УРАВНЕНИЯ В ЧАСТНЫХ ПРОИЗВОДНЫХ

УДК 519.61

МЕТОД Ү-ОТОБРАЖЕНИЙ ДЛЯ ИССЛЕДОВАНИЯ МНОГОПАРАМЕТРИЧЕСКИХ НЕЛИНЕЙНЫХ ЗАДАЧ НА СОБСТВЕННЫЕ ЗНАЧЕНИЯ¹⁾

© 2022 г. Ю. Г. Смирнов

440026 Пенза, ул. Красная, 40, Пензенский гос. ун-т, Россия e-mail: smirnovyug@mail.ru Поступила в редакцию 16.06.2021 г. Переработанный вариант 09.09.2021 г. Принята к публикации 17.09.2021 г.

Для исследования нелинейных многопараметрических задач на собственные значения предложен метод *Y*-отображений, позволяющий доказывать существование решений. Исследована задача о распространении связанных поляризованных электромагнитных волн в нелинейном слое с нелинейностью с насыщением. Определено понятие *Y*-отображения, ставящего в соответствие потенциалу специальную нелинейную функцию от нескольких аргументов, являющихся собственные значения сведена к задаче нахождения неподвижных точек *Y*-отображений и, соответственное секонечного множества неподвижных точек *Y*-отображений и, соответственно, решений в нелинейной многопараметрической задаче на собственные значения для достаточно малых значений коэффициента нелинейности. Библ. 22.

Ключевые слова: многопараметрическая нелинейная задача на собственные значения, задача Штурма—Лиувилля, неподвижная точка отображения, связанные поляризованные электромагнитные волны.

DOI: 10.31857/S0044466922010112

введение

Нелинейные задачи на собственные значения, в которых оператор задачи нелинейно зависит как от спектрального параметра, так и от искомой функции, встречаются во многих областях математической физики, в частности, в электродинамике. Задачи, в которых имеется только один спектральный параметр, будем называть *однопараметрическими*, а задачи, в которых есть несколько спектральных параметров — *многопараметрическими*, или N-параметрическими — по количеству спектральных параметров.

Укажем некоторые физические задачи, которые приводят к нелинейным задачам на собственные значения. Однопараметрические нелинейные задачи на собственные значения возникают при изучении нелинейных волн в волноведущих структурах [1], [2]. Задачи о связанных поляризованных TE-TE или TE-TM электромагнитных волнах, распространяющихся в нелинейной среде (точнее, в нелинейной волноведущей структуре), приводят к двухпараметрическим нелинейным задачам на собственные значения (см. [3]–[5]). Постановки и исследование N-параметрических нелинейных задач на собственные значения (для произвольного N) имеются в [6]–[8]. В этих работах для изучения нелинейной задачи применялся метод возмущений линейной задачи, однако, в отличие от результатов настоящей статьи, были получены лишь локальные результаты о возмущении конечного числа собственных значений.

Однопараметрические нелинейные задачи на собственные значения исследовались также методами функционального анализа и вариационными методами [9], [10]. Многопараметрические линейные задачи на собственные значения подробно рассмотрены в [11].

В настоящей статье предложен метод изучения нелинейных многопараметрических задач, основанный на ином подходе — анализе специальных нелинейных Y-отображений. Если рассмат-

¹⁾Работа выполнена при финансовой поддержке РНФ (проект № 20-11-20087).

СМИРНОВ

ривать задачу Штурма—Лиувилля на отрезке, то Y-отображение ставит в соответствие функциипотенциалу специальную (нелинейную) функцию, зависящую от нескольких собственных функций этой задачи. Доказывается, что многопараметрические нелинейные задачи на собственные значения сводятся к поиску неподвижных точек Y-отображения.

