Метрические сетки метода опорных операторов

Для типов сеток, состоящих из ячеек (Ω), образованных узлами (ω), гранями (σ) и ребрами (λ), характерно наличие замкнутой сопряженной ("сдвинутой") сетки, состоящей, например, из доменов $d(\omega)$ вокруг узлов ω (фиг. 1).

Грани узлового домена определяются метрическим оператором сетки $\sigma(\lambda) = \sum_{\phi(\lambda)} V_{\phi} \mathbf{e}'_{\phi}(\lambda)$ (см. также ниже). Базисы $\phi(\lambda)$ здесь попарно входят в ячейки $\Omega(\lambda)$, примыкающие к ребру λ . Метрическая калибровка разностной сетки состоит в выборе объемов базисов с естественным условием нормировки $\sum_{\phi(\Omega)} V_{\phi} = V_{\Omega}$. Она определяет конструкцию замкнутой сопряженной сетки для различных классов сеток. Это треугольно-четырехугольные 2D сетки, тетраэдральные, параллелепипедные, призматические (и т.д.), 3D сетки, а также их мортарные сшивки, адаптация (с введением новых узлов в ячейках Ω , называемых дуальными) с сохранением самосопряженности и знакоопределенности соответствующих "дивергентно-градиентных" операций векторного анализа континуальных краевых задач. Дальнейшее изложение носит общий характер, конкретный выбор локальных базисных объемов V_{ϕ} иллюстрируется на примере треугольно-четырехугольной 2D сетки.

В области *О* введем семейство нерегулярных разностных сеток. Ограничимся случаем, когда сетка состоит из треугольных и четырехугольных ячеек (Ω), базисов (ϕ), узлов (ω), ребер (λ) и связанных с ними ($\sigma(\lambda)$) границами балансовых узловых доменов $d(\omega)$ (ϕ иг. 1).

Базисы φ создаются системой исходных (ковариантных) ортов $\mathbf{e}(\lambda)$, образованных ребрами. Под центрами ячеек Ω и ребер λ будем понимать средние арифметические радиус-векторов узлов ω , их образующих. Кривая, соединяющая эти центры (двух смежных через ребро ячеек или ячейку с граничным ребром $\partial \lambda$), представляет собой поверхность

$$\boldsymbol{\sigma}(\boldsymbol{\lambda}) = \sum_{\boldsymbol{\varphi}(\boldsymbol{\lambda})} v_{\boldsymbol{\varphi}} \mathbf{e}_{\boldsymbol{\varphi}}'(\boldsymbol{\lambda}) \; ,$$

ориентированную так же, как и орт $\mathbf{e}(\lambda)$. Здесь $\mathbf{e}'_{\varphi}(\lambda)$ – орты взаимных (контравариантных) базисов по отношению к исходным базисам, образованным ортами $\mathbf{e}(\lambda)$. Базисный объем дается формулой $v_{\varphi} = \frac{1}{6} |\mathbf{e}(\lambda_1) \times \mathbf{e}(\lambda_2)|$ для треугольной ячейки Ω , содержащей базис φ , и $v_{\varphi} = \frac{1}{4} |\mathbf{e}(\lambda_1) \times \mathbf{e}(\lambda_2)|$ для четырехугольной ячейки, если $\lambda_1(\varphi)$ и $\lambda_2(\varphi)$ – ребра, образующие базис φ . Наконец, $\sum_{\varphi(\lambda)}$ – суммирование по всем базисам φ , в образовании которых приняло участие ребро λ . Замкнутые вокруг узла ω поверхности $\boldsymbol{\sigma}(\lambda(\omega))$ образуют узловые домены $d(\omega)$.

К узлам отнесем искомую сеточную функцию **u**. На ребрах выделим положительное направление (фиг. 1) и отнесем к ним сеточную функцию

$$\Delta_{\lambda} \mathbf{u} = -\sum_{\omega(\lambda)} s_{\lambda}(\omega) \mathbf{u}_{\omega} = \mathbf{u}_{\omega'} - \mathbf{u}_{\omega}$$

Сеточные тензорные поля X задаются своими представлениями в базисах X_{ω} .

