УРАВНЕНИЯ В ЧАСТНЫХ ПРОИЗВОДНЫХ

УДК 517.54

ПРОСТРАНСТВЕННЫЕ КВАЗИКОНФОРМНЫЕ ОТОБРАЖЕНИЯ И ОСЕСИММЕТРИЧНЫЕ ЗАДАЧИ¹⁾

© 2022 г. Ю. Д. Шевелев

123065 Москва, ул. 2-я Брестская, 19/18, ИАП РАН, Россия

e-mail: shevelev@icad.org.ru Поступила в редакцию 30.06.2021 г. Переработанный вариант 30.06.2021 г. Принята к публикации 08.06.2022 г.

Рассматриваются квазиконформные отображения осесимметричных областей — частный случай трехмерных преобразований. Наряду с потенциалом скоростей для установившегося пространственного безвихревого течения идеальной несжимаемой жидкости вводятся две функции тока. Любой соленоидальный вектор можно представить в виде векторного произведения градиентов двух функций тока. В результате для определения потенциала скорости получаем связь составляющих скорости с функциями тока. Эти преобразования, с одной стороны, положены в основу гармонических по М.А. Лаврентьеву отображений. С другой стороны, эти условия можно рассматривать как обобщение условий Коши—Римана в пространственном случае. В данной работе обобщенные трехмерные условия Коши—Римана для гармонических отображений сводятся к обычным условиям Коши—Римана для полярных координат функций комплексного переменного. Применение гармонических по М.А. Лаврентьеву условий позволяет построить аналог квазиконформных отображений осесимметричных областей и обобщить отображения осесимметричных областей на произвольные областей и их обобщений. Библ. 13. Фиг. 5.

Ключевые слова: конформные отображения, гармонические по М.А. Лаврентьеву отображения, обобщенные условия Коши–Римана, осесимметричные потенциальные течения.

DOI: 10.31857/S0044466922100106

1. ВВЕДЕНИЕ

Двумерные конформные отображения используются для расчета и визуализации гармонических векторных полей в гидродинамике, теории упругости, фильтрации, электромагнетизме и др. Применение двумерных конформных отображений связано с решением краевых задач для уравнения Лапласа, к которому сводятся многие стационарные задачи математической физики. Эти задачи описывают стационарные течения несжимаемой идеальной жидкости, распространение волн, процессы диффузии, распространение тепла, теорию тяготения, электростатику и др.

В течение многих лет не прекращались попытки распространить методы двумерных конформных отображений на трехмерный случай. В общем виде для трехмерных задач свойства плоских конформных отображений не обобщаются. В евклидовом пространстве при n > 2 конформные отображения исчерпываются конечным числом суперпозиций четырех видов отображений: параллельного переноса, преобразования подобия, ортогональные отображения и инверсии (см. [1]).

Теория функций многих комплексных переменных освещена во многих монографиях (см., например, [2]–[5]). Хорошая теория сильна своими приложениями, что видно на примере двумерной теории функции комплексного переменного. Для функций многих комплексных переменных применение мощного математического аппарата привело к значительным усложнениям. В пространственном случае разрешимость задач связана с топологическими и аналитическими свойствами комплексных многообразий. Основные вопросы теории пространственных

¹⁾Работа выполнена в рамках госконтракта Института автоматизации проектирования РАН.

конформных отображений изучены недостаточно, а теория многомерных конформных отображений не нашла практического применения.

Если отказаться от некоторых общих ограничений, то свойства двумерных конформных отображений можно обобщить и на трехмерный случай (см. [6]). Аналог трехмерных квазиконформных отображений получен при последовательном использовании двух обычных функций комплексного переменного. Приведены примеры построения сеток с помощью теории квазиконформных отображений. Попытки применения конформных отображений для построения сеток предпринимались и ранее в [7], [8]. В [9] построен класс квазиконформных отображений для случая суперпозиции плоских отображений.

В данной работе рассматривается осесимметричная задача с точки зрения теории трехмерных квазиконформных отображений. Пространственные (осесимметричные) задачи обладают симметрией, что позволяет исследовать, по сути, двумерные задачи. В отличие от плоского случая, для которого разработана теория с применением в различных областях, для осесимметричных течений аналогичная теория требует дальнейшего развития. Вместе с тем пространственные осесимметричные задачи являются трехмерными по существу.

Статья организована следующим образом: математическое обоснование гармонических по М.А. Лаврентьеву отображений вводится в разд. 2; в разд. 3 рассматриваются уравнения движения для осесимметричного случая; в разд. 4 рассматриваются трехмерные квазиконформные отображения с использованием полярных координат двух обычных функций комплексного переменного; примеры визуализации приведены в разд. 5.

2. ГАРМОНИЧЕСКИЕ ПО М.А. ЛАВРЕНТЬЕВУ ОТОБРАЖЕНИЯ

1. Наиболее интересные квазиконформные отображения трехмерных областей получаются при использовании гидродинамической аналогии (см. [10]). Рассмотрим установившееся движение идеальной несжимаемой жидкости. Предположим, что течение безвихревое. Уравнения движения в декартовой системе координат имеют вид

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0, \quad \frac{\partial w}{\partial y} - \frac{\partial v}{\partial z} = 0, \quad \frac{\partial u}{\partial z} - \frac{\partial w}{\partial x} = 0, \quad \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} = 0.$$
(1)

Векторное поле и, v, w является потенциальным и соленоидальным.

Вследствие равенства гот **u** = 0, выражающего отсутствие завихренности, во всей области течения существует функция $\xi(x, y, z)$ при стационарном движении или функция координат и вре-

мени
$$\xi(x, y, z, t)$$
 при нестационарном движении такая, что $\mathbf{u} = \nabla \xi$, $\left(u = \frac{\partial \xi}{\partial x}, v = \frac{\partial \xi}{\partial y}, w = \frac{\partial \xi}{\partial z}\right)$. Здесь

оператор $\nabla = \mathbf{i} \frac{\partial}{\partial x} + \mathbf{j} \frac{\partial}{\partial y} + \mathbf{k} \frac{\partial}{\partial z}$. Функцию ξ назовем потенциалом скоростей и будем предпола-

гать, что она непрерывна вместе со своими первыми двумя производными по времени и координатам. В отличие от двумерного случая система (1) переопределена: имеем четыре уравнения относительно трех переменных. Теория переопределенных систем дифференциальных уравнений с постоянными коэффициентами существенно опирается на теорию функций многих комплексных переменных.