Подход к изучению нелинейных задач на собственные значения, предлагаемый в настоящей статье, вообще говоря, не связан с конкретным видом рассматриваемого оператора, и может применяться для исследования многих нелинейных задач. В статье выбрана одна задача такого типа, возникающая в электродинамике при изучении распространения связанных поляризованных электромагнитных TE-TE волн в экранированном диэлектрическом слое с нелинейностью с насыщением. На примере этой задачи проиллюстрированы основные положения предлагаемого с метода. В то же время результаты, полученные в статье для этой задачи, являются новыми.

Заметим, что зависимость собственных значений в линейной однопараметрической задаче Штурма—Лиувилля от потенциала изучалась близкими методами. Например, оценки первого и последующих собственных значений были получены в [12]–[14].

1. ПОСТАНОВКА НЕЛИНЕЙНОЙ МНОГОПАРАМЕТРИЧЕСКОЙ ЗАДАЧИ НА СОБСТВЕННЫЕ ЗНАЧЕНИЯ

Рассмотрим постановку задачи о распространении связанных поляризованных электромагнитных ТЕ-ТЕ волн в экранированном диэлектрическом слое с нелинейностью с насыщением [15].

Пусть **u** = $(u^{(1)}, ..., u^{(N)})$ – вектор неизвестных вещественных функций, $(u^{(i)} = u^{(i)}(x))$, $\lambda = (\lambda^{(1)}, ..., \lambda^{(N)})$ – вектор (вещественных) спектральных параметров. Рассмотрим задачу на собственные значения на отрезке [0, h] ($x \in [0, h]$) следующего вида:

$$(u^{(i)})'' + (\varepsilon + \alpha f(|\mathbf{u}|))u^{(i)} + \lambda^{(i)}u^{(i)} = 0, \quad x \in (0,h), \quad i = 1,...,N,$$
(1)

с краевыми условиями

$$u^{(i)}(0) = u^{(i)}(h) = 0$$
⁽²⁾

и дополнительными условиями

$$(u^{(i)}(0))' = C_i \neq 0. \tag{3}$$

Здесь $\varepsilon = \varepsilon(x)$ – известная функция, $\varepsilon \in C^{1}[0,h]$, которую без ограничения общности будем считать положительной, $\varepsilon(x) > 0$, $x \in [0,h]$; коэффициент $\alpha > 0$ (коэффициент нелинейности). Да-

лее, через $|\mathbf{u}|$ обозначен модуль вектора, т.е. $|\mathbf{u}|^2 = (u^{(1)})^2 + \dots + (u^{(N)})^2$, $f(t) \coloneqq \frac{t^2}{1 + \beta t^2} - \phi$ ункция,

описывающая нелинейность, причем коэффициент $\beta \ge 0$ фиксирован (при $\beta = 0$ имеем нелинейность Керра, при $\beta > 0$ – нелинейность с насыщением). Постановка дополнительных условий (3) (или каких-либо еще) необходима в силу нелинейности задачи. Константы $C_i \ne 0$ считаются фиксированными и известными.

Сформулируем следующую задачу на собственные значения. Будем искать гладкие (классические) решения задачи.

Задача Р. Найти такие векторы λ , при которых существуют (нетривиальные) решения **u** задачи (1)–(3) такие, что $u^{(i)} \in C^2(0,h) \cap C^1[0,h], i = 1,...,N$.

Замечание 1. Очевидно, что в силу условий (3) $u^{(i)}(x) \neq 0$ при $x \in [0, h]$ для всех i = 1, ..., N, т.е. все решения будут нетривиальные.

Определение 1. Вектор функций **u**, являющихся решением задачи P, будем называть *вектором собственных функций*, отвечающих *вектору собственных значений* λ задачи P.

