ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ, 2022, том 62, № 12, с. 2002–2017

_____ ОБЩИЕ ЧИСЛЕННЫЕ _____ МЕТОДЫ

УДК 511.338

ЧИСЛЕННОЕ ИССЛЕДОВАНИЕ СВОЙСТВ ОСТАТОЧНОГО ЧЛЕНА В ПРОБЛЕМЕ КРУГА

© 2022 г. Д. А. Попов^{1, *}, Д. В. Сушко^{2, **}

¹ 119992 Москва, Ленинские горы, 1, стр. 40, НИИ ФХБ им. А.Н. Белозерского, Россия ² 119333 Москва, Вавилова, 44, кор. 2, ФИЦ ИУ РАН, Россия

> *e-mail: popov-kupavna@yandex.ru **e-mail: dsushko@ipiran.ru Поступила в редакцию 22.04.2022 г. Переработанный вариант 22.04.2022 г. Принята к публикации 04.06.2022 г.

Приводятся результаты численного эксперимента по исследованию свойств остаточного члена в задаче о числе целых точек в круге. Сформирована картина поведения больших отклонений величины остаточного члена от нуля. Получено численное подтверждение гипотезы о ширинах максимумов, согласно которой все большие локальные максимумы остаточного члена являются достаточно широкими, и построена гипотетическая оценка величины остаточного члена. Приведено доказательство теоремы, позволяющей связать высоту (значение) максимума остаточного члена с шириной этого максимума. Библ. 19. Фиг. 3. Табл. 7.

Ключевые слова: проблема круга, остаточный член, связь выстоты и ширины максимума, численный эксперимент, формула Ландау.

DOI: 10.31857/S0044466922120122

1. ВВЕДЕНИЕ

Остаточный член в проблеме круга (в проблеме Гаусса) определяется равенством

$$P(x) = R(x) - \pi x, \tag{1}$$

где R(x) — число целых точек в круге радиуса \sqrt{x} . Функция P(x) — кусочно-линейная функция с разрывами I рода в ряде целых точек, где она непрерывна справа.

Проблема круга заключается в доказательстве оценки

$$P(x) = O(x^{1/4+\varepsilon}), \quad x \to \infty,$$
⁽²⁾

для любого $\varepsilon > 0$.

Доказательству оценок вида

$$P(x) = O(x^{\theta + \varepsilon}), \quad x \to \infty,$$
(3)

посвящено большое количество работ (см. [1], [2]). В настоящее время оценка (3) доказана при $\theta = 517/1648 = 0.31371...$ (см. [3]).

Кроме асимптотических оценок вида (3) представляют интерес и другие свойства функции P(x). Это связано, в частности, с тем, что задача о числе целых точек в круге имеет спектральную интерпретацию. С точки зрения спектральной теории величина P(x) – это второй член в формуле Вейля для функции распределения собственных значений оператора Лапласа на плоском торе, и свойства P(x) интересны в связи с теорией "квантового хаоса". Обзор теоретических работ, посвященных исследованию свойств P(x), представлен в [4].

Функция P(x) исследовалась также и численно [5]–[9]. В [5] рассматривался вопрос об определении величины θ , такой что

$$\ln |P(x)| \le \theta \ln x \quad \text{при} \quad x \le x_{\max},$$

и было показано, что $\theta \le 0.35$ при $x_{\text{max}} \le 10^{10}$. Этот результат был усилен в [8], где было показано, что $\theta \le 0.28$ также при $x_{\text{max}} \le 10^{10}$. В [9] утверждалось, что

$$|P(x)| \le C_{-} x^{1/4} (\ln x)^{\lambda_{-}}, \quad P(x) < 0, \quad x \le 1.3 \times 10^{8},$$
$$|P(x)| \le C_{+} x^{1/4} (\ln x)^{\lambda_{+}}, \quad P(x) > 0, \quad x \le 3.6 \times 10^{10},$$

где $\lambda_{-} = 0.6 \pm 0.1$, $\lambda_{+} = 0.3 \pm 0.1$, C_{\pm} – некоторые константы. Представленные результаты получены путем вычисления значений функции P(x) в целых точках ($x \in \mathbb{Z}^+$) и построения последовательности "истинных максимумов", т.е. такой последовательности пар $\{x_k, P(x_k)\}$, что $|P(x)| \leq |P(x_k)|$ для всех $x \leq x_k$ (в [9] "истинные максимумы" строились отдельно для положительных и отрицательных значений P(x)). Отметим, что в [9] также численно исследовалась функция распределения значений величины $P(x)x^{-1/4}$.

Из теоретических результатов (см. разд. 2) следует, что в интервале $[T, 2T], T \ge 1$, существуют непересекающиеся интервалы длины $\sim T^{1/2} (\ln T)^{-3}$, в каждом из которых

$$C_1 T^{1/4} \le |P(x)| \le C_2 T^{1/4} (\ln T)^{3/2}$$

Таким образом, на объединении этих интервалов $W \subset [T, 2T]$ гипотеза круга (оценка (2)) доказана. Однако мера Лебега $\mu\{W\} \ge CT, C \le 1$, и вопрос об оценке величины |P(x)| на дополнении $\overline{W} \subset [T, 2T] \setminus W$ остается открытым.

