_____ МАТЕМАТИЧЕСКАЯ ______ ФИЗИКА

УДК 519.676

ЧИСЛЕННО-СТАТИСТИЧЕСКОЕ И АНАЛИТИЧЕСКОЕ ИССЛЕДОВАНИЕ АСИМПТОТИКИ СРЕДНЕГО ПОТОКА ЧАСТИЦ С РАЗМНОЖЕНИЕМ В СЛУЧАЙНОЙ СРЕДЕ¹⁾

© 2021 г. Г. З. Лотова^{1,*}, Г. А. Михайлов^{2,**}

1 630090 Новосибирск, пр-т акад. Лаврентьева, 6, Институт вычислительной математики и математической геофизики СО РАН, Россия

 2 630090 Новосибирск, ул. Пирогова, 1, Новосибирский государственный университет, Россия

*e-mail: lot@osmf.sscc.ru

**e-mail: gam@sscc.ru

Поступила в редакцию 11.07.2020 г. Переработанный вариант 21.10.2020 г. Принята к публикации 11.02.2021 г.

Известно, что плотность потока частиц в размножающей среде при достаточно широких условиях асимптотически экспоненциальна по времени t с некоторым параметром λ , т.е. с показателем λt . Если среда случайна, то параметр λ — случайная величина, и для оценки временной асимптотики среднего (по реализациям среды) числа частиц можно в некотором приближении осреднять экспоненту по распределению λ . В предположении гауссовости этого распределения таким образом получается асимптотическая "сверхэкспоненциальная" оценка среднего потока, выражаемая экспонентой с показателем $tE\lambda + t^2D\lambda/2$. Для численной экспериментальной проверки такой оценки разработано вычисление вероятностных моментов случайного параметра λ на основе рандомизации фурье-приближений специальных нелинейных функционалов. Дано приложение указанной новой формулы к исследованию пандемии COVID-19. Библ. 11. Фиг. 1. Табл. 3.

Ключевые слова: статистическое моделирование, асимптотика по времени, случайная среда, поток частиц, COVID-19.

DOI: 10.31857/S0044466921060077

1. ВВОДНАЯ ИНФОРМАЦИЯ

Настоящая статья посвящена исследованию временной асимптотики среднего потока частиц, рассеивающихся с размножением в случайной среде. С этой целью разработано осреднение соответствующих аналитических и численно-статистических оценок (т.е. оценок метода Монте-Карло), получаемых для детерминированных реализаций среды.

Известно (см., например, [1]), что плотность потока частиц $\Phi(t, \mathbf{r}, \mathbf{v})$ в системе, образованной размножающей средой в области \mathbf{D} , в достаточно широких условиях является асимптотически экспоненциальной по времени t

$$\Phi(t,\mathbf{r},\mathbf{v}) \simeq e^{\lambda t}\Phi(\mathbf{r},\mathbf{v}), \quad t \to \infty.$$

Временна́я постоянная λ является ведущим характеристическим числом соответствующего однородного стационарного кинетического уравнения:

$$(\mathbf{v}, \operatorname{grad} \Phi) + (\sigma + \tau/v)\Phi = \sigma_s \int w_s(\mathbf{v}' \to \mathbf{v}, \mathbf{r})\Phi' d\mathbf{v}' + \sigma_f \int v(\mathbf{r}, \mathbf{v})w_f(\mathbf{v}' \to \mathbf{v}, \mathbf{r})\Phi' d\mathbf{v}'. \tag{1.1}$$

Здесь $\Phi \equiv \Phi(\mathbf{r}, \mathbf{v})$ — стационарная плотность потока (характеристическая функция уравнения (1.1)), $\Phi' \equiv \Phi(\mathbf{r}, \mathbf{v}')$; $\sigma \equiv \sigma(\mathbf{r}, \mathbf{v})$ — полное сечение (коэффициент ослабления); $\sigma = \sigma_s + \sigma_f + \sigma_c$, σ_s — сечение рассеяния, σ_f — сечение деления (w_s , w_f — соответствующие индикатрисы), σ_c — сечение

 $^{^{1)}}$ Работа выполнена при частичной финансовой поддержке РФФИ (коды проектов 18-01-00356, 18-01-00599).

поглощения; \mathbf{v} — число частиц, вылетающих из точки деления; $\mathbf{v} = v\omega$ — вектор скорости, ω — единичный вектор направления, $v = |\mathbf{v}|$; \mathbf{r} — пространственная точка.