Задача определения в некоторой области D функции, удовлетворяющей уравнению Лапласа, по известным значениям нормальной производной функции ξ на поверхности S называется задачей Неймана. Гармоническая функция ищется по величине ее нормальной производной, заданной на границе области. К такой задаче сводится задача определения потенциала движения несжимаемой жидкости, обтекающей заданную геометрию. Если область течения содержит бес-

конечную точку, то будем требовать существование предела grad ξ при $x^2 + y^2 + z^2 \rightarrow \infty$ скорости на бесконечности: **u**_{∞}, и будем считать этот вектор заданным. Для областей D с достаточно

гладкой границей гармоническая в D функция ξ , удовлетворяющая граничному условию $\frac{\partial \xi}{n\partial n} = 0$

и условию на бесконечности, если D содержит бесконечную точку, всегда существует и определяется с точностью до действительной постоянной.

Задачи обтекания сводятся к отображению области течения на область в пространстве потенциала. Стационарные течения идеальной жидкости без вихрей и источников можно рассматривать как отображения области течения жидкости на область изменения вектора скорости. Отоб-

ражения, удовлетворяющие условиям $u = \xi_x$, $v = \xi_y$, $w = \xi_x$ или условиям div $\mathbf{u} = 0$, rot $\mathbf{u} = 0$, называются гармоническими. Векторные функции, осуществляющие гармонические отображения, обладают рядом свойств, аналогичных свойствам аналитических функций.

2. Наряду с потенциалом скоростей $\xi(x, y, z)$ введем две функции тока $\zeta(x, y, z)$ и $\eta(x, y, z)$ такие, что поверхности $\zeta(x, y, z) = \text{const}$ и $\eta(x, y, z) = \text{const}$ пересекаются вдоль линии тока. Для безвихревого течения $\nabla \times \mathbf{u} = 0$. Каждый соленоидальный вектор может быть представлен в виде векторного произведения градиентов двух функций:

$$\mathbf{u} = \nabla \boldsymbol{\zeta} \times \nabla \boldsymbol{\eta}$$

Вектор скорости является касательным к двум семействам поверхностей $\nabla \zeta$, $\nabla \eta$, которые являются поверхностями тока. Величину вектора скорости представим в виде

$$\mathbf{u} = u\mathbf{i} + v\mathbf{j} + w\mathbf{k} = \nabla\zeta \times \nabla\eta.$$

Напомним, что

$$\nabla \zeta \times \nabla \eta = \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \zeta_x & \zeta_y & \zeta_z \\ \eta_x & \eta_y & \eta_z \end{bmatrix} = \mathbf{i} (\zeta_y \eta_z - \zeta_z \eta_y) + \mathbf{j} (\zeta_z \eta_x - \zeta_x \eta_z) + \mathbf{k} (\zeta_x \eta_y - \zeta_y \eta_x).$$
(2)

Выпишем связь между новыми переменными в следующем виде:

$$\xi_x = \zeta_y \eta_z - \zeta_z \eta_y, \quad \xi_y = \eta_x \zeta_z - \eta_z \zeta_x, \quad \xi_z = \zeta_x \eta_y - \zeta_y \eta_x. \tag{3}$$

Соотношения (3) связывают геометрические и гидродинамические соотношения. Для определения потенциала скоростей имеем две функции тока ζ , η . Система (3) является системой типа Коши–Ковалевской. Преобразования (3) положены в основу гармонических по М.А. Лаврентьеву отображений (см. [10]). Условия (3) можно рассматривать как обобщение условий Коши–Римана в трехмерном случае (см. [10]), из которых следуют трехмерные квазиконформные отображения.

Рассмотрим обратное преобразование. В системе (3) переменные x, y, z сделаем зависимыми, а переменные ξ , η , ζ – независимыми. Для этого в систему уравнений (3) подставим формулы преобразования производных при переходе от системы координат ξ , ζ , η к координатам x, y, z.

В результате получим

$$x_{\xi} = y_{\zeta} z_{\eta} - z_{\zeta} y_{\eta}, \quad y_{\xi} = z_{\zeta} x_{\eta} - x_{\zeta} z_{\eta}, \quad z_{\xi} = x_{\zeta} y_{\eta} - y_{\zeta} x_{\eta}. \tag{4}$$

Отображение (4) можно рассматривать как преобразование некоторого течения в области D в поступательное движение в некоторой другой области.

3. ОСНОВНЫЕ УРАВНЕНИЯ ДВИЖЕНИЯ ИДЕАЛЬНОЙ НЕСЖИМАЕМОЙ ЖИДКОСТИ В ОСЕСИММЕТРИЧНОМ СЛУЧАЕ

Рассмотрим осесимметричный случай как частный случай трехмерных преобразований. Ось симметрии выберем за ось z, а расстояние до оси обозначим через ρ . Рассмотрим пространственные течения, у которых все векторы скорости лежат в полуплоскостях, проходящих через некоторую прямую, называемую осью симметрии. Течение описывается плоским полем в любой из этих полуплоскостей. Составляющие скорости обозначим u, v соответственно. Уравнения движения имеют вид (см. [11])

$$\frac{\partial \rho u}{\partial z} + \frac{\partial \rho v}{\partial \rho} = 0, \quad \frac{\partial u}{\partial \rho} - \frac{\partial v}{\partial z} = 0.$$
(5)

Первое уравнение — это уравнение неразрывности (div $\mathbf{u} = 0$), а второе условие — отсутствия завихренности (rot $\mathbf{u} = 0$). Последнее условие является необходимым и достаточным условием потенциальности поля скоростей. Компоненты вектора скорости течения с осевой симметрией выражаются в виде

$$u = \frac{\partial \xi}{\partial z}, \quad v = \frac{\partial \xi}{\partial \rho}.$$
 (6)

Потенциал скоростей ξ удовлетворяет соотношению

$$\frac{\partial^2 \xi}{\partial z^2} + \frac{\partial^2 \xi}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial \xi}{\partial \rho} = 0,$$

которое является уравнением Лапласа в цилиндрических координатах. Отметим, что функция ξ является гармонической функцией декартовых координат.