2. Ү-ОТОБРАЖЕНИЯ И ЕГО НЕПОДВИЖНЫЕ ТОЧКИ

Уравнения (1) в задаче Р перепишем в виде

$$-(u^{(i)})'' + q(x)u^{(i)} = \lambda^{(i)}u^{(i)}, \quad x \in (0,h), \quad i = 1,...,N,$$
(4)

ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ том 62 № 1 2022

$$q(x) = -(\varepsilon + \alpha f(|\mathbf{u}|)). \tag{5}$$

161

Уравнения (4) — это уравнения задачи Штурма—Лиувилля. Классическая задача Штурма—Лиувилля имеет вид

$$-v'' + q(x)v = \lambda v, \quad x \in (0,h), \tag{6}$$

с краевыми условиями

$$v(0) = v(h) = 0. (7)$$

Здесь $q \in C[0,h]$, а функция v(x) ищется в классе $v \in C^2(0,h) \cap C[0,h]$ с дополнительным условием $v \in H^1(0,h)$. Тогда решение задачи (6), (7) $v \in C^2[0,h]$ [16, с. 234, теорема 1]. По теореме Штурма [17, с. 31], [18] существует бесконечное множество собственных значений λ_n задачи (6), (7) и отвечающих им собственных функций $v_n(x)$ таких, что

$$\lambda_1 < \lambda_2 < \ldots < \lambda_n < \lambda_{n+1} < \ldots, \quad \lambda_n \to +\infty \quad \text{при} \quad n \to \infty,$$
(8)

а собственные функции $v_n(x)$ все различны (для разных *n*) и они ортогональны между собой в пространстве $L_2(0,h)$: $\int_0^h v_n(x)v_m(x)dx = 0$ при $n \neq m$. Пронормируем собственные функции так, что

$$v'_n(0) = 1, \quad n \ge 1.$$
 (9)

Теперь построим Y-отображение. Пусть $m_1, ..., m_N(m_j \ge 1)$ – набор N натуральных чисел (индексов). Пусть фиксирован потенциал q(x) и $v_{m_j}(x)$ – собственная функция задачи Штурма–Лиувилля (6), (7) с номером m_j , отвечающая собственному значению λ_{m_j} . Определим

$$Y_{\mathbf{m}}(q) = Y_{m_1m_2...m_N}(q) \coloneqq -\left(\varepsilon + \alpha \frac{C_1^2 v_{m_1}^2 + C_2^2 v_{m_2}^2 \cdots + C_N^2 v_{m_N}^2}{1 + \beta(C_1^2 v_{m_1}^2 + C_2^2 v_{m_2}^2 \cdots + C_N^2 v_{m_N}^2)}\right).$$
 (10)

Формула (10) задает (нелинейное) отображение $Y_{\mathbf{m}} : C[0,h] \to C[0,h]$. Теперь нетрудно видеть, что решения задачи Р являются неподвижными точками отображения $Y_{\mathbf{m}}$ для некоторого набора $\mathbf{m} = (m_1, ..., m_N)$:

$$Y_{\rm m}(q) = q, \quad q \in C[0,h].$$
 (11)

Точнее, верна

Теорема 1. Пусть $\mathbf{u} = (u^{(1)}, ..., u^{(N)}) (u^{(i)} = u^{(i)}(x)), \lambda = (\lambda^{(1)}, ..., \lambda^{(N)}) - являются решениями задачи (1)-(3) (задачи Р). Тогда <math>q(x) = -(\varepsilon + \alpha f(|\mathbf{u}|))$ является неподвижной точкой отображения $Y_{\mathbf{m}}$ для некоторого набора $\mathbf{m} = (m_1, ..., m_N)$, т.е. удовлетворяет уравнению (11). Обратно, если $q \in C[0, h]$ является неподвижной точкой отображения $Y_{\mathbf{m}} : C[0,h] \to C[0,h]$ для некоторого набора $\mathbf{m} = (m_1, ..., m_N)$, т.е. удовлетворяет ривенению (11). Обратно, если $q \in C[0,h]$ является неподвижной точкой отображения $Y_{\mathbf{m}} : C[0,h] \to C[0,h]$ для некоторого набора $\mathbf{m} = (m_1, ..., m_N)$, то задача (1)-(3) (задача Р) имеет решение $\mathbf{u} = (u_{m_1}^{(1)}, ..., u_{m_N}^{(N)}), \lambda = (\lambda_{m_1}^{(1)}, ..., \lambda_{m_N}^{(N)}), где u_{m_j}^{(j)}(x) = C_j v_{m_j}(x), a v_{m_j}(x) - собственная функция задачи Штурма-Лиувилля (6), (7) с номером <math>m_j$, отвечающая собственному значению λ_{m_i} .