Внутреннюю дивергенцию тензорного поля DIN: (ϕ) \rightarrow (ω) определим, аппроксимируя теорему Гаусса на $d(\omega)$:

DIN
$$X = \sum_{\lambda(\omega)} s_{\lambda}(\omega) \boldsymbol{\tau}_{X}(\lambda), \quad \boldsymbol{\tau}_{X}(\lambda) = \sum_{\varphi(\lambda)} v_{\varphi}(\mathbf{e}'_{\varphi}(\lambda), X_{\varphi}),$$

где $\sum_{\lambda(\omega)}$ – суммирование по всем ребрам λ , имеющим общий узел ω . Обозначая через ()_{Δ} аппроксимацию соответствующих дифференциальных выражений, имеем

$$\left(\int_{O} \operatorname{tr}\left(\nabla \mathbf{U}X^{T}\right) dv\right)_{\Delta} = -\left(\int_{O} \mathbf{U} \operatorname{div} X dv - \int_{\partial O} (X\mathbf{U}, \mathbf{ds})\right)_{\Delta} = -\sum_{\omega} (\mathbf{u}_{\omega}, \operatorname{DIN} X) =$$
$$= \sum_{\varphi} v_{\varphi} \operatorname{tr}\left(\left(\frac{D\mathbf{u}}{D\mathbf{r}}\right)_{\varphi} X_{\varphi}\right) = \sum_{\varphi} v_{\varphi} \operatorname{tr}(\nabla \mathbf{u}_{\varphi} X_{\varphi}^{T}) \equiv \langle \nabla \mathbf{u}, X \rangle = \langle X, \nabla \mathbf{u} \rangle = \sum_{\varphi} v_{\varphi} \operatorname{tr}(t_{\Delta u\varphi} X_{\varphi})\Big|_{X_{\varphi} = X_{\varphi}^{T}} = \langle t_{\Delta u}, X \rangle.$$

Здесь $\langle \nabla \mathbf{u}, \mathbf{X} \rangle$ определяется как скалярное произведение сеточных тензорных полей, аппроксимирующее $\left(\int_{O} \operatorname{tr}(\nabla \mathbf{U} \mathbf{X}^{T}) dv \right)_{\lambda}$.

Тензорные поля $\frac{D\mathbf{u}}{D\mathbf{r}}$, $\nabla \mathbf{u}$ и $t_{\Delta \mathbf{u}}$, а также тензорное поле напряжений $X_{\Delta \mathbf{u}}$ даются своими представлениями в базисах

$$\left(\frac{D\mathbf{u}}{D\mathbf{r}}\right)_{\varphi} = \sum_{\lambda(\varphi)} \Delta_{\lambda} \mathbf{u} \cdot \mathbf{e}'_{\varphi}(\lambda), \quad \nabla \mathbf{u}_{\varphi} = \sum_{\lambda(\varphi)} \mathbf{e}'_{\varphi}(\lambda) \cdot \Delta_{\lambda} \mathbf{u},$$

$$t_{\Delta \mathbf{u}\varphi} = \frac{1}{2} \left(\left(\frac{D\mathbf{u}}{D\mathbf{r}}\right)_{\varphi} + \nabla \mathbf{u}_{\varphi} \right), \quad X_{\Delta \mathbf{u}\varphi} = 2\mu t_{\Delta \mathbf{u}\varphi} + \upsilon \operatorname{tr}(t_{\Delta \mathbf{u}\varphi}) \delta.$$

Под $\sum_{\lambda(\phi)}$ понимается суммирование по ребрам λ , образующим базис ϕ .

Произвольному сеточному векторному полю инкрементов $\vec{\partial}_{\lambda} \in H_{\lambda}$ на ребрах λ (определяющему поле смещений $\vec{\partial}^{\&}$) сопоставим поле симметризованного тензора смещений t_{∂} и поле тензора напряжений X_{∂} по формулам

$$t_{\partial\phi} = \frac{1}{2} \sum_{\lambda(\phi)} \left(\vec{\partial}_{\lambda} \cdot \boldsymbol{e}_{\phi}(\lambda) + \boldsymbol{e}_{\phi}'(\lambda) \cdot \vec{\partial}_{\lambda} \right) = \frac{1}{2} \left(\left(\frac{D \vec{\partial}^{\&}}{D \boldsymbol{r}} \right)_{\phi} + \nabla \vec{\partial}_{\phi}^{\&} \right),$$
$$X_{\partial\phi} = 2\mu t_{\partial\phi} + \upsilon \operatorname{tr}(t_{\partial\phi}) \delta.$$