С целью построения и исследования алгоритмов метода Монте-Карло далее в качестве соответствующей уравнению (1.1) (см., например, [2]) математической модели процесса переноса используется однородная обрывающаяся с вероятностью единица цепь Маркова, состояниями которой являются фазовые точки последовательных "столкновений частицы с элементами вещества", т.е. точки, в которых происходят мгновенные изменения скорости частицы. Указанная цепь Маркова x_0 , x_1 , ..., x_N рассматривается в фазовом пространстве $X = R \times V \times T$ координат, скоростей и времени, т.е. $x_n = (\mathbf{r}_n, \mathbf{v}_n, t_n)$, где \mathbf{r}_n — точка n-го столкновения, \mathbf{v}_n — скорость непосредственно перед столкновением, а $t_n = t_{n-1} + |\mathbf{r}_{n-1} - \mathbf{r}_n|/|\mathbf{v}_{n-1}|$ — время "жизни" сталкивающейся частицы. Рассматриваемая цепь определяется плотностью f(x) распределения начального столкновения x_0 и плотностью k(x',x) перехода из состояния x' в x, причем предполагается, что

$$\int_{X} k(x', x) dx = q(x') \le 1 - \delta, \quad \delta > 0,$$
(1.2)

т.е. цепь обрывается с вероятностью единица, и среднее число переходов конечно. Условие (1.2) выполняется, например, для ограниченной системы (см. [2], [3]). Субстохастическое ядро k(x',x) получается (см. [2], [3]) из характеризации процесса переноса, которая определяет и уравнение (1.1). Отношения $\sigma_s(x)/\sigma(x)$, $\sigma_f(x)/\sigma(x)$ и $\sigma_c(x)/\sigma(x)$ равны вероятностям рассеяния, деления и поглощения непосредственно после столкновения в фазовой точке x, а плотность распределения длины ℓ свободного пробега из \mathbf{r}' в \mathbf{r} равна $p(\ell) = \sigma(r(\ell)) \exp(-\tau_{\rm op}(\ell))$, где $\tau_{\rm op}(\ell)$ — оптическая длина пробега (см. [2], [3]). Видно, что плотность столкновений $\phi(x) = \sum_{n=0}^{\infty} \phi_n(x)$, где $\phi_n(x)$ — плотность распределения столкновений номера n, представляет собой ряд Неймана для интегрального уравнения II рода

$$\varphi = K\varphi + f$$
, $f \equiv \varphi_0$,

где K — интегральный оператор с ядром $k(\cdot,\cdot)$. Как указано, например, в [2], [3], несмотря на наличие в ядре k(x',x) обобщенных множителей $\delta(\mathbf{v}'/|\mathbf{v}'|-(\mathbf{r}-\mathbf{r}')/|\mathbf{r}-\mathbf{r}'|)$ и $\delta(t-t'-|\mathbf{r}-\mathbf{r}'|/|\mathbf{v}'|)$, оператор K можно рассматривать действующим из $L_1(X)$ в $L_1(X)$ тем более, что в рассматриваемой задаче все функции неотрицательны. При выполнении условия (1.2) имеем $\|K\|_{L_1} < 1$, и, следовательно, спектральный радиус оператора $\rho(K) < 1$.

Используемая обычно в теории переноса интенсивность излучения $\Phi(x)$ (плотность потока частиц) связана с плотностью столкновений соотношением $\varphi(x) = \sigma(x)\Phi(x)$. Метод Монте-Карло, как правило, используется для оценки линейных функционалов вида $J_h = (\varphi, h) = (\sigma \Phi, h), h \in L_{\infty}$. Для построения весовых алгоритмов метода Монте-Карло используется цепь Маркова с начальной плотностью $f_0(x)$ и плотностью перехода p(x',x), содержащей указанные обобщенные множители, например, цепь столкновений для других значений параметров σ , σ_s , σ_f , σ_c . При этом вводятся вспомогательные веса по формулам

$$Q_0 = \frac{f(x_0)}{f_0(x_0)}, \quad Q_n = Q_{n-1} \frac{k(x_{n-1}, x_n)}{p(x_{n-1}, x_n)}.$$

Если выполняются "условия несмещенности":

$$\operatorname{supp} f_0(\cdot) \supset \operatorname{supp} f(\cdot) \quad \operatorname{u} \quad \operatorname{supp} p(\cdot, \cdot) \supset \operatorname{supp} k(\cdot, \cdot), \tag{1.3}$$

то (см. [2], [3])

$$J_h=\mathrm{E}\xi,$$
 где $\xi=\sum_{n=0}^N Q_n h(x_n).$

Если, кроме того, $\rho(K_p) < 1$, где K_p — оператор с ядром $k^2(x',x)/p(x',x)$, и $f^2/f_0 \in L_1(X)$, то $D\xi < +\infty$. Случайная величина ξ называется *оценкой по столкновениям* для функционала J_h .

Отметим, что новая скорость обычно моделируется следующим образом: с вероятностью $\sigma_s(x')/\sigma(x')$ — согласно индикатрисе $w_s(\mathbf{v'} \to \mathbf{v}; \mathbf{r'})$, а с вероятностью $\sigma_f(x')/\sigma(x')$ — согласно

 $w_f(\mathbf{v'} \to \mathbf{v}; \mathbf{r'})$; для построения весовой модификации номер типа моделирования (т.е. типа столкновения) вводится в число координат фазового пространства (см. [2], [3]).

2. ОЦЕНКА ВЕЛИЧИНЫ λ

В этом разделе рассматриваются два подхода к оценке временной константы λ размножения частиц, которая определяет асимптотику $C \exp(\lambda t)$ функции Φ в детерминированной среде (см., например, [1]). Известно (см. [1]), что если величину λ/v (v — скорость частицы) добавить к сечению поглощения, то система становится критической, т.е. λ — характеристическое число уравнения (1.1).