Доказательство. Пусть $\mathbf{u} = (u^{(1)}, ..., u^{(N)}) (u^{(i)} = u^{(i)}(x)), \lambda = (\lambda^{(1)}, ..., \lambda^{(N)})$ являются решениями задачи (1)–(3). Перепишем эту задачу в виде (4), (5). Тогда $u^{(i)} = u^{(i)}(x)$ является собственной функцией задачи (6), (7) с потенциалом $q \in C[0, h]$ (определяемым по формуле (5)), отвечающей собственному значению $\lambda^{(i)} = \lambda_{m_i}$ с некоторым номером m_i , причем этот номер определяется однозначно. Таким образом определим все $m_1, ..., m_N(m_j \ge 1)$. Ясно, что будет выполняться $Y_{m_im_2...m_N}(q) = q$, т.е. уравнение (11) для $\mathbf{m} = (m_1, ..., m_N)$.

Обратно, решим задачу Штурма–Лиувилля (6), (7) для потенциала $q \in C[0,h]$ и найдем $v_{m_i}(x)$, λ_{m_i} для набора $\mathbf{m} = (m_1, ..., m_N)$. Полагая $u^{(i)}(x) \coloneqq C_i v_{m_i}(x)$, $\lambda^{(i)} \coloneqq \lambda_{m_i}$, видим, что выполнены все условия в (4), (5), а следовательно, и в (1)–(3). Утверждение доказано.

СМИРНОВ

Таким образом, многопараметрическая задача на собственные значения (1)–(3) эквивалентна нахождению неподвижных точек Y-отображений.

3. ТЕОРЕМЫ О СУЩЕСТВОВАНИИ НЕПОДВИЖНЫХ ТОЧЕК Ү-ОТОБРАЖЕНИЙ

Сначала рассмотрим простую вспомогательную задачу Штурма—Лиувилля с постоянным потенциалом $q_0 = \text{const}$:

$$-v'' + q_0 v = \lambda v, \quad x \in (0, h), \tag{12}$$

$$v(0) = v(h) = 0.$$
(13)

Собственные значения и собственные функции задачи (12), (13) имеют вид

$$\lambda_n^{(0)} = \left(\frac{\pi n}{h}\right)^2 + q_0, \quad v_n^{(0)} = \sin\frac{\pi n x}{h}, \quad n = 1, 2, \dots$$
 (14)

Пусть $-R_2 \le q(x) \le -R_1(0 < R_1 < R_2)$. Тогда, в силу теорем сравнения [16, с. 196, теорема 4], используя (14), для собственных значений λ_n задачи (6), (7) имеем

$$\lambda_n^- \le \lambda_n \le \lambda_n^+, \quad \lambda_n^- = \left(\frac{\pi n}{h}\right)^2 - R_2, \quad \lambda_n^+ = \left(\frac{\pi n}{h}\right)^2 - R_1, \quad n = 1, 2, \dots$$
(15)

Выберем

$$U := \{ q \in C[0,h] : -R_2 \le q \le -R_1 \}.$$
(16)