Для вариации континуального векторного поля смещения $\delta \mathbf{U}$ на расстоянии $\delta \mathbf{r}$ справедливо $\delta \mathbf{U} = \left(\frac{d\mathbf{U}}{d\mathbf{r}}, \delta \mathbf{r}\right)$. В силу определения взаимного базиса ($\mathbf{e}(\lambda), \mathbf{e}_{\phi}'(\lambda')$) = $\delta_{\lambda\lambda'}$ для ребра $\lambda(\phi)$ очевиден сеточный аналог этого тождества:

$$\Delta_{\lambda} \mathbf{u} = \left(\left(\frac{D\mathbf{u}}{D\mathbf{r}} \right)_{\varphi}, \mathbf{e}(\lambda) \right).$$

Уточним также силу $\tau_X(\lambda)$, действующую на поверхность $\sigma(\lambda)$ в поле напряжений $X_{\Delta u}$:

$$\boldsymbol{\tau}_{\boldsymbol{X}\Delta\boldsymbol{u}}(\boldsymbol{\lambda}) = \sum_{\boldsymbol{\phi}(\boldsymbol{\lambda})} v_{\boldsymbol{\phi}}(\mathbf{e}_{\boldsymbol{\phi}}'(\boldsymbol{\lambda}), \boldsymbol{X}_{\Delta\boldsymbol{u}\boldsymbol{\phi}}) = \sum_{\boldsymbol{\phi}(\boldsymbol{\lambda})} v_{\boldsymbol{\phi}}\{\mu \sum_{\boldsymbol{\lambda}'(\boldsymbol{\phi})} [(\mathbf{e}_{\boldsymbol{\phi}}'(\boldsymbol{\lambda}), \mathbf{e}_{\boldsymbol{\phi}}'(\boldsymbol{\lambda}'))\Delta_{\boldsymbol{\lambda}'}\mathbf{u} + (\mathbf{e}_{\boldsymbol{\phi}}'(\boldsymbol{\lambda}), \Delta_{\boldsymbol{\lambda}'}\mathbf{u})\mathbf{e}_{\boldsymbol{\phi}}'(\boldsymbol{\lambda}')] + \upsilon \mathbf{e}_{\boldsymbol{\phi}}'(\boldsymbol{\lambda}) \sum_{\boldsymbol{\lambda}'(\boldsymbol{\phi})} (\mathbf{e}_{\boldsymbol{\phi}}'(\boldsymbol{\lambda}'), \Delta_{\boldsymbol{\lambda}'}\mathbf{u})\}.$$

На поле инкрементов $\bar{\partial}_{\lambda} \in H_{\lambda O}$ (не вращающем среду твердотельно) эта сила определяет самосопряженный, положительно определенный метрический оператор G_O : $(\lambda) \to (\lambda)$, $G_O = G_O^* > 0$:

$$\boldsymbol{\tau}_{X\partial}(\boldsymbol{\lambda}) = \sum_{\boldsymbol{\varphi}(\boldsymbol{\lambda})} V_{\boldsymbol{\varphi}}(\mathbf{e}'_{\boldsymbol{\varphi}}(\boldsymbol{\lambda}), X_{\partial \boldsymbol{\varphi}}), \quad \boldsymbol{\tau}_{X\partial} = G_O \vec{\partial}.$$

ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ том 61 № 4 2021

Для $\overline{\partial l}_{\lambda}$ и $\overline{\partial 2}_{\lambda}$ из $H_{\lambda O}$ скалярные произведения ($\overline{\partial l}$, $\overline{\partial 2}$), и $\langle \langle \overline{\partial l}, \overline{\partial 2} \rangle \rangle$ определяются по формулам

$$(\overline{\partial 1}, \overline{\partial 2})_{\lambda} = \sum_{\lambda} (\overline{\partial 1}_{\lambda}, \overline{\partial 2}_{\lambda}),$$
$$(\overline{\partial 1}, G_{O}\overline{\partial 2})_{\lambda} = \sum_{\phi} v_{\phi} \left[2\mu \operatorname{tr}(t_{\partial 1\phi} t_{\partial 2\phi}) + \upsilon \operatorname{tr}(t_{\partial 1\phi}) \operatorname{tr}(t_{\partial 2\phi}) \right] =$$
$$= (G_{O}\overline{\partial 1}, \overline{\partial 2})_{\lambda} = \left\langle \nabla \overline{\partial 1}^{\&}, X_{\partial 2} \right\rangle = \left\langle \nabla \overline{\partial 2}^{\&}, X_{\partial 1} \right\rangle \equiv \left\langle \left\langle \overline{\partial 1}, \overline{\partial 2} \right\rangle \right\rangle$$