Согласно первому уравнению, выражение –ρvdz + ρudρ является точным дифференциалом функции ζ. Получаем

$$u = \frac{1}{\rho} \frac{\partial \zeta}{\partial \rho}, \quad v = -\frac{1}{\rho} \frac{\partial \zeta}{\partial z}.$$
 (7)

Функция $\zeta(z, \rho)$ называется функцией тока. На каждой линии тока эта функция сохраняет постоянное значение и будет оставаться постоянной на поверхности, получаемой вращением этой линии тока вокруг оси симметрии. Отметим, что функция тока зависит от выбора системы координат и характера движения. Принятые нами обозначения могут отличаться с точностью до знака от тех, которые встречаются в других работах.

Функция тока ζ удовлетворяет уравнению

$$\frac{\partial^2 \zeta}{\partial z^2} + \frac{\partial^2 \zeta}{\partial \rho^2} - \frac{1}{\rho} \frac{\partial \zeta}{\partial \rho} = 0.$$

Это уравнение не является уравнением Лапласа, а функция ζ не является гармонической в декартовых координатах.

Из соотношений (6) и (7) следует, что функция тока и потенциал связаны соотношениями

$$\xi_z = \zeta_{\rho} / \rho, \quad \xi_{\rho} = -\zeta_z / \rho. \tag{8}$$

Уравнения осесимметричных течений во многом аналогичны уравнениям плоских движений. Векторные линии поля скоростей совпадают с линиями $\zeta(z, \rho) = \text{const } u$, как в двумерном случае, являются линиями тока. Из уравнений следует, что линии $\xi(z, \rho) = \text{const } z$ и $\zeta(x, \rho) = \text{const optorohanbhu}$. Действительно,

$$\xi_z \zeta_z + \xi_\rho \zeta_\rho = 0.$$

Если потенциал скоростей известен, то функция тока в осесимметричном случае находится по известным формулам.

Система уравнений (5) является системой уравнений эллиптического типа с особенностью на оси вращения. Хотя система обладает особенностью, на нее распространяется теорема Римана о существовании и единственности отображений. Отображения обладают основными свойствами квазиконформных отображений (см. [11]).

4. КВАЗИКОНФОРМНЫЕ ОТОБРАЖЕНИЯ ПРОСТРАНСТВЕННЫХ ОСЕСИММЕТРИЧНЫХ ОБЛАСТЕЙ

1. Вернемся к обобщенным условиям Коши–Римана (3). Если функция тока $\eta(x, y, z)$ зависит от двух переменных $\eta(x, y)$, т.е. $\eta_z = 0$, то система уравнений (3) сводится к виду

$$\xi_x = -\zeta_z \eta_y, \quad \xi_y = \eta_x \zeta_z, \quad \xi_z = \zeta_x \eta_y - \zeta_y \eta_x. \tag{9}$$

В пространственном случае каждая задача определяется топологическими и аналитическими свойствами рассматриваемых областей. Пусть C^2 – пространство двух независимых комплексных переменных $z = (z_1, z_2)$. В дальнейшем под пространством C^2 комплексных переменных z_1, z_2 будем понимать обычное евклидовое пространство R^4 действительных переменных (x, y, z, t). При переходе от 4-мерного евклидова пространства R^4 в комплексное пространство появляется некоторая асимметрия.

Покажем, что решение системы (9) можно представить, используя две независимые функции комплексного переменного $\zeta_1 = f_1(z_1)$ и $\zeta_2 = f_2(z_2)$, определенные в своей области. Предполо-

жим, что в области D задана однолистная аналитическая функция $\zeta_1 = f_1(z_1)$. Каждому комплексному числу $z_1 = x + iy$ из некоторой области D_1 ($D_1 \subset C^2$) ставится в соответствие комплексное число $\zeta_1 = \tau e^{i\eta}$. Аналогично, функция $\zeta_2 = f_2(z_2) = \xi(z,t) + i\zeta(z,t)$ является однолистной аналитической функцией комплексной переменной $z_2 = z + it$. Каждому комплексному числу $z_2 = z + it$ из некоторой области D_2 ($D_2 \subset C^2$) ставится в соответствие комплексное число $\zeta_2 = \xi + i\zeta$.

Для того чтобы функции $f_1(z_1)$, $f_2(z_2)$ были аналитическими в области C^2 , необходимо выполнение в этой области условий Коши–Римана. Если функция $\zeta_1 = f_1(z_1)$ комплексной переменной $z_1 = x + iy$ представима в показательной форме $\zeta_1 = \tau e^{i\eta}$, то условия Коши–Римана дифференцируемости функции в координатах *x*, *y* имеют вид (см. [12])

$$\tau_x / \tau = \eta_y, \quad \tau_y / \tau = -\eta_x. \tag{10}$$

Для функции $\zeta_2 = f_2(z_2) = \xi(z,t) + i\zeta(z,t)$ условия Коши–Римана имеют вид

$$\xi_z = \zeta_t / t, \quad \xi_t = -\zeta_z / t. \tag{11}$$

Будем искать решение системы (9) в виде $\xi = \xi(z, \tau(x, y)), \zeta = \zeta(z, \tau(x, y)), \eta = \eta(x, y)$. Здесь в качестве *t* выберем функцию $t = \tau(x, y)$. Для первых двух уравнений из (9) получаем

$$\xi_{\tau}\tau_{x} = -\zeta_{z}\eta_{y}, \quad \xi_{\tau}\tau_{y} = \eta_{x}\zeta_{z}.$$
(12)