Очевидно, что $U \subset C[0,h]$ — замкнутое, выпуклое, ограниченное множество. Далее, выберем $R_l := \min_{x \in [0,h]} \varepsilon(x)$ ($R_l > 0$). Ясно, что для любого $\mathbf{m} = (m_1, ..., m_N)$

$$Y_{\rm m} \le -R_{\rm l}.\tag{17}$$

Далее, если выбрать $R_2 > R_1$ так, чтобы выполнялось неравенство

$$-R_2 \le Y_{\rm m},\tag{18}$$

то будем иметь

$$Y_{\rm m}: U \to U, \tag{19}$$

т.е. отображение $Y_{\rm m}$ действует из U в U. Непрерывность отображения $Y_{\rm m}$ следует из формулы (10) и непрерывной зависимости собственных значений $\lambda_n(q)$ и собственных функций $v_n(q)$ задачи (6), (7) с нормировкой (9) от $q \in C[0,h]$ (непрерывная зависимость $\lambda_n(q)$ от $q \in C[0,h]$ следует из общих теорем о возмущении собственных значений [19, с. 270], [20, с. 35, теорема 4.2]; непрерывная зависимость собственных функций в C[0,h] от q легко получается из формулы (20), представленной ниже). Так как $q \in C[0,h]$, то [16, с. 234, теорема 1] $v_n \in C^2[0,h]$. Поэтому, учитывая, что $\varepsilon \in C^1[0,h]$, получаем $Y_{\rm m} \in C^1[0,h]$. Тогда из компактности вложения $C^1[0,h] \subset C[0,h]$ [21, с. 11, теорема 1.31] получаем, что отображение $Y_{\rm m} : U \to U$ вполне непрерывно. Следовательно, по теореме Шаудера [22, с. 370] оно имеет неподвижную точку в U.

Итак, для доказательства существования неподвижной точки отображения (19) осталось выбрать R_2 , удовлетворяющим условию (18).

Пусть $\lambda_n = s^2$ и $v = v_n$ удовлетворяет (6), (7) и (9). Тогда имеет место представление (см. [18, формула (1.2.11), с. 15)]:

$$v(x) = \frac{\sin sx}{s} + \int_0^x K(x,t) \frac{\sin st}{s} dt,$$
(20)

с некоторой функцией $K(x,t) \in C^{1}([0,h] \times [0,h])$, и по теореме 1.2.2 из [18]

$$|K(x,t)| \le 0.5w((x+t)/2)\exp(\sigma_1(x) - \sigma_1((x+t)/2) - \sigma_1((x-t)/2)),$$

$$w(u) = \max_{0 \le \xi \le u} \left| \int_0^{\xi} q(y) dy \right|, \quad \sigma_1(x) = \int_0^x \sigma_0(t) dt, \quad \sigma_0(x) = \int_0^x |q(t)| dt,$$

нетрудно получить оценку

$$|K(x,t)| \le h \|q\|_{C} \exp(h^{2} \|q\|_{C} /2).$$
(21)

Рассмотрим два случая. Пусть сначала $s \in \mathbf{R}$, s > 0 — вещественное число. Тогда из (20) и (21) имеем

$$|v(x)| \le h(1+h^2 ||q||_C \exp(h^2 ||q||_C /2)),$$
(22)

причем оценка (22) не зависит от $s \in \mathbf{R}$. Будем выбирать $R_2 = R_2(\alpha)$ в зависимости от α . Пусть

$$M = M(\alpha) := h(1 + h^2 R_2 \exp(h^2 R_2/2))$$
(23)

и пусть при некотором *n*_{**} выполняется неравенство:

$$\lambda_{n_{**}}^{-} = \left(\frac{\pi n_{**}}{h}\right)^2 - R_2(\alpha) > 0.$$
(24)

Тогда при $m_i \ge n_{**}, j = 1, ..., N$, и $q \in U$ из (10), (22), (23) следует, что

$$-Y_{\mathbf{m}}(q) = -Y_{m_1 m_2 \dots m_N}(q) \le \varepsilon_{\max} + \alpha \frac{C^2 M^2}{1 + \beta C^2 M^2},$$
(25)