Энергия деформации среды, производимой полем инкрементов $\vec{\partial}_{\lambda}$, есть энергия метрического оператора в этом поле:

$$(G_O\vec{\partial},\vec{\partial})_{\lambda} = \langle \langle \vec{\partial},\vec{\partial} \rangle \rangle.$$

3.2. Поворотно-нейтральные разностные схемы

Определим твердотельное вращение (2D и 3D сетка) как возмущение поля инкрементов $\vec{\partial}_{\lambda} \in H_{\lambda}$ следующим образом:

$$\vec{\partial}_{\lambda} \rightarrow \vec{\partial}_{\lambda} + [\boldsymbol{\omega} \times \mathbf{e}(\lambda)], \quad \boldsymbol{\omega} = \text{const.}$$

Симметризованный тензор смещений $t_{\partial \phi} = \frac{1}{2} \sum_{\lambda(\phi)} (\vec{\partial}_{\lambda} \cdot \mathbf{e}'_{\phi}(\lambda) + \mathbf{e}'_{\phi}(\lambda) \cdot \vec{\partial}_{\lambda})$ испытает возмущение $t_{\partial \phi} \rightarrow t_{\partial \phi} + t_{\omega \phi}$.

Здесь

$$t_{\omega\varphi} = \frac{1}{2} \sum_{\lambda(\varphi)} ([\boldsymbol{\omega} \times \mathbf{e}(\lambda)] \cdot \mathbf{e}'_{\varphi}(\lambda) + \mathbf{e}'_{\varphi}(\lambda) \cdot [\boldsymbol{\omega} \times \mathbf{e}(\lambda)]).$$

Для произвольного вектора а имеем

$$t_{\omega\phi}\mathbf{a} = \frac{1}{2} \left\{ \left[\mathbf{\omega} \times \sum_{\lambda(\phi)} \mathbf{e}(\lambda)(\mathbf{e}'_{\phi}(\lambda), \mathbf{a}) \right] + \sum_{\lambda(\phi)} \mathbf{e}'_{\phi}(\lambda)([\mathbf{\omega} \times \mathbf{e}(\lambda)], \mathbf{a}) \right\} = \frac{1}{2} \left\{ [\mathbf{\omega} \times \mathbf{a}] + \sum_{\lambda(\phi)} \mathbf{e}'_{\phi}(\lambda)([\mathbf{a} \times \mathbf{\omega}], \mathbf{e}(\lambda)) \right\} = \frac{1}{2} \left\{ [\mathbf{\omega} \times \mathbf{a}] + [\mathbf{a} \times \mathbf{\omega}] \right\} = 0,$$

т.е. тензор $t_{\omega\phi} = 0$. Следовательно, тензор $t_{\partial\phi}$ инвариантен к твердотельным вращениям [$\omega \times \mathbf{e}(\lambda)$], $\omega = \text{const.}$ Такое свойство разностной схемы, смещения в которой входят только через инвариантный к твердотельным вращениям симметризованный тензор $t_{\partial\phi}$ в базисах сетки, называется поворотной нейтральностью.

Упругие силовые и энергетические характеристики таких схем инвариантны не только к параллельному переносу, но и к твердотельным вращениям. Отсюда же следует, что для строгой положительной определенности оператора DIN $X_{\mathbf{u}}(X_{\Delta \mathbf{u} \phi} = 2\mu t_{\Delta \mathbf{u} \phi} + \upsilon \operatorname{tr}(t_{\Delta \mathbf{u} \phi})\delta)$ необходимо помимо параллельного переноса сетки ($\Delta_{\lambda} \mathbf{u} \equiv 0$) исключить ее твердотельное вращение ($\Delta_{\lambda} \mathbf{u} = [\boldsymbol{\omega} \times \mathbf{e}(\lambda)], \boldsymbol{\omega} = \operatorname{const}$). В трехмерном случае это достигается принципом "трех гвоздей", т.е. в трех узлах, образующих плоскость, должны быть заданы нулевые смещения. Соответственно в двумерном случае должна быть закреплена прямая (двумя узлами).