При этом система (12) разделяется и, учитывая (10), первое и второе уравнения системы (12) принимают одинаковый вид:

$$\xi_{\tau} = -\zeta_z / \tau, \quad \xi_{\tau} = -\zeta_z / \tau. \tag{13}$$

Третье уравнение системы (9) – $\xi_z = \zeta_x \eta_v - \zeta_v \eta_x$ – сводится к виду

$$\xi_{z} = \zeta_{\tau}(\tau_{x}\eta_{y} - \tau_{y}\eta_{x}) = J_{1}^{*}\zeta_{\tau}/\tau, \quad J_{1} = J_{1}^{*}/\tau = \tau_{x}\eta_{y} - \tau_{y}\eta_{x}, \quad J_{1}^{*} > 0.$$
(14)

С помощью замены переменных $z^* = \sqrt{J_1^* z}$, $\zeta^* = \sqrt{J_1^* \zeta}$, $J_1^* = \tau J_1$ система уравнений (13) и (14) сводится к виду

$$\xi_{z^*} = \zeta_{\tau}^* / \tau, \quad \xi_{\tau} = -\zeta_{z^*}^* / \tau.$$
 (15)

Очевидно, что решение (15) можно представить в виде

$$\zeta_{2}^{*} = f_{2}(z_{2}^{*}) = \xi(z^{*}, t) + i\zeta^{*}(z^{*}, t).$$

В частном случае, когда $J_1^* = 1, t = \tau(x, y)$, уравнения (13) и (14) принимают вид

$$\xi_z = \zeta_\tau / \tau, \quad \xi_\tau = -\zeta_z / \tau. \tag{16}$$

Таким образом, трехмерное квазиконформное отображение (9) можно представить в виде последовательности двух двумерных конформных отображений: $\zeta_1 = f_1(z_1)$, $\zeta_2^* = f_2(z_2^*)$. Здесь $\zeta_1 = \tau e^{i\eta}$, $z_1 = x + iy$ и $\zeta_2^* = \xi + i\zeta^*$, $z_2 = z^* + it$. Используя соотношения (10) и (15) в области D трехмерного действительного пространства R^3 , можно найти потенциал скоростей ξ и функцию тока, а также вторую функцию тока η и величину τ . Если в системе (11) выбрать в качестве t функцию $\tau = \tau(x, y)$, то получим

$$\xi = \xi(z^*, \tau(x, y)), \quad \zeta^* = \zeta^*(z^*, \tau(x, y)), \quad \eta = \eta(x.y), \quad t = \tau(x, y).$$

Напомним, что $z^* = \sqrt{J_1^* z}, \zeta^* = \sqrt{J_1^* \zeta}, J_1 = J_1^* / \tau = \tau_x \eta_y - \tau_y \eta_x$.

2. Отметим, что в осесимметричном случае условия (16) и условия (8) для функции тока и потенциала скоростей совпадают, если в качестве τ использовать функцию $\rho = (x^2 + y^2)^{1/2}$. Действительно,

$$\eta_x = -y/\rho^2$$
, $\eta_y = x/\rho^2$, $\rho_x = x/\rho$, $\rho_y = y/\rho$.

ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ том 62 № 10 2022

Отсюда следуют соотношения

$$\rho_x^2 + \rho_y^2 = 1, \quad \eta_x^2 + \eta_y^2 = 1/\rho^2.$$
 (17)

и выполняются условия

$$\rho_x/\rho = \eta_y, \quad \rho_y/\rho = -\eta_x.$$

Непосредственными вычислениями, учитывая (17), получаем $J_1^* = 1, J_1 = 1/\rho$.

Таким образом, имеем

$$\zeta_2 = f_2(z_2), \quad \zeta_1 = f_1(z_1)$$

или

$$\xi = \xi(z, \rho), \quad \zeta = \zeta(z, \rho), \quad \eta = \operatorname{arctg}(y/x), \quad \rho = (x^2 + y^2)^{1/2}.$$

3. Рассмотрим обратное преобразование (4). Если учесть, что в нашем случае $z_{\eta} = 0$, то система (4) принимает вид

$$x_{\xi} = -z_{\zeta}y_{\eta}, \quad y_{\xi} = z_{\zeta}x_{\eta}, \quad z_{\xi} = x_{\zeta}y_{\eta} - y_{\zeta}x_{\eta}.$$
(18)

Покажем, что решение системы (18) можно представить, используя функции комплексного переменного $z_1 = F_1(\zeta_1)$ и $z_2 = F_2(\zeta_2)$. Здесь $z_1 = x + iy$ и $\zeta_1 = \tau e^{i\eta}$. Будем полагать, что в области G_1 задана однолистная аналитическая функция $z_1 = F_1(\zeta_1)$. Каждому комплексному числу $\zeta_1 = \tau e^{i\eta}$ из области G_1 ($G_1 \subset C^2$) ставится в соответствие комплексное число $z_1 = x + iy$. Аналогично, функция $z_2 = F_2(\zeta_2)$ является однолистной аналитической функцией комплексной переменной $\zeta_2 = \xi + i\zeta$. Каждому комплексному числу $\zeta_2 = \xi + i\zeta$ из области G_2 ($G_2 \subset C^2$) ставится в соответствие комплексное число $z_2 = z + it$.