2.1. Дифференцируя уравнение (1.1) в операторном виде k раз по τ , получаем

$$L\Phi^{(k)} + \left(\sigma + \frac{\tau}{v}\right)\Phi^{(k)} = S\Phi^{(k)} + S_f\Phi^{(k)} - \frac{k}{v}\Phi^{(k-1)}$$
(2.1)

или $R_1\Phi^{(k)} = -(k/v)\Phi^{(k-1)}$. Следовательно,

$$\Phi^{(k)} = (-1)^{(k-1)} k! (R_1^{-1} v)^{-(k-1)} \Phi^{(1)}$$

При выполнении стандартных спектральных свойств резольвентного оператора (см. [1]) имеем $k\Phi^{(k-1)}/\Phi^{(k)} \to \tau_1, \, k \to \infty.$ Отсюда получаем следующий предельный вид уравнения (2.1):

$$L\Phi^* + \left(\sigma + \frac{\tau}{V}\right)\Phi^* = S\Phi^* + S_f\Phi^* - \frac{\tau_1}{V}\Phi^*.$$

Таким образом,

$$\lambda = \tau + \tau_1 \quad \text{if} \quad kJ^{(k-1)}/J^{(k)} \to \lambda - \tau. \tag{2.2}$$

Для оценки производных по τ от линейного функционала J моделируется цепь столкновений с параметрами $\tau=0$, $\nu\equiv 1$, причем $Q_n=\tilde{\nu}_n\exp(-\tau t_n)$, где t_n — полное время пробега частицы до r_n и $\tilde{\nu}_n$ — вес, учитывающий деления для простейшей модификации процесса без ветвления (см. [2]). Отсюда

$$\frac{\partial^k Q_n}{\partial \tau^k} = Q_n^{(k)} = \tilde{\mathbf{v}}_n (-t_n)^k \exp(-\tau t_n).$$

Поскольку τ/v добавляется к сечению поглощения, то величина $\|K_p\|$, модифицированная заменами $\sigma_f \mapsto \sigma_f + \sigma_c$, $v \mapsto v\sigma_f/(\sigma_f + \sigma_c)$, может быть сделана меньше единицы выбором достаточно большого τ . Нетрудно обосновать здесь несмещенность соответствующих оценок $\xi^{(k)}$ производных $J^{(k)}$ и конечность их дисперсий при $\|K_p\| < 1$ на основе векторного подхода; условия конечности дисперсий менее ограничительны, если моделируется ветвление (см. [3]).

Рассмотренный подход был сформулирован в [4] и детально разработан в [5]. Его недостатком является необходимость трудоемких расчетов кратных производных $\xi^{(k)}$, дисперсии которых весьма сильно возрастают при увеличении k в реальных задачах. Тем не менее в [5] на основе дополнительного вычисления производных от оценок λ по значениям кусочно-постоянной случайной функции $\sigma(\tau)$ были получены достаточно точные тестовые оценки величин $E\lambda$, $D\lambda$ для модельной сферически-симметричной системы; они будут использованы в разд. 4 настоящей работы.

Далее сформулирован более универсальный подход к оценке величины λ на основе использования функции Грина по параметру времени t.

2.2. Пусть $\varphi_0(x; \mathbf{r}_0, \mathbf{v}_0)$ — плотность столкновений (по аргументу x) от одного столкновения в точке $(\mathbf{r}_0, \mathbf{v}_0, 0)$, т.е. для $f(x) = \delta(\mathbf{r} - \mathbf{r}_0)\delta(\mathbf{v} - \mathbf{v}_0)\delta(t)$.

Функционал

$$J(t) = \iint_{RV} \varphi(\mathbf{r}, \mathbf{v}, t) h(\mathbf{r}, \mathbf{v}) d\mathbf{r} d\mathbf{v} \quad \forall f \in L_1(X), \quad h \in L_{\infty}(R \times V),$$

можно представить в виде (см. [5])

$$J(t) = \iint_{R} \int_{V_0}^{\infty} f(\mathbf{r}_0, \mathbf{v}_0, t - \tau) F(\mathbf{r}_0, \mathbf{v}_0, \tau) d\mathbf{r}_0 d\mathbf{v}_0 d\tau,$$

где

$$F(\mathbf{r}_0, \mathbf{v}_0, t) = \iint_{R} \varphi_0(\mathbf{r}, \mathbf{v}, t; \mathbf{r}_0, \mathbf{v}_0) h(\mathbf{r}, \mathbf{v}) d\mathbf{r} d\mathbf{v}.$$

Предполагается, что $f(\mathbf{r}, \mathbf{v}, -t) \equiv 0$, и вследствие этого $F(\mathbf{r}, \mathbf{v}, -t) \equiv 0$, при t > 0.

Символом $f_t^{(m)}$ далее обозначается m-кратная производная от функции f по t.