3.3. Скалярно-дивергентные задачи

Упругие деформации в среде могут возникать под действием внешних сил и сопутствующих деформациям физических процессов (термоупругость, бароупругость и т.п.). Для соответствующих краевых задач методами теории опорных операторов также могут быть построены различные варианты разностных схем.

В пространственной области О с границей дО рассмотрим скалярно-дивергентную задачу

$$\operatorname{div} \mathbf{X}_u = f(r), \quad \mathbf{X}_u = K \nabla u$$

(с некоторыми граничными условиями) наряду с соответствующим интегральным соотношением:

$$\int_{O} (\mathbf{X}\nabla u) dv + \int_{O} u \operatorname{div} \mathbf{X} dv = \int_{\partial O} u(\mathbf{X}, \mathbf{ds}).$$

Здесь u — скаляр (температура, давление и т.п.), **X** — произвольный вектор, **X**_u — потоки, вызванные градиентом функции u в среде со свойствами проводимости, определяемыми тензором K.

Как и ранее (фиг. 1) в области *О* вводится семейство нерегулярных разностных сеток, обладающих метрическими свойствами, и соответствующих сеточных функций. Внутреннюю дивергенцию векторного поля DIN: (ϕ) \rightarrow (ω) определим аналогично п. 3.1, аппроксимируя теорему Гаусса на $d(\omega)$. Сеточное векторное поле **X** задается своими представлениями в базисах **X**_{ϕ}. Обозначая через ()_{Λ} аппроксимацию соответствующих дифференциальных выражений, имеем

$$\left(\int_{O} (\mathbf{X}, \nabla u) dv\right)_{\Delta} = -\left(\int_{O} u \operatorname{div} \mathbf{X} dv - \int_{\partial O} u(\mathbf{X}, \mathbf{d}s)\right)_{\Delta} = -\sum_{\omega} (u_{\omega}, \operatorname{DIN} \mathbf{X}) = \sum_{\varphi} v_{\varphi}(\mathbf{X}_{\varphi}, \operatorname{GRAD} u).$$

Градиентное векторное поле GRAD: (ω) \rightarrow (ϕ) дается своими представлениями в базисах:

$$\operatorname{GRAD} u = \sum_{\lambda(\varphi)} \Delta_{\lambda} u \ \mathbf{e}'_{\varphi}(\lambda), \quad \Delta_{\lambda} u = -\sum_{\omega(\lambda)} s_{\lambda}(\omega) u_{\omega} = u_{\omega^*} - u_{\omega}$$

Полагая в базисах φ в качестве \mathbf{X}_{φ} векторное поле $\mathbf{X}_{v\varphi} = K_{\varphi} \operatorname{GRAD} v$, получаем самосопряженный неотрицательный оператор DIN \mathbf{X}_{v} : (ω) \rightarrow (ω) или DIN *K* GRAD : (ω) \rightarrow (ω). Здесь потоковое векторное поле \mathbf{X}_{v} дается своими компонентами в базисах $\mathbf{X}_{v\varphi}$. Оно определяется градиентными свойствами скалярной сеточной функции v, заданной в узлах ω , и сеточным тензорным полем проводимости *K*, задаваемым своими представлениями в базисах K_{φ} . Этот оператор будет строго положительным, если хотя бы в одном граничном узле связной разностной сетки задана первая краевая задача, т.е. в этом граничном узле скалярная сеточная функция обращается в ноль.