Если независимая переменная ζ_1 представима в показательной форме $\zeta_1 = \tau e^{i\eta}$, то для функции $z_1 = x(\rho, \eta) + iy(\rho, \eta)$ достаточные условия дифференцируемости имеют вид (см. [12])

$$x_{\tau}\tau = y_{\eta}, \quad x_{\eta} = -\tau y_{\tau}. \tag{19}$$

Аналогично, условия Коши–Римана для функции $z_2 = z(\xi, \zeta) + it(\xi, \zeta)$ имеют вид

$$z_{\xi} = tt_{\zeta}, \quad z_{\zeta} = -t_{\xi}/t. \tag{20}$$

Рассмотрим первое и второе уравнения системы (18). Будем искать решение в виде $x = x(\tau(\xi, \zeta), \eta), y = y(\tau(\xi, \zeta), \eta), z = z(\xi, \zeta), \tau = t(\xi, \zeta)$. Первое и второе уравнения (18), учитывая $z_{\zeta} = -t_{\xi}/t$, можно представить в виде

$$x_{\tau}\tau = y_{\eta}, \quad x_{\eta} = -\tau y_{\tau}. \tag{21}$$

Таким образом, соотношение (21) совпадает с соотношением (19).

Третье уравнение системы (18) принимает вид

$$z_{\xi} = x_{\tau}\tau_{\zeta}y_{\eta} - y_{\tau}\tau_{\zeta}x_{\eta} = \tau\tau_{\zeta}J_{2}^{*}, \quad J_{2} = x_{\tau}y_{\eta} - y_{\tau}x_{\eta}, \quad J_{2} = \tau J_{2}^{*}, \quad J_{2}^{*} > 0.$$

Обобщенные условия Коши-Римана (18) при выполнении условий $J_2 = J_2^* \tau$, $z_{\eta} = 0$ сводятся к уравнениям

$$x_{\tau} = y_{\eta}/\tau, \quad x_{\eta} = -\tau y_{\tau} \quad \mathbf{M} \quad z_{\xi} = \tau_{\zeta} \tau J_{2}^{*}, \quad z_{\zeta} = -\tau_{\xi}/\tau.$$
(22)

С помощью замены переменных $z^* = z/\sqrt{J_2^*}$, $\zeta^* = \zeta/\sqrt{J_2^*}$, $J_2^* = J_2/\tau$ последние два уравнения (22) можно свести к виду, удовлетворяющему обычным условиям Коши–Римана. Получаем

$$z_{\xi}^{*} = \tau_{\zeta^{*}}\tau, \quad z_{\zeta^{*}}^{*} = -\tau_{\xi}/\tau.$$
 (23)

Условия (23) — это условия дифференцируемости для функции

$$z_2^* = F_2(\zeta_2^*) = z^*(\xi, \zeta^*) + it(\xi, \zeta^*), \quad z^* = z/\sqrt{J_2^*}, \quad \zeta^* = \zeta/\sqrt{J_2^*}.$$

ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ том 62 № 10 2022

1687

Следовательно, решение системы (18) можно получить с помощью использования произвольных однолистных аналитических функций $z_1 = F_1(\zeta_1)$ и $z_2^* = F_2(\zeta_2^*)$. Здесь $z_1 = x + iy$, $\zeta_1 = \tau e^{i\eta}, z_2^* = z^* + it, \zeta_2 = \xi + i\zeta^*$.

Решение системы (18) имеет вид

$$x = x(t(\xi, \zeta^*), \eta), \quad y = y(t(\xi, \zeta^*), \eta), \quad z = z(\xi, \zeta^*), \quad \tau = t(\xi, \zeta^*).$$

Для осесимметричного случая непосредственной проверкой имеем ($\tau = \rho(\xi, \zeta)$)

$$x_{\rho} = y_{\eta}/\rho, \quad y_{\rho} = -x_{\eta}/\rho \quad u \quad z_{\xi} = \rho_{\zeta}\rho, \quad z_{\zeta} = -\rho_{\xi}/\rho, \quad J_{2}^{*} = 1.$$

Таким образом, в осесимметричном случае получаем

 $x = \rho \cos \eta$, $y = \rho \sin \eta$, $z = z(\xi, \zeta)$, $\rho = \rho(\xi, \zeta)$.

Из уравнений следует, что линии $z(\xi, \zeta) = \text{const}, \rho(\xi, \zeta) = \text{const}$ ортогональны. Действительно,

$$z_{\xi}z_{\zeta} + \rho_{\xi}\rho_{\zeta} = 0$$

4. Ковариантные составляющие метрических коэффициентов задаются формулами

$$g_{ij}^* = \frac{\partial x}{\partial x^i} \frac{\partial x}{\partial x^j} + \frac{\partial y}{\partial x^i} \frac{\partial y}{\partial x^j} + \frac{\partial z^*}{\partial x^i} \frac{\partial z^*}{\partial x^j}, \quad i, j = 1, 2, 3 \quad (\xi = x^1, \ \zeta^* = x^2, \ \eta = x^3).$$

Непосредственными вычислениями получим

$$g_{11}^* = (x_{\tau}^2 + y_{\tau}^2)(z_{\xi}^{*2} + \tau_{\xi}^2), \quad g_{22}^* = z_{\zeta^*}^{*2} + \tau_{\zeta^*}^2 = (z_{\xi}^{*2} + \tau_{\xi}^2)/\tau^2, \quad g_{33}^* = x_{\eta}^2 + y_{\eta}^2 = (x_{\tau}^2 + y_{\tau}^2)/\tau^2.$$

Откуда следует, что

$$g_{11}^* = g_{22}^* g_{33}^*,$$

и выполняются соотношения

$$g_{12}^* = g_{13}^* = g_{23}^* = g_{21}^* = g_{31}^* = g_{32}^* = 0.$$

Таким образом, получили триортогональную систему координат. Однако известно, что, согласно теореме Коттона—Дарбу, метрика в трехмерном пространстве локальным преобразованием всегда может быть приведена к диагональному виду.