Лемма 1 (см. [2]). Пусть точка $(\mathbf{r}_0, \mathbf{v}_0)$ распределена для $t_0 \equiv 0$ с плотностью $f_0(\mathbf{r}, \mathbf{v})$, выполняются условия (1.3),

$$\left| f^{(m)}(\mathbf{r}, \mathbf{v}, t) \middle/ f_0(\mathbf{r}, \mathbf{v}) \right| < C_0 < +\infty, \quad \rho(K_p) < 1,$$

 $u\ F(x) < C < +\infty$. Тогда выполняется соотношение $J^{(m)}(t) = E\xi_t^{(m)}$, где

$$\xi_{t}^{(m)} = \sum_{k=0}^{N} Q_{k} h(\mathbf{r}_{k}, \mathbf{v}_{k}) f^{(m)}(\mathbf{r}_{0}, \mathbf{v}_{0}, t - t_{k}) / f_{0}(\mathbf{r}_{0}, \mathbf{v}_{0}), \quad Q_{0} \equiv 1,$$
(2.3)

причем $D\xi_t^{(m)} < +\infty, m = 0, 1, ..., n.$

Отметим, что в [2] оценка типа ξ (т.е. $\xi_t^{(m)}$ при m=0) используется для решения нестационарных задач оптического зондирования с реальными источниками излучения. В настоящей работе, следуя [5], на основе ξ и ξ ' со вспомогательной плотностью f(x) строятся оценки параметра λ экспоненциальной асимптотики потока частиц по времени.

Известно, что при выполнении довольно общих условий в случае источника, локализованного в точке $(\mathbf{r}_0, \mathbf{v}_0, 0)$, имеет место асимптотическое при $t \to \infty$ соотношение (см. [1])

$$F(\mathbf{r}, \mathbf{v}, t) \sim C(\mathbf{r}, \mathbf{v})e^{\lambda t}, \quad C(\mathbf{r}, \mathbf{v}) < C_0 < +\infty,$$
 (2.4)

где λ — ведущее характеристическое число уравнения (1.1). Эти условия, в частности, имеют место для односкоростного процесса переноса частиц в ограниченной среде с достаточно быстро убывающей по времени плотностью источника. Сказанное выше дает возможность построить оценку величины λ .

Теорема 1. Если выполняются соотношения

$$\int f^{(n)}(\mathbf{r}, \mathbf{v}, t)e^{-\lambda t}dt < +\infty, \quad n = 0, 1,$$
(2.5)

соотношение (2.4) и условия леммы 1, то

$$\frac{J'(t)}{J(t)} \to \lambda \quad npu \quad t \to +\infty. \tag{2.6}$$

Доказательство. Прямое интегрирование с учетом леммы 1 и соотношений (2.4), (2.5) дает равенства

$$J(t) = Ce^{\lambda t}[1 + \varepsilon(t)], \quad J(t) = C_1 e^{\lambda t}[1 + \varepsilon_1(t)],$$

причем $\varepsilon(t)$, $\varepsilon_1(t) \to 0$ для $t \to +\infty$. Интегрируя функцию J(t) в пределах $(\tau_0, +\infty)$ при $\tau_0 \to \infty$ для $\lambda < 0$, получаем

$$J'(t) = C\lambda e^{\lambda t}[1 + \varepsilon_1(t)],$$
 r.e. $C_1 = \lambda C.$

В случае $\lambda > 0$ тот же результат получается путем введения дополнительного поглощения с коэффициентом $\sigma_c^{(0)} > \lambda/v$. Это завершает доказательство теоремы 1.

3. ОЦЕНКА СРЕДНЕГО ПОТОКА ЧАСТИЦ В СТОХАСТИЧЕСКОЙ СРЕДЕ

3.1. Для простоты изложения далее рассматривается односкоростной процесс переноса частиц; предполагается, что $\sigma \equiv \sigma(r)$ — случайное поле, причем отношения σ_s/σ , σ_f/σ , а также индикатрисы рассеяния и деления фиксированы.

Если $h_0(r) = I_{\mathbf{D}}(r)/\sigma(r)$, где $I_{\mathbf{D}}$ — индикатор области \mathbf{D} , то функционал $J(t,\sigma)$ представляет собой полный поток частиц в области \mathbf{D} для заданного момента времени t. Предполагая гауссовость случайной величины $\lambda(\sigma)$ и равномерность (по σ) предельного перехода $J(t,\sigma) \to_{t\to\infty} C(\sigma) \mathrm{e}^{\lambda(\sigma)t}$, можно оценить асимптотику функции $\mathrm{E}J(t,\sigma) = J_t$ при $t\to\infty$:

$$J_t \approx \frac{C}{\sqrt{2\pi}d} \int_{-\infty}^{-\infty} \exp(tx) \exp\left[-\frac{(x-a)^2}{2d^2}\right] dx,$$