где $\varepsilon_{\max} := \max_{x \in [0,h]} \varepsilon(x), C^2 := C_1^2 + C_2^2 \dots + C_N^2$. Выберем $R_2 = R_2(\alpha)$ так, чтобы выполнялось неравенство

$$\varepsilon_{\max} + \alpha \frac{C^2 M^2}{1 + \beta C^2 M^2} \le R_2.$$
⁽²⁶⁾

Пусть

$$h^2 R_2(\alpha)/2 = \ln \frac{1}{\alpha^p}, \quad 0 (27)$$

Тогда

$$M(\alpha) = h \left(1 + \frac{2}{\alpha^p} \ln \frac{1}{\alpha^p} \right).$$
(28)

Оценка (26) примет вид

$$\varepsilon_{\max} + \alpha h^2 \frac{C^2 \left(1 + \frac{2}{\alpha^p} \ln \frac{1}{\alpha^p}\right)^2}{1 + \beta h^2 C^2 \left(1 + \frac{2}{\alpha^p} \ln \frac{1}{\alpha^p}\right)^2} \le \frac{2}{h^2} \ln \frac{1}{\alpha^p}.$$
(29)

Второе слагаемое в левой части неравенства (29) при $\alpha \to 0$ стремится к нулю, а правая часть стремится к бесконечности. Следовательно, существует α_* такое, что при всех $\alpha \leq \alpha_*$ неравенство (29) выполняется. Таким образом, доказана

Теорема 2. Пусть $0 . Существует такое <math>\alpha_*$, что при всех $\alpha \le \alpha_*$ и всех $m_j \ge n_{**}, j = 1, ..., N$, где

$$n_{**} = \left[\frac{h}{\pi}\sqrt{\frac{2}{h^2}\ln\frac{1}{\alpha^p}}\right] + 1,$$

ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ том 62 № 1 2022

163

отображения $Y_{\mathbf{m}}: U \to U, \mathbf{m} = (m_1, ..., m_N)$ имеют неподвижные точки, причем

$$R_1 \coloneqq \min_{x \in [0,h]} \varepsilon(x), \quad R_2 \coloneqq \frac{2}{h^2} \ln \frac{1}{\alpha_*^p},$$

а U определяется формулой (16).

Теперь рассмотрим второй случай, когда $s = i\tau$, $\tau \in \mathbf{R}$, $\tau > 0$. Тогда представление (20) можно записать в виде:

$$v(x) = \frac{\operatorname{sh} \tau x}{\tau} + \int_{0}^{x} K(x,t) \frac{\operatorname{sh} \tau t}{\tau} dt.$$
(30)

Предположим, что $\lambda_n^+ < 0$. Так как функция $\frac{\operatorname{sh} \tau t}{\tau}$ возрастает по τ и по t, и учитывая, что $\sqrt{|\lambda_n^+|} \le \tau \le \sqrt{|\lambda_n^-|}$, из (30) получаем

$$|v(x)| \le \frac{\mathrm{sh}\sqrt{|\lambda_n^-|h|}}{\sqrt{|\lambda_n^-|}} (1 + h^2 ||q||_C \exp(h^2 ||q||_C /2)).$$
(31)

Выберем $R_2 > \varepsilon_{\max}$ и пусть выполнено условие

$$R_1 - \left(\frac{\pi n_*}{h}\right)^2 > 0 \tag{32}$$

для некоторого $n_* \ge 1$. Тогда $\lambda_{n_*}^- \le \lambda_n \le \lambda_n^+ < 0$ при $n \le n_*$. Пусть

$$M = \frac{\mathrm{sh}\sqrt{|\lambda_{n_*}^-|h|}}{\sqrt{|\lambda_{n_*}^-|}} (1 + h^2 R_2 \exp(h^2 R_2/2)).$$
(33)

Тогда при $m_j \le n_*$, j = 1,...,N, и $q \in U$ из (10), (31), (33) получаем оценку (25) с M, определенным формулой (33). Тогда при достаточно малом α будет верна оценка (26), откуда следует

Теорема 3. Пусть выполнено условие (32) для некоторого $n_* \ge 1$. Выберем $R_2 > \varepsilon_{max}$. Тогда найдется такое α_* , что при всех $\alpha \le \alpha_*$ и всех $m_j \le n_*$, j = 1,...,N, отображения $Y_{\rm m}: U \to U$, ${\rm m} = (m_1,...,m_N)$ имеют неподвижные точки.