5. Для того чтобы отображение, осуществляемое аналитическими функциями $z_1 = F(\zeta_1)$, $z_2 = F(\zeta_2)$, было квазиконформным, необходимо, чтобы оно было взаимно однозначным, т.е. функции $F_1(\zeta_1)$, $F_2(\zeta_2)$ должны быть однолистными в области G. Напомним, что в двумерном случае для аналитической функции необходимым условием однолистности в области G является условие $F'(\zeta) \neq 0$, т.е. производная должна быть всюду отлична от нуля в этой области, если исключить из рассмотрения неизолированные существенно особые точки. Преобразование квазиконформно и непрерывно всюду, кроме тех областей, где производная $F_1'(\zeta_1)$, $F_2'(\zeta_2)$ или $1/F_1'(\zeta_1)$, $1/F_2'(\zeta_2)$ не существует. Отображение, обратное квазиконформному отображению, также является квазиконформным. Иначе говоря, если функции $z_1 = F(\zeta_1)$, $z_2 = F(\zeta_2)$ квазиконформно отображает область D, то обратная функция квазиконформно отображает область D на область G.

Для того чтобы отображение было взаимно однозначным, якобиан преобразования должен быть конечным и ненулевым. Локальная гомеоморфность отображения может нарушаться только в тех точках, в которых обращается в нуль якобиан отображения. Вопрос о нулях якобиана отображения сводится к изучению свойств критических точек. Найдем якобиан преобразования $J = \partial(\xi, \eta, \zeta) / \partial(x, y, z)$ в случае $\eta_z = 0$. Воспользуемся условиями типа Коши–Римана в виде (9). В результате получим

$$J = (\tau_x \eta_y - \tau_y \eta_x) (\xi_z \zeta_\tau - \xi_\tau \zeta_z) = (\xi_{z^*}^2 + \xi_\tau^2) (\tau_x^2 + \tau_y^2) > 0$$

Якобиан преобразования больше нуля. Это гарантирует взаимно однозначное отображение параметрической области на заданную.

Наряду со случаем $\eta_z = 0$ можно было бы аналогично рассмотреть случаи $\eta_x = 0$ и $\eta_y = 0$. Отметим, что теория двумерных конформных отображений полностью описывается теорией однолистных аналитических функций одного комплексного переменного $z_1 = x + iy$, $\overline{z_1} = x - iy$ и $z_2 = z + it$, $\overline{z_2} = z - it$. Следовательно, квазиконформные отображения осуществляются голоморфными функциями комплексного переменного или антиголоморфными функциями. Таким образом, помимо рассмотренного выше случая, можно представить решение (17) в виде антиголоморфных функций или комбинации функций.

Использование условий (3) и (4) для построения гармонических по М.А. Лаврентьеву отображений позволяет обобщить трехмерные квазиконформные отображения на осесимметричный случай. В общем трехмерном случае построение квазиконформного отображения зависит от топологии пространства. Количество возможных классов квазиконформных отображений увеличивается и требует дальнейшего изучения.

5. РЕЗУЛЬТАТЫ ВИЗУАЛИЗАЦИИ ПРОСТРАНСТВЕННЫХ КВАЗИКОНФОРМНЫХ ОТОБРАЖЕНИЙ

Рассмотрим некоторые результаты визуализации трехмерных векторных полей, примеры которых для двумерного случая приведены, например, в [12].

С помощью квазиконформных отображений можно ввести пространственные системы криволинейных координат (см. [13]). Как было показано выше, решение системы (4) можно представить, используя две аналитические функции комплексного переменного: $z_1 = F_1(\zeta_1)$ и $z_2 = F_2(\zeta_2)$. Здесь $z_1 = x + iy$, $\zeta_1 = \rho e^{i\eta}$. Аналогично, $z_2 = z + i\rho$ и $\zeta_2 = \xi + i\zeta$. Таким образом, в осесимметричном случае получаем $x = \rho \cos \eta$, $y = \rho \sin \eta$, $z = z(\xi, \zeta)$, $\rho = \rho(\xi, \zeta)$. Отсюда следуют примеры криволинейных координат:

- цилиндрическая круговая система координат

$$z_1 = \rho e^{i\eta}$$
, $z_2 = \zeta_2$, $x = \rho \cos \eta$, $y = \rho \sin \eta$, $z = \xi$, $\rho = \zeta$;

сферическая система координат

$$z_1 = \rho e^{i\eta}, \quad z_2 = e^{\xi + i\zeta}, \quad x = \rho \cos \eta, \quad y = \rho \sin \eta, \quad z = e^{\xi} \cos \zeta, \quad \rho = e^{\xi} \sin \zeta$$

(Обычно сферические координаты используются в других обозначениях: $r = e^{\xi}$, $x = r \cos \eta \sin \zeta$, $y = r \sin \eta \sin \zeta$, $z = r \cos \zeta$.)

- параболические координаты вращения

$$z_1 = \rho e^{i\eta}, \quad z_2 = \zeta_2^2/2, \quad x = \rho \cos \eta, \quad y = \rho \sin \eta, \quad z = (\xi^2 - \zeta^2)/2, \quad \rho = \xi \zeta_2^2$$

- координаты вытянутого эллипсоида вращения

$$z_1 = \zeta_1, \quad z_2 = \alpha \sin \zeta_2, \quad x = \rho \cos \eta, \quad y = \rho \sin \eta, \quad z = \alpha \sin \xi \operatorname{ch} \zeta, \quad \rho = \alpha \cos \xi \operatorname{sh} \zeta;$$

- тороидальные координаты

$$z_1 = \rho e^{i\eta}$$
, $z_2 = th(\zeta_2/2)$, $x = \rho \cos \eta$, $y = \rho \sin \eta$,
 $z = \alpha \sin \zeta/(ch\xi + \cos \zeta)$, $\rho = \alpha \sinh \xi/(ch\xi + \cos \zeta)$.

Для визуализации пространственных отображений были разработаны программы на языке Fortran и C^{++} . На фиг. 1 приведено визуальное представление систем криволинейных координат: (а) – цилиндрической, (б) – сферической, (в) – параболической, (г) – эллипсоидальной, (д) и (е) – тороидальной.