где $a = E\lambda(\sigma)$, $d^2 = D\lambda(\sigma)$ — математическое ожидание и дисперсия соответствующей величины. При этом также предполагается, что множители $C(\sigma)$ и е $e^{\lambda(\sigma)t}$ в асимптотике слабо коррелированы и, следовательно, $C \approx EC(\sigma)$. Сделанные предположения являются естественными, например, для малого случайного возмущения многослойной (многокомпонентной) среды при условии $d \ll |a|$; их эффективность проверена в настоящей работе тестовыми расчетами (см. далее разд. 4). Используя интегральную формулу (2.3.15), № 11, из [6], далее получаем

$$J_t \approx C \exp\left(\frac{d^2}{2}t^2 + at\right). \tag{3.1}$$

Следовательно, можно предположить, что

$$\frac{d\ln J_t}{dt} \approx d^2t + a. \tag{3.2}$$

Отметим, что формулы (3.1), (3.2) могут служить основой для численных исследований конкретных вариантов задачи. Определяемый формулой (3.1) закон роста среднего числа частиц можно назвать "сверхэкспоненциальным". Более общее и практически удобное определение сверхэкспоненциальности можно связать с увеличением коэффициента роста $n(t + \Delta t)/n(t)$ при увеличении t

В реальных задачах выполняется соотношение $-\infty < \lambda_1 < \lambda(\sigma) < \lambda_2 < +\infty$; следовательно, полученная асимптотика, по-видимому, может аппроксимировать J_t лишь в некотором интервале $0 < T_1 \le t \le T_2 < +\infty$; в связи с этим требуются дополнительные численные исследования.

3.2. Практически важными здесь являются величины $E\lambda(\sigma)$ и $D\lambda(\sigma)$. Логически простейший (прямой) способ их оценки методом Монте-Карло состоит в реализации достаточно точных оценок величины $J'(t,\sigma)/J(t,\sigma)$ для выборки σ достаточно большого объема. Однако такой способ может быть слишком трудоемким для реалистических моделей среды и процесса переноса. Поэтому в [7] для построения рандомизированного алгоритма используется соотношение ($J(t,\sigma)$ заменяется на $J(\sigma)$):

$$\mathrm{E}\frac{J'(\sigma)}{J(\sigma)} \approx \lambda_n = \mathrm{E}\left[J'(\sigma)\sum_{s=0}^n \frac{(-1)^s}{\tilde{J}_0^{s+1}} (J(\sigma) - \tilde{J}_0)^s\right],$$

где \tilde{J}_0 — предварительная статистическая оценка величины $EJ(\sigma)$, которую здесь можно детерминировать. Простейшая (элементарная) несмещенная рандомизированная оценка величины λ_n на основе леммы 1 строится путем реализации n+1 условно независимых траекторий частиц для выбранного значения $\sigma: \lambda_n = E\tilde{\lambda}_n$, где

$$\tilde{\lambda}_{n} = \xi'(\Omega_{n+1}, \sigma) \sum_{s=0}^{n} \frac{(-1)^{s}}{\tilde{J}_{0}^{s+1}} \prod_{k=1}^{s} (\xi(\Omega_{k}, \sigma) - \tilde{J}_{0}).$$
(3.3)

С помощью аналогичного разложения строится оценка величины $\mathrm{E}\lambda^2(\sigma)$ (см. [7]). Видно, что $\tilde{\lambda}_0$ из (3.3) представляет собой статистическую оценку величины J'_t/J_t . В данном случае значения J'_t

и J_t оцениваются методом двойной рандомизации (см. [3]) одновременно. Для определенности сформулируем это в виде отдельного утверждения.

Лемма 2. В условиях леммы 1 справедливо равенство

$$\frac{J_t'}{J_t} = \frac{d \ln J_t}{dt} = \frac{E\xi'(\Omega, \sigma)}{E\xi(\Omega, \sigma)} \approx \frac{\tilde{J}_t'}{\tilde{J}_t'},$$
(3.4)

где $ilde{J}_{t}, ilde{J}_{t}'$ — соответствующие статистические оценки, получаемые методом двойной рандомизации.

Для каждой реализации среды здесь можно строить лишь одну траекторию частиц, используя (2.3) для m=0; 1. Если трудоемкость моделирования среды существенно превосходит трудоемкость моделирования траектории, то целесообразно строить r условно-независимых траекторий для каждой реализации среды. Оптимальное значение r оценивается при этом по аналогии с параметром метода расщепления (см. [9]).

Отметим, что дисперсия величины \tilde{J}_t'/\tilde{J}_t оценивается сверху с помощью линеаризации дроби по формуле

$$D\left(\frac{\tilde{J}_{t}'}{\tilde{J}_{t}}\right) < \left(\frac{\sqrt{D\tilde{J}_{t}'}}{E\tilde{J}_{t}} + \frac{|E\tilde{J}_{t}'|}{(E\tilde{J}_{t})^{3}}\sqrt{D\tilde{J}_{t}}\right)^{2}.$$
(3.5)

3.3. В [5] построен алгоритм оценки величин $E\lambda$, $D\lambda$ для среды со случайной кусочно-постоянной плотностью ρ на основе разложения $\lambda(\rho)$ в ряд Тейлора по $(\rho_1, ..., \rho_m)$ в точке $(E\rho_1, ..., E\rho_m)$, причем для дисперсии был использован отрезок ряда до первого порядка включительно, а для математических ожиданий — до второго. В предположении независимости случайных величин $\{\rho_i\}$ выполняются соотношения

$$E\lambda \approx \lambda (E\rho_1, ..., E\rho_m) + \frac{1}{2} \sum_{i=1}^m \frac{\partial^2 \lambda}{\partial \rho_i^2} D\rho_i, \quad D\lambda \approx \sum_{i=1}^m \left(\frac{\partial \lambda}{\partial \rho_i}\right)^2 D\rho_i.$$
 (3.6)

Оценку дисперсии можно уточнить, используя слагаемые второго порядка; в рассмотренном далее примере это уточнение оказалось несущественным. Таким образом, оценка (3.6) сводится к оценке производных первого и второго порядков от λ по ρ_i .