3.4. Дифференциально-разностная схема

Введем обозначения для функций сетки метода опорных операторов (п. 3, см. также фиг. 1). К ее узлам ω будем относить ранее представленные в континуальной модели компоненты вектора скорости **v** и смешения **U**, а также термодинамические величины ρ , η , P, T, ξ , ε . Аналогичные разностные схемы, где термодинамические функции заданы в ячейках, представлены в [1], [12], [13]. Дифференциально-разностная схема в узлах сетки для уравнений (2.1)–(2.3) с "нулевыми" граничными условиями может быть записана как

$$\frac{dV}{dt} = \text{DIN } \mathbf{v},$$
$$\frac{d}{dt}(m\mathbf{v}) = \sum_{\varphi(\omega)} V_{\varphi} \text{ GRAD } P + \text{DIN } \zeta,$$
$$\frac{d}{dt}(m\zeta) = -P \text{ DIN } \mathbf{v} + \sum_{\varphi(\omega)} V_{\varphi} \operatorname{tr}(\zeta_{\varphi} t_{\Delta v \varphi}) - \text{DIN } \mathbf{W} + Vq$$

Здесь приузловой объем $V_{\omega} = \sum_{\varphi(\omega)} V_{\varphi}$ определяется базисными объемами V_{φ} . Приузловая масса постоянна $m_{\omega} = \rho_{\omega}V_{\omega} = \text{const.}$ Скорость \mathbf{v}_{φ} в базисе φ с центральным узлом ω берется как $\mathbf{v}_{\varphi} = \mathbf{v}_{\omega(\varphi)}$. Сеточные тензорные поля сдвиговых напряжений задаются представлениями в базисах $\zeta_{\varphi} = 2\mu_{\varphi} \left(t_{\Delta U\varphi} - \frac{1}{3} \text{tr}(t_{\Delta U\varphi}) \delta \right)$. Тепловой поток в базисах определяется как $\mathbf{W}_{\varphi} = -\kappa_{\varphi} \operatorname{GRAD} T$, где $\kappa_{\varphi}(P_{\omega}, T_{\omega})$ – теплопроводность в базисе φ (ячейки $\Omega \supset \varphi$, содержащей этот базис) с центральным узлом $\omega(\varphi)$. Учитывающая адиабатические деформации внутренняя энергия узла ω с массой *m* определится как

$$m\xi = m\varepsilon(\rho, T) + \frac{1}{4} \sum_{\phi(\omega)} \frac{V_{\phi}}{\mu_{\phi}} \operatorname{tr}(\zeta_{\phi}^2).$$

Здесь модуль сдвига μ_{ϕ} на сетке определяется в базисе ϕ аналогично теплопроводности κ_{ϕ} .

Фиг. 2. Динамика плотности на моменты (сверху вниз, слева направо) 2, 4, 6, 8 и 10 мкс, z = 0.05 см.

4. РЕЗУЛЬТАТЫ РАСЧЕТОВ

Рассматривается движение вещества, описываемое уравнениями неразрывности, Эйлера и энергетическими балансами с адиабатическими деформациями твердой фазы в рамках линейной теории упругости (см. [11]).

Для исследования однородной конечно-разностной аппроксимации упругих сил в рамках решения сопряженных задач гидродинамики и упругости (см. [1]) в случае, когда вещество находится в твердом состоянии, проведено моделирование распространения звуковых волн в трехмерной ортогональной пластине вследствие удара, колебания пластины вследствие сдвиговой деформации или деформации изгиба. Во всех этих случаях для вещества использовались параметры алюминия с плотностью $\rho_s = 2700 \text{ кг/м}^3$, модулем сдвига $\mu = 26.1 \text{ ГПа}$ и модулем сжатия k = 72.9 ГПа. Соответствующие значения скорости продольного и поперечного звука составляют $c_p = \sqrt{\left(k + \frac{4}{3}\mu\right)\rho_s} = 6300 \text{ м/c}$

и $c_s = \sqrt{\mu/\rho_s} = 3100$ м/с. Задача о распространении волны в плоской трехмерной пластине рассматривалась в следующей постановке: $x \in [0;10]$, $y \in [0;5]$, $z \in [0;0.1]$, $v_x(t=0) = 0$, $v_y(t=0) = v_0 e^{-4y-(x-5)^2}$, $v_z(t=0) = 0$. Здесь координаты выражены в сантиметрах; амплитуда волны $v_0 = 20$ м/с много меньше скорости звука в алюминии. В начальный момент времени вещество предполагалось недеформированным. На правой границе (фиг. 2) ставилось условие отражения, в то время как на остальных границах задавалось отсутствие внешних сил. Динамика мишени, полученная в расчетах в *xyz*-геометрии, представлена на фиг. 2. Для анализа вызванных лазерным воздействием гидродинамических и упруго-волновых процессов важна численная информация об обмене импульсом и энергией между испаренной и неиспаренной частями мишени. Для проверки качества методики в этом отношении, аналогично [1], проводился анализ динамики интегральных уравнений внутренней, кинетической и полной энергий, полученных в расчетах на сетке $500 \times 200 \times 10$ (шаг 0.01 см).