Для конечных двумерных односвязных областей одной из канонических областей является единичный круг. На фиг. 2 приведены результаты визуализации квазиконформных отображений для конечной области. Аналитическое продолжение получается из соответствующих плоских координат *z*, ρ с помощью вращения на угол η вокруг оси симметрии $\rho = 0$. Координаты *z*, ρ изменяются в полуплоскости. Функции $z_1 = \rho e^{i\eta}$ и $z_2 = F_2(\zeta_2)$ задают отображение внутренности области ($|\zeta_2| < 1$) на рассматриваемую область. Для показательной формы комплексного числа аргумент $\eta = \arg z_1$ является многозначной функцией. Выберем величину η в промежутке $0 \le \eta < 2\pi$. Для областей, симметричных относительно начала координат, функция $z_2 = F_2(\zeta_2)$

удовлетворяет условиям $F_2(0) = 0$, $F'_2(0) > 0$. Этими условиями функция $z_2 = F_2(\zeta_2)$ определяется однозначно. Случаи, приведенные на фиг. 2, соответствуют следующим отображениям:

(a)
$$z_1 = \rho e^{i\eta}$$
, $z_2 = \zeta_2 t^{-2/n}$, $t = r + \sqrt{r^2 - \zeta_2^n}$, $r = 0.5p(1 + \zeta_2^n)$, $p > 1$, $n > 1$;
(6) $z_1 = \rho e^{i\eta}$, $z_2 = t^2 + 2t$, $t = \zeta_2/p$, $p > 1$;

(B)
$$z_1 = \rho e^{i\eta}$$
, $z_2 = \sqrt{t+1} - 1$, $t = \zeta_2/p$, $p > 1$.

Отметим, что на фиг. 2а приведена область с n = 1, 2, 3 симметричными радиальными разрезами. В точках пересечения разреза с шаром появляется особенность, которая изображается седловыми точками. Отметим, что отображение в этих точках не является изогональным.

Для внешности конечных плоских контуров канонической областью является внешность единичного круга с включенной бесконечно удаленной точкой. На фиг. 3 приведены для внешности конечных областей функции $z_1 = \rho e^{i\eta}$ и $z_2 = F_2(\zeta_2)$, отображающие внешность области на рассматриваемую область. Для каждой бесконечной односвязной области с конечной границей

отображение внешности круга $\zeta_2 > 1$ на рассматриваемую область $z_2 = F_2(\zeta_2)$ определяется однозначно при условиях $F_2(\infty) = \infty$, $F'_2(\infty) > 0$. Продолжим решение в координатах z, ρ на область $x = \rho \cos \eta$, $y = \rho \sin \eta$ с помощью вращения на угол η вокруг оси симметрии $\rho = 0$. Приведенные визуализации соответствуют следующим случаям:

(a)
$$z_1 = \rho e^{n}$$
, $z_2 = 0.5(a+b)\zeta_2 + 0.5(a-b)/\zeta_2$ – внешность эллипсоида с полуосями $a, b > 0$;

(б) $z_1 = \rho e^{i\eta}$, $z_2 = \pi i/s(1+p)$, $s = \ln r$, $r = (\zeta_2 - 1/r_0)(\zeta_2 - r_0)$, $r_0 = e^{i\pi p/(1+p)}$, p > 0, — внешность шара с разрезами;

(в) $z_1 = \rho e^{i\eta}$, $z_2 = t\sqrt{1-1/t^2}$, $t = 0.5[s(p_1 + p_2) + p_1 - p_2]$, $s = 0.5(\zeta_2 + 1/\zeta_2)$, $p_1, p_2 \ge 1$, – внешность симметричного крестообразного разреза $p_1, p_2 \ge 1$;

(г) $z_1 = \rho e^{i\eta}$, $z_2 = zt^{n/2}$, $t = s + \sqrt{s^2 - 1/\zeta_2^n}$, $s = p(1 + 1/\zeta_2^n)$, p = 1.2451, – внешность шара с *n*-симметричными разрезами, n = 2, 3, 4;

(д)
$$z_1 = \rho e^{i\eta}$$
, $z_2 = 0.5(t + 1/t)$, $t = \zeta_2(p + 1) - p$, $p = 0.3$, – симметричный профиль Жуковского;
(e) $z_1 = \rho e^{i\eta}$, $z_2 = t\sqrt{1 + 1/t^2}$, $t = p\zeta_2$, $p = 1.05$, – внешность одноконтурного кассиана;

(ж) $z_1 = \rho e^{i\eta}$, $z_2 = \zeta_2 + 1/(pn\zeta_2^n)$, p = 1.1; при p > 1 – укороченная гипотрохоида, при p = 1 – гипоциклоида, $n \ge 2$. Отметим особенность, приведенную на фиг. 3в, которая появляется в начале координат при вращении симметричного крестообразного разреза. Решение не является изогональным в окрестности начала координат и локально теряет свойства конформности.

Для криволинейных плоских полуплоскостей канонической областью является полуплоскость Im $\zeta_2 > 0$ (см. [12]). Отображение $z_2 = F_2(\zeta_2)$ угловой области, отображающей полуплоскость Im $\zeta_2 > 0$ на рассматриваемую область, и удовлетворяющей условию $F_2(\infty) = \infty$, определяется с точностью до линейного преобразования ζ_2 . Аналитическое продолжение получается из соответствующих плоских координат z, ρ с помощью вращения на угол η вокруг оси симметрии. На фиг. 4 представлены результаты, соответствующие соответственно случаям

(a)
$$z_1 = \rho e^{r\eta}$$
, $z_2 = (1 + s)/(1 - s)$, $s = r^p$, $r = (\zeta_2 - 1)/(\zeta_2 + 1)$, при $0 выступ, при $1$$

(б)
$$z_1 = \rho e^{i\eta}$$
, $z_2 = a\zeta_2 + ib\sqrt{1 - \zeta_2^2}$, $a = 1, b = 0.5, -$ эллипсоид вращения;

(в)
$$z_1 = \rho e^{i\eta}$$
, $z_2 = (\sqrt{\zeta_2 + i})^2$ – параболоид вращения;

(г) $z_1 = \rho e^{i\eta}$, $z_2 = \cos t$, $t = 2p \arccos s$, $s = -i\zeta_2$, 0 , – гиперболоид вращения;