Выше и везде далее символы $C, C_1, C_2, ...$ используются для обозначения абсолютных (не зависящих от параметров) положительных констант, которые могут быть разными в разных формулах. Если такие константы входят в условия применимости некоторого утверждения или в его формулировку, то это означает, что они существуют и могут быть указаны явно.

Рассмотрим максимум (точную верхнюю грань) функции |P(x)| в интервале $X_{\alpha} \subset [T, 2T]$, $T \ge 1$. Пусть h_{α} – высота (значение) максимума:

$$h_{\alpha} = \sup_{x \in X_{\alpha}} |P(x)|,$$

 x_{α} – точка максимума, т.е.

$$h_{\alpha} = \max\{|P(x_{\alpha} + 0)|, |P(x_{\alpha} - 0)|\}$$

Определим ширину максимума u_{α} как размер наибольшей полуокрестности $U_{\alpha} \subseteq X_{\alpha}$ точки x_{α} (левой или правой), такой что $|P(x)| \ge h_{\alpha}/2$, $x \in U_{\alpha}$. Связь между шириной максимума и его высотой была установлена в работе [10]. Подробное доказательство соответствующего общего результата приведено в Приложении. Из этого результата следует, что если ширина максимума удовлетворяет неравенству

$$u_{\alpha} \ge T^{1/2} (\ln T)^{-\rho},$$
 (4)

где $\rho > 0$, то для высоты максимума справедливо неравенство

$$h_{\alpha} \le CT^{1/4} (\ln T)^{\rho/2}.$$
 (5)

В [4], [10] была выдвинута *гипотеза о ширинах максимумов*, согласно которой все большие максимумы являются достаточно широкими, именно, существует $\rho > 0$ такое, что неравенство (4) выполнено для всех максимумов, таких что $h_{\alpha} \ge \eta T^{1/4}$, $\eta > 0$. Доказательство этой гипотезы означает решение проблемы круга.

Задача численного эксперимента состояла в исследовании характера поведения функции P(x) в области больших отклонений этой функции от нуля ($|P(x)| \ge 2x^{1/4}$, $x \ge 1$) и, в частности, в проверке сформулированной выше гипотезы. Для этого во всех целых точках x некоторого множества $I^{\cup} : [10^7, 3.2 \times 10^8] \subset I^{\cup} \subset [10^7, 10^{12} + 10^8]$ были вычислены значения функции P(x), найдены области больших отклонений P(x) от нуля, вычислены ширины максимумов u_{α} и ряд других величин, характеризующих поведение P(x). Полученные результаты позволяют составить

достаточно полную картину поведения функции P(x) в указанных областях. В части ширин максимумов результаты показывают, что для самых высоких максимумов оценка (4) имеет место с $\rho = 1.2$. Отсюда следует, что

$$|P(x)| \le C x^{1/4} (\ln x)^{0.6}, \quad x \in I^{\cup}$$

Кроме того, для всех максимумов, таких что $h_{\alpha} \ge \eta T^{1/4}$, $\eta = 3$, оценка (4) имеет место с $\rho = 2$. Это подтверждает гипотезу о ширинах максимумов и дает гипотетическую оценку

$$|P(x)| \le C x^{1/4} (\ln x), \quad x \ge 1.$$

Отметим, что, насколько нам известно, ширины максимумов ранее не исследовались.

Работа имеет следующую структуру. В разд. 2 приведены теоретические результаты, определяющие постановку вопросов и характер величин, рассматриваемых в численном эксперименте. В разд. 3 дано описание численного эксперимента и приведены полученные результаты. В разд. 4 представлены соответствующие выводы относительно поведения функции P(x) в области больших отклонений от нуля. Доказательство теоремы, следствием которой является связь между шириной и высотой максимума, приведено в Приложении.

2. ТЕОРЕТИЧЕСКИЕ РЕЗУЛЬТАТЫ

Число целых точек R(x) в круге радиуса \sqrt{x} , $x \ge 0$, может быть представлено в виде

$$R(x) = \sum_{0 \le n \le x} r(n), \tag{6}$$

где r(n) – число представлений целого числа *n* в виде суммы квадратов двух целых чисел. Заметим, что если $r(n) \neq 0$, то $r(n) \geq 4 > \pi$. Асимптотика величин r(n) имеет вид [11]

$$r(n) \le \exp\left\{\ln 2\frac{\ln n}{\ln \ln n} + O\left(\frac{\ln n \cdot \ln \ln \ln n}{\left(\ln \ln n\right)^2}\right)\right\}, \quad n \to \infty.$$
(7)

В [5] доказано, что

$$R(x) = 1 + 4[\sqrt{x}] + 4[\sqrt{x/2}]^2 + 8\sum_{i=\sqrt{x/2}+1}^{\sqrt{x}} [\sqrt{x-i^2}];$$
(8)

здесь и далее [·] — целая часть вещественного числа. Последняя формула используется в численном эксперименте для подсчета числа целых точек в круге.