Докажем, что решения задачи Р, которые получаются в результате нахождения неподвижных точек различных отображений $Y_{\mathbf{m}}$, являются различными. Пусть $\mathbf{u} = (u^{(1)}, ..., u^{(N)})$, $\lambda = (\lambda^{(1)}, ..., \lambda^{(N)}) -$ является решением задачи (1)–(3), отвечающим неподвижной точке $q \in C[0,h]$ отображения $Y_{\mathbf{m}} : C[0,h] \rightarrow C[0,h]$, $\mathbf{m} = (m_1, ..., m_N)$, а $\mathbf{\bar{u}} = (\overline{u}^{(1)}, ..., \overline{u}^{(N)})$, $\overline{\lambda} = (\overline{\lambda}^{(1)}, ..., \overline{\lambda}^{(N)})$ является решением задачи (1)–(3), отвечающим неподвижной точке $\overline{q} \in C[0,h]$ отображения $Y_{\mathbf{\bar{m}}} : C[0,h] \rightarrow C[0,h]$, $\overline{\mathbf{m}} = (\overline{m}_1, ..., \overline{m}_N)$. Пусть $\mathbf{u} = \mathbf{\bar{u}}$, $\lambda = \overline{\lambda}$. Тогда из (10) получаем, что $Y_{\mathbf{m}}(q) = Y_{\mathbf{\bar{m}}}(\overline{q})$. Следовательно (так как q и \overline{q} неподвижные точки соответствующих отображений), $q = \overline{q}$. Но для одного потенциала q равенство $\mathbf{u} = \mathbf{\bar{u}}$, $\lambda = \overline{\lambda}$ влечет $\mathbf{m} = \mathbf{\bar{m}}$ (все собственные функции задачи Штурма–Лиувилля различны, поскольку ортогональны между собой), т.е. отображения $Y_{\mathbf{m}}$ и $Y_{\mathbf{\bar{m}}}$ совпадают. Тогда из теоремы 2 получаем

Следствие 1. Найдется такое α_* , что при всех $\alpha \leq \alpha_*$ существует бесконечное множество (различных) решений задачи Р.

ЗАКЛЮЧЕНИЕ

Рассмотренный метод *Y*-отображений позволяет исследовать нелинейные многопараметрические задачи на собственные значения и доказывать существование решений. Вид нелинейности в (1) может быть выбран произвольным. В статье была выбрана нелинейность с насыщением, чтобы исследовать конкретную задачу о распространении связанных поляризованных электромагнитных TE-TE волн в нелинейном слое. С помощью метода *Y*-отображений было доказано

МЕТОД Ү-ОТОБРАЖЕНИЙ

существование бесконечного множества решений в этой нелинейной многопараметрической задаче на собственные значения для достаточно малых значений коэффициента нелинейности, в отличие от результатов в [1]–[8], где были получены лишь локальные результаты о возмущении конечного числа собственных значений.