После замены λ на итерационное резольвентное приближение (см. п. 2.1) такие оценки определяются смешанными производными

$$\frac{\partial^{j} J_{\tau}^{(k-1)}}{\partial \rho_{i}^{j}}, \quad \frac{\partial^{j} J_{\tau}^{(k)}}{\partial \rho_{i}^{j}}.$$
 (3.7)

Величины (3.7) можно вычислять, как указано в [5], используя метод Монте-Карло со вспомогательными весами, соответствующими вариациям параметров τ и $\{\rho_i\}$, i=1,2,...,n.

Полученные таким образом результаты можно независимо контролировать более трудоемкими расчетами на основе (3.3).

4. РЕЗУЛЬТАТЫ РАСЧЕТОВ

4.1. Для проведения тестовых расчетов рассматривался односкоростной процесс переноса частиц в сферически-симметричной среде с кусочно-постоянной случайной плотностью $\rho = \rho(r)$ в шаре радиуса R = 7.72043 с макроскопическими сечениями $\rho\sigma^{(0)}$, $\rho\sigma_s^{(0)}$, $\rho\sigma_f^{(0)}$, где

$$\sigma^{(0)} = 1$$
, $\sigma_s^{(0)} = 0.97$, $\sigma_f^{(0)} = 0.03$, $v = 2.5$, $v = 1$.

Для построения реализации среды шар делится на m одинаковых по объему сферических слоев; в каждом слое случайная величина $\rho \equiv \rho_i$ выбирается независимо и равномерно на отрезке $[1-\varepsilon, 1+\varepsilon]$.

Для построения эффективного алгоритма метода Монте-Карло на основе леммы 2 в сформулированную модель было введено поглощение с постоянным неслучайным коэффициентом σ_c/v , который приводит к замене $\lambda \mapsto \lambda - \sigma_c/v \ \forall \sigma$. Отметим, что такой прием является универ-

Метод Монте-Карло Формула (4.2) Формула (4.2) $\varepsilon = 0.3$ $\varepsilon = 0.1$ формула (3.3), $\varepsilon = 0.3$ m Ελ $\sqrt{D\lambda}$ Ελ $\sqrt{D\lambda}$ Ελ $\sqrt{D\lambda}$ 1 -0.00104 ± 0.00001 0.0143 ± 0.0025 -0.001020.014 0.00011 0.0047 0.000224 ± 0.000003 0.0065 ± 0.0009 0.0066 0.000026 6 0.00023 0.0022

Таблица 1. Оценки $E\lambda$ и $\sqrt{D\lambda}$

сальным и может существенно повысить эффективность весового метода, исключая необходимость ветвления моделируемых траекторий, как это рассмотрено далее.

Используя уравнение переноса (см. [2], [3]), можно сделать замену

$$\sigma_f \mapsto \sigma_f + \sigma_c, \quad v \mapsto v\sigma_f/(\sigma_f + \sigma_c).$$

В численном эксперименте моделировался процесс переноса с константами $\sigma_s^* = \sigma_s$, $\sigma_f^* = \sigma_f + \sigma_c$, $v^* = 1$. Вспомогательные веса при этом определяются формулой $Q_n = [v\sigma_f/(\sigma_f + \sigma_c)]^{n_l}$, где n_l — число делений, предшествующих данному столкновению (см. [5]). Было использовано значение $\sigma_c = 0.059$, для которого $v\sigma_f/(\sigma_f + \sigma_c) < 1$ и тем самым (см. [2], [3]) $\rho(K_p) < 1$ $\forall \sigma$. Плотность распределения первых столкновений взята в виде

$$f(\mathbf{r},t) = 2t \exp(-2t) f_d(\mathbf{r}), \quad t > 0, \quad r = |\mathbf{r}| < R, \tag{4.1}$$

где $f_d(\mathbf{r}) = C \sin(\alpha(\rho)r)/r$ — улучшенное диффузионное приближение к пространственной характеристической функции для $\sigma = 1$, $\alpha(1) = 0.3739866$ (см. [8]). Для оценки величин $\alpha(\mathbf{r}) = 0.3739866$ (см. [8]). Для оценки величин $\alpha(\mathbf{r}) = 0.3739866$ (см. [8])

$$\mathfrak{E}(\rho) = [\pi(\sigma_s + \nu\sigma_f)\rho]/[R(\sigma_s + \nu\sigma_f) + 0.71044].$$

При этом $J_t = (\Phi, h_0 f_t/f_0)$, т.е. вычисляется функционал от потока частиц. Расчеты показали, что использование таких функциональных параметров алгоритма существенно улучшает сходимость в (2.6) сравнительно с $f_d(\mathbf{r}) \equiv \left(\frac{4}{3}\pi R^3\right)^{-1}$ и даже сравнительно с вариантом, в котором $f(\mathbf{r},t)$ определяется формулой (4.1), а $h(\mathbf{r},\mathbf{v}) \equiv 1$. Нетрудно проверить, что для сформулированных выше характеристик вычислительной модели выполняются условия леммы 1.