(д) $z_1 = \rho e^{i\eta}$, $z_2 = i(t + 1/t - 2)$, $t = 1 - i\zeta_2$, – вращение острия циссоиды; (e) $z_1 = \rho e^{i\eta}$, $z_2 = t + \sqrt{t - 1}\sqrt{t + 1}$, $t = 1 - \zeta_2^2$, – вращение полуплоскости с закругленным краем; (ж) $z_1 = \rho e^{i\eta}$, $z_2 = (1 + t)/(1 - t)$, $t = s^{2p}$, s = (r - 1)/(r + 1), $r = u + \sqrt{u - 1}\sqrt{u + 1}$, $u = 1 - \zeta_2^2$, 0 , – вращение полуплоскости с оперенным краем, <math>p = 0.85;

(3) $z_1 = \rho e^{i\eta}$, $z_2 = t^{2p}$, $t = \sqrt{1 - \zeta_2^2} - i\zeta_2$, 0 , — вращение угла с закругленной вершиной.Для двумерных криволинейных полос в качестве канонической области берется прямолиней-

ная горизонтальная полоса $0 < \text{Im } \zeta_2 < \pi$. На фиг. 5 построены функции $z_1 = \rho e^{i\eta}$ и $z_2 = F_2(\zeta_2)$, отображающие полосу $0 < \text{Im } \zeta_2 < \pi$ на рассматриваемую криволинейную область таким образом, что точки $\zeta_2 = -\infty$, $\zeta_2 = \infty$ отражаются в рукава полосы. Функция $z_2 = F_2(\zeta_2)$ определена с точностью до сдвига аргумента ζ_2 . На фиг. 5а–г представлены результаты, соответствующие случаям

(a)
$$z_1 = \rho e^{i\eta}$$
, $z_2 = t + e^t$, $t = \zeta_2 + i\pi/2$;
(b) $z_1 = \rho e^{i\eta}$, $z_2 = t + \sinh t$, $t = \zeta_2 - i\pi/2$;
(c) $z_1 = \rho e^{i\eta}$, $z_2 = t - \operatorname{arth}(1/t)$, $t = \sqrt{e^s + 1}$, $s = 2\zeta_2 - i\pi$;
(c) $z_1 = \rho e^{i\eta}$, $z_2 = \operatorname{parth} t - \operatorname{arctg} pt$, $t = \sqrt{(s-1)/(s+p^2)}$, $s = \exp(\zeta_2)$, $p = 1.5$.

Эти случаи можно трактовать как соответствующие различным каналам, образованным вращением разнобочной гиперболы, цепной линии и др.

Приведенные результаты соответствуют двумерным результатам, приведенным в каталогах 1—4 работы [12]. Хотя результаты соответствуют осесимметричному случаю, полученные результаты значительно шире. Например, можно обобщить осесимметричный случай, если рассмотреть случай обобщенных координат вращения: $z_1 = \zeta_1^{\alpha}$ и $z_2 = F_2(\zeta_2)$ ($\alpha > 0$).

6. ВЫВОДЫ

Применение преобразований, которые являются основой гармонических по М.А. Лаврентьеву отображений, позволяет построить квазиконформные отображения осесимметричных областей. Трехмерное квазиконформное отображение осесимметричных областей получено как су-

перпозиция произвольных конформных отображений в полярных координатах. Квазиконформные отображения осесимметричных областей обладают основными свойствами конформных отображений. Приводятся примеры построения пространственных координатных систем и их визуализация.

В трехмерном случае в зависимости от топологических и аналитических свойств рассматриваемых областей количество возможных классов квазиконформных отображений увеличивается и требует дальнейшего изучения. Исследования отображений трехмерных областей, которые могли бы заменить в приложениях плоские конформные отображения, следует продолжить. Это позволит классифицировать квазиконформные отображения и составить каталоги трехмерных квазиконформных отображений и др.

Лучшим доказательством полученных результатов является их визуализация.

СПИСОК ЛИТЕРАТУРЫ

- 1. Бицадзе А.В. Основы теории аналитических функций комплексного переменного. М.: Наука, 1984.
- 2. Бохнер С., Мартин У.Т. Функции многих комплексных переменных. М.: Изд-во иностр. лит., 1951. 300 с.
- 3. Владимиров В.С. Методы теории функций многих комплексных переменных. М.: Наука, 1964. 412 с.
- 4. Ганнинг Р., Росси Х. Аналитические функции многих комплексных переменных. М.: Мир, 1969. 396 с.
- 5. *Scheidemann V.* Introduction to complex analysis in several variables. Birkhauser, 2005.
- 6. Шевелев Ю.Д. Применение трехмерных квазиконформных отображений для построения сеток // Ж. вычисл. матем. и матем. физ. 2018. Т. 58. № 8.
- 7. Шевелев Ю.Д. Пространственные задачи вычислительной аэрогидродинамики. М.: Наука, 1986. 387 с.
- Максимов Ф.А., Шевелев Ю.Д. Трехмерные сетки на основе метода П.В. Мелентьева построения приближенной конформной функции // Тр. 55 науч. конф. МФТИ "Проблемы фундаментальных и прикладных естественных и технических наук": Управление и прикладная математика. Т. 2. М.: МФТИ. 2012. С. 22–23.
- Shevelev Yu.D. 3-D Quasi-Conformal Mappings and Grid Generation//Smart Modelling for Engineering Systems/ Proc. of the Inter. Conf. on Comput. Meth. in Contin. Mech. (CMCM 2021). V. 2. Springer. 2021. P. 65–78.
- 10. Янушаускас А.И. Трехмерные аналоги конформных отображений. Новосибирск: Наука, 1973.
- 11. Лаврентьев М.А., Шабат Б.В. Проблемы гидродинамики и их математические модели. М.: Наука, 1973.
- 12. Иванов В.И., Попов В.Ю. Конформные отображения и их приложения. М.: УРСС, 2002.
- 13. Маделунг Э. Математический аппарат физики. М.: Наука, 1968. 618 с.