5. ЗАКЛЮЧЕНИЕ

Построены семейства интегрально-согласованных аппроксимаций операций векторного анализа для дискретного моделирования упругих сил в твердой фазе на разнесенных лагранжевых сетках. С учетом энергетического баланса среды рассмотрены схемы, разделяющие тензор напряжений на шаровую (давление) и сдвиговую компоненты для построения однородных разностных алгоритмов, применимых для твердого тела и испаренной плазменной фазы. В рамках полученной методики проведены тестовые расчеты распространения звуковых волн в пространственно-трехмерной ортогональной пластине вследствие торцевого удара.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Цыгвинцев И.П., Круковский А.Ю., Повещенко Ю.А., Гасилов В.А., Бойков Д.С., Попов С.Б.* Однородные разностные схемы для сопряженных задач гидродинамики и упругости // Учен. зап. Казан. ун-та. Сер. Физ.-матем. науки. 2019. Т. 161. № 3. С. 377–392.
- 2. *Самарский А.А., Тишкин В.Ф., Фаворский А.П., Шашков М.Ю*. Операторные разностные схемы // Дифференц. ур-ния. 1981. Т. 17. № 7. С. 1317–1327.
- 3. *Самарский А.А., Тишкин В.Ф., Фаворский А.П., Шашков М.Ю*. О представлении разностных схем математической физики в операторной форме // Докл. АН СССР. 1981. Т. 258. № 5. С. 1092–1096.
- 4. Коршия Т.К., Тишкин В.Ф., Самарский А.А. и др. Вариационно-операторные разностные схемы для уравнений математической физики. Тбилиси: Изд-во Тбил. ун-та, 1983. 143 с.
- 5. *Денисов А.А., Колдоба А.В., Повещенко Ю.А.* О сходимости разностных схем метода опорных операторов для уравнения Пуассона на обобщенных решениях // Ж. вычисл. матем. и матем. физ. 1989. Т. 29. № 3. С. 371–381.
- 6. *Денисов А.А., Колдоба А.В., Повещенко Ю.А.* О сходимости разностных схем метода опорных операторов для осесимметричного уравнения Пуассона на обобщенных решениях // Ж. вычисл. матем. и матем. физ. 1990. Т. 30. № 10. С. 1477–1486.
- 7. *Самарский А.А., Колдоба А.В., Повещенко Ю.А., Тишкин В.Ф., Фаворский А.П.* Разностные схемы на нерегулярных сетках. Минск: ЗАО "Критерий", 1996. 275 с.
- 8. *Колдоба А.В., Повещенко Ю.А., Гасилова И.В., Дорофеева Е.Ю.* Разностные схемы метода опорных операторов для уравнений теории упругости // Матем. моделирование. 2012. Т. 24. № 12. С. 86–96.
- 9. Повещенко Ю.А., Круковский А.Ю., Подрыга В.О., Головченко Е.Н. Разностные схемы метода опорных операторов для уравнений упругости с азимутальным вращением // Препринты ИПМ им. М.В. Келдыша. 2019. № 10. 36 с.
- 10. Новиков В.Г., Никифоров В.Г., Уваров В.Б. Квантово-статистические модели высокотемпературной плазмы и методы расчета росселандовых пробегов и уравнений состояния. М.: Физматлит, 2000. 400 с.
- 11. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Т. 7. Теория упругости. М.: Наука, 1987. 248 с.
- 12. *Круковский А.Ю., Повещенко Ю.А., Клочкова Л.В., Сузан Д.В.* Оценки сходимости итерационных алгоритмов численного решения трехмерных нестационарных задач магнитной гидродинамики // Препринты ИПМ им. М.В. Келдыша. 2019. № 94. 17 с.
- 13. *Круковский А.Ю., Новиков В.Г., Цыгвинцев И.П.* Численные алгоритмы для решения трехмерных нестационарных задач магнитной гидродинамики // Препринты ИПМ им. М.В. Келдыша. 2014. № 6. 20 с.