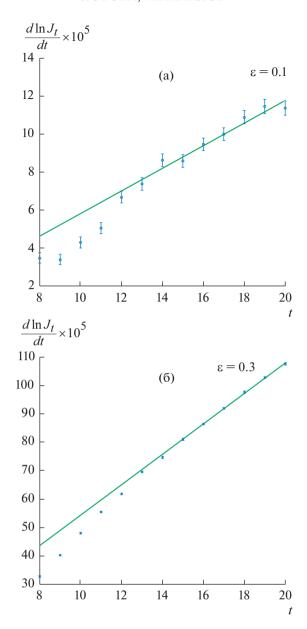
Соответствующие оценки величин Е λ и $\sqrt{D\lambda}$ приведены в первых двух столбцах табл. 1. Они были получены с помощью распределенных вычислений в ССКЦ СО РАН (Siberian Supercomputer Center SB RAS). Эти оценки определялись на основе установления двух значащих цифр при возрастании t и n с учетом статистической погрешности. Окончательные результаты получены осреднением оценок для моментов времени t=17, 18, 19, 20 при n=4 для m=2 и n=2 для m=6. Это соответствует улучшению свойств оценок при $m\to\infty$. В качестве погрешности этих оценок приведены среднеквадратические отклонения.

В [5] для рассматриваемой задачи были реализованы также формулы (3.6), которые с учетом равенства $\lambda(\overline{\rho})=0$ здесь имеют вид

$$E\lambda \approx \frac{\varepsilon^2}{6} \sum_{i=1}^m \frac{\partial^2 \lambda(\overline{\rho})}{\partial \rho_i^2}, \quad D\lambda \approx \frac{\varepsilon^2}{3} \sum_{i=1}^m \left(\frac{\partial \lambda(\overline{\rho})}{\partial \rho_i} \right)^2.$$
 (4.2)

Полученные таким образом результаты приведены в двух последних столбцах табл. 1. Их можно рассматривать как тестовые для $\varepsilon = 0.1$, а также для $\varepsilon = 0.3$ при m = 1; 6.

4.2. На фиг. 1 приведены графики оценки логарифмической производной (3.4) для m = 6 при $\varepsilon = 0.1$; 0.3. Точками обозначены соответствующие значения оценки (3.4), полученные с помощью распределенных вычислений в ССКЦ СО РАН. Приведенные интервальные погрешности



Фиг. 1. Оценка логарифмической производной при $\epsilon = 0.1$ и $\epsilon = 0.3$ и регрессионная аппроксимация (прямая).

представляют собой оценки вида (3.5) среднеквадратических погрешностей. Прямые на фиг. 1 линейно аппроксимируют функцию

$$y(t) = \frac{d \ln J_t}{dt}.$$

Точечные оценки этой функции дают возможность вычислить соответствующие регрессионные (для $15 \le t_i \le 20$) оценки $\tilde{\alpha}$, $\tilde{\beta}$ коэффициентов линейной аппроксимации $y(t) \approx \beta t + \alpha$ по известным (см. [10]) формулам

$$\tilde{\alpha} = \frac{\sum_{i=1}^{n} y_i \left(\sum_{j=1}^{n} t_j^2 - t_i \sum_{j=1}^{n} t_j \right)}{n \sum_{i=1}^{n} t_i^2 - \left(\sum_{i=1}^{n} t_i \right)^2} = \sum_{i=1}^{n} A_i y_i,$$

 $d^2 \times 10^5$ $\sigma(\tilde{\alpha}) \times 10^5$ ε $\tilde{\beta} \times 10^5$ $\sigma(\tilde{\beta}) \times 10^5$ $a \times 10^5$ $\tilde{\alpha} \times 10^5$ 0.1 0.48 0.5921 0.1920 2.6 -0.04803.3597 0.3 4.4 5.3778 0.1941 23 0.6084 3.3975

Таблица 2. Аналитические (соответственно (3.2)) и регрессионные оценки коэффициентов

Таблица 3. Данные ВОЗ и оценки по формуле (4.3)

Дата (2020 г.)	9.03	12.03	15.03	18.03	21.03
Данные ВОЗ	109577	125 260	153517	191127	266073
Оценки по формуле (4.3)	109577	125757	152239	194 400	261845

$$\tilde{\beta} = \frac{\sum_{i=1}^{n} y_i \left(n t_i - \sum_{j=1}^{n} t_j \right)}{n \sum_{i=1}^{n} t_i^2 - \left(\sum_{i=1}^{n} t_i \right)^2} = \sum_{i=1}^{n} B_i y_i.$$