СПИСОК ЛИТЕРАТУРЫ

- 1. Schurman H.W., Smirnov Y.G., Shestopalov Y.V. Propagation of TE waves in cylindrical nonlinear dielectric waveguides. Physical Review E Statistical, Nonlinear, and Soft Matter Physics. 2005. 71. № 1. 016614-1-016614-10.
- 2. *Kupriyanova S.N., Smirnov Y.G.* Propagation of electromagnetic waves in cylindrical dielectric waveguides filled with a nonlinear medium // Comput. Math. and Math. Phys. 2004. V. 44. № 10. P. 1762–1772.
- 3. *Smirnov Y.G., Valovik D.V.* Problem of nonlinear coupled electromagnetic TE-TE wave propagation // J. of Math. Phys. 2013. V. 54. № 8. P. 083502. https://doi.org/10.1063/1.4817388
- Smirnov Y.G., Valovik D.V. Coupled electromagnetic TE-TM wave propagation in a layer with Kerr nonlinearity // J. of Math. Phys. 2012. V. 53. № 12. P. 123530. https://doi.org/10.1063/1.4769885
- 5. *Smirnov Y.G., Valovik D.V.* Coupled electromagnetic transverse-electric-transverse magnetic wave propagation in a cylindrical waveguide with Kerr nonlinearity // J. of Math. Phys. 2013. V. 54. № 4. P. 043506. https://doi.org/10.1063/1.4799276
- Angermann L., Shestopalov Y.V., Smirnov Y.G., Yatsyk V.V. Nonlinear multi-parameter eigenvalue problems for systems of nonlinear ordinary differential equations arising in electromagnetics. Mathematisches Forschungsinstitut Oberwolfach, Oberwolfach Preprints, OWP 2014-15. https://doi.org/10.14760/OWP-2014-15
- 7. Angermann L., Shestopalov Y.V., Smirnov Y.G., Yatsyk V.V. A nonlinear multiparameter EV problem. Springer Proc. in Math. and Statistics. "Nonlinear and Inverse Problems in Electromagnetics", 2018. 243. P. 55–70.
- 8. *Smirnov Y.G., Valovik D.V.* Nonlinear coupled wave propagation in a n-dimensional laye // Appl. Math. and Comput. 2017. V. 294. P. 146–156.
- 9. Вайнберг М.М. Вариационные методы исследования нелинейных операторов. М.: Гос. изд-во техникотеоретической литературы, 1956.
- Ambrosetti A., Rabinowitz P.H. Dual variational methods in critical point theory and applications // J. of Functional Analys. 1973. 14(4). P. 349–381.
- 11. Atkinson F.V., Mingarelli A.B. Multiparameter eigenvalue problems. Sturm-Liouville theory. NW: CRC Press, 2011.
- 12. Егоров Ю.В., Кондратьев В.А. Об оценках первого собственного значения в некоторых задачах Штурма–Лиувилля // Успехи матем. наук. 1996. том 51. Вып. 3(309). С. 73–144.
- 13. Винокуров В.А., Садовничий В.А. О границах изменения собственного значения при изменении потенциала // Докл. АН. 2003. Т. 392. № 5. С. 592–597.
- 14. *Владимиров А.А.* О мажорантах собственных значений задач Штурма–Лиувилля с потенциалами из шаров весовых пространств // Матем. сб. 2017. Т. 208. № 9. С. 42–55.
- Martynova V.Yu., Smirnov Yu.G. Coupled electromagnetic TE-TE wave propagation in nonlinear layer with saturated nonlinearity // J. of Modern Optics. 2019. https://doi.org/10.1080/09500340.2019.1695004
- 16. Михайлов В.П. Дифференциальные уравнения в частных производных. М.: Наука, 1983.
- 17. Левитан Б.М., Саргсян И.С. Введение в спектральную теорию. М.: Наука, 1970.
- 18. Марченко В.А. Спектральная теория операторов Штурма–Лиувилля. Киев: Наук. думка, 1972.
- 19. Като Т. Теория возмущений линейных операторов. М.: Мир, 1972.
- 20. Гохберг И.Ц., Крейн М.Г. Введение в теорию линейных несамосопряженных операторов. М.: Наука, 1965.
- 21. Adams R. Sobolev spaces. New York: Acad. Press, 1975.
- 22. Треногин В.А. Функциональный анализ. М.: Наука, 1993.