В рассматриваемой задаче случайные величины $\{y_i\}$ положительно коррелированы, поэтому

$$D_{\alpha} = \sum_{i=1}^{n} A_i^2 Dy_i < D\tilde{\alpha} < \left(\sum_{i=1}^{n} |A_i| \sqrt{Dy_i}\right)^2,$$

$$D_{\beta} = \sum_{i=1}^{n} B_{i}^{2} D y_{i} < D \tilde{\beta} < \left(\sum_{i=1}^{n} |B_{i}| \sqrt{D y_{i}} \right)^{2}.$$

Анализ полученных на этой основе оценок дисперсий с учетом неполной зависимости величин $\{y_i\}$ показал, что оценки среднеквадратической погрешности величин $\tilde{\alpha}$, $\tilde{\beta}$ можно вычислять по формулам $\sigma(\tilde{\alpha}) \approx 2\sqrt{D_{\alpha}}$, $\sigma(\tilde{\beta}) \approx 2\sqrt{D_{\beta}}$. Аналитические и регрессионные оценки коэффициентов линейной аппроксимации функции $d \ln J_t/dt$ приведены в табл. 2. Необходимые при этом значения величин $a = E\lambda$, $d^2 = D\lambda$ определялись по формулам (4.2) (см. табл. 1 и табл. 7 из [3]).

Таким образом, можно констатировать, что здесь в интервале $15 \le t \le 20$ аналитическая оценка показателя экспоненциальной асимптотики потока частиц по времени является удовлетворительной. Более точное соответствие статистических оценок коэффициентов их аналитическим значениям при $\varepsilon = 0.1$ можно объяснить лучшей гауссовостью распределения $\lambda(\sigma)$ для этого варианта задачи, согласно теории малых возмущений.

В заключение сделаем замечание о возможности более широкого применения полученных результатов. Они показывают, что скорость роста среднего числа частиц произвольной природы (например, микроорганизмов) при их распределенном размножении в случайной среде может быть сверхэкспоненциальной (см. разд. 3). Это соответствует увеличению коэффициента роста чисел $\{n_i\}$ частиц в фиксированные равноотстоящие моменты времени $\{t_i\}$, т.е. увеличению отношения n_{i+1}/n_i . Однако, если такое увеличение наблюдается экспериментально, то это можно связать с распределенностью "очага" размножения. В частности, согласно статистике ВОЗ (см. [11]) именно так развивалась пандемия COVID-19 в целом по всему миру с 09.03.2020 по 21.03.2020. Соответствующая численность (по дням) с погрешностью, не превышающей 2%, аппроксимируется по формуле типа (3.1) следующим образом:

$$n_i \approx 109577 \exp\{0.002965(i-9)^2 + 0.037(i-9)\}, \quad i = 9, 10, ..., 21.$$
 (4.3)

Сравнение отдельных значений численности дано в табл. 3.

СПИСОК ЛИТЕРАТУРЫ

- 1. Дэвисон Б. Теория переноса нейтронов. М.: Атомиздат, 1960. 514 с.
- 2. *Марчук Г.И., Михайлов Г.А., Назаралиев М.А. и др.* Метод Монте-Карло в атмосферной оптике. Новосибирск: Наука, 1976. 283 с.
- 3. *Михайлов Г.А., Войтишек А.В.* Численное статистическое моделирование. Методы Монте-Карло: учеб. пособие для студ. вузов. М.: Издательский центр "Академия", 2006. 367 с.
- 4. *Михайлов Г.А.* Новые методы Монте-Карло для вычисления критических значений параметров уравнения переноса частиц // Докл. АН СССР. 1993. Т. 332. № 1. С. 21–23.
- 5. *Лотова Г.З., Михайлов Г.А.* Моменты параметров критичности процесса переноса частиц в случайной среде // Ж. вычисл. матем и матем. физ. 2008. Т. 48. № 12. С. 2225—2236.
- 6. Прудников А.П., Брычков Ю.А., Маричев О.И. Интегралы и ряды. М.: Наука, 1981.
- 7. *Михайлов Г.А., Лотова Г.З.* Алгоритмы метода Монте-Карло для исследования временной асимптотики потока частиц с размножением в случайной среде // Докл. АН. 2020. Т. 490. № 1. С. 47—50.
- 8. *Романов Ю.А*. Точные решения односкоростного кинетического уравнения и их использование для расчета диффузионных задач (усовершенствованный диффузионный метод) // Исследование критических параметров реакторных систем. М.: Госатомиздат, 1960. С. 3–26.
- 9. *Михайлов Г.А*. Улучшение многомерных рандомизированных алгоритмов метода Монте-Карло с "расщеплением" // Ж. вычисл. матем. и матем. физ. 2019. Т. 59. № 5. С. 822—828.
- 10. Боровков А.А. Математическая статистика: Учебник-СПб: Издательство "Лань", 2010. 704 с.
- 11. Сайт Всемирной организации здравоохранения. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/ (дата обращения 18.06.2020)