Из представления (6) следует, что определенная формулой (1) функция P есть кусочно-линейная функция с разрывами I рода в целых точках x = n таких, что $r(n) \neq 0$. В точках разрыва функция P непрерывна справа, P(x + 0) = P(x), $P(x - 0) = P(x - 1) - \pi$. В точках непрерывности $P'(x) = -\pi$. Для любого x справедливо равенство $P(x) = P([x]) - \pi(x - [x])$, поэтому вычисление функции P в некотором интервале сводится к вычислению этой функции в целых точках этого интервала.

 Ω -оценки. Напомним определение символов Харди Ω , Ω_+ :

$$f(x) = \Omega(g(x)) \quad (x \to \infty) \quad \Leftrightarrow \quad \limsup_{x \to \infty} \frac{|f(x)|}{g(x)} > 0;$$

$$f(x) = \Omega_+(g(x)) \quad (x \to \infty) \quad \Leftrightarrow \quad \limsup_{x \to \infty} \frac{f(x)}{g(x)} > 0,$$

где g(x) > 0. Доказано (см., например, [12], [13]), что

$$P(x) = \Omega((x \ln x)^{1/4}).$$
 (9)

Неизвестно, верна ли оценка

$$P(x) = \Omega_+(x^{1/4}(\ln x)^{\lambda}), \quad \lambda > 0$$

ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ том 62 № 12 2022

Перемены знака с выходом за барьер. Уточняя результаты работы [14], нетрудно доказать, что функция $P(x) \pm ax^{1/4}$ по крайней мере один раз меняет знак в любом интервале $[x, x + \Delta x]$ $(x \ge 1)$ при $\Delta x \ge 2b\sqrt{x}$ для любых *a*, *b* таких, что

$$4a + \frac{S}{\pi^2 b^2} < \frac{2}{\pi},$$
 (10)

где

$$S = \sum_{n=2}^{\infty} \frac{r(n)}{n^{3/4}} \left(\frac{1}{n} + \frac{1}{2(\sqrt{n}-1)^2} + \frac{1}{2(\sqrt{n}+1)^2} \right).$$

Так как $S \leq 13.1$, то условие (10) выполняется, например, при a = 0.1, b = 2.4.

Большие отклонения функции |P| **от нуля.** Используя метод работы [14], можно доказать, что в интервале $[T, 2T], T \ge 1$, существуют непересекающиеся интервалы W_{α}^{\pm} длины

$$w_{\alpha}^{\pm} \doteq |W_{\alpha}^{\pm}| = C \frac{\sqrt{T}}{\left(\ln T\right)^3},$$

такие что

$$P(x_{\alpha}^{+}) > C_{+}T^{1/4}, \quad P(x_{\alpha}^{-}) < -C_{-}T^{1/4}, \quad |P(x) - P(x_{\alpha}^{\pm})| < \frac{1}{2}|P(x_{\alpha}^{\pm})| \quad (x \in W_{\alpha}^{\pm}),$$
(11)

где x_{α}^{\pm} — точка максимума величины |P(x)| в интервале W_{α}^{\pm} , т.е.

$$\max\{|P(x_{\alpha}^{\pm}+0)|, |P(x_{\alpha}^{\pm}-0)|\} = \sup_{x \in W_{\alpha}^{\pm}} |P(x)|,$$

и при этом

$$\mu\left\{\bigcup_{\alpha}W_{\alpha}^{\pm}\right\} > C^{\pm}T, \quad C^{\pm} < \frac{1}{2}.$$
(12)

Здесь и далее $\mu\{\cdot\}$ — мера Лебега.

Распределение значений величины $P(x)x^{-1/4}$. В работе [15] доказано, что величина $Q(x) = P(x)x^{-1/4}$ имеет функцию распределения *F* с плотностью *f*:

$$F(s) = \int_{-\infty}^{s} f(\xi) d\xi.$$

Это означает, что имеет место равенство

$$\lim_{T \to \infty} T^{-1} \mu\{x \in [1, T], Q(x) \in [a, b]\} = \int_{a}^{b} f(\xi) d\xi.$$
(13)

В работе [16] показано, что вместо (13) можно написать

$$\lim_{T \to \infty} \Delta T^{-1} \mu \{ x \in [T, T + \Delta T], Q(x) \in [a, b] \} = \int_{a}^{a} f(\xi) d\xi$$

для любого $\Delta T \ge CT^{1/2+\varepsilon}$, $\varepsilon > 0$. В работе [9] доказано, что $\forall \varepsilon > 0 \exists \xi_0 = \xi_0(\varepsilon)$:

$$f(\xi) \le \exp(-|\xi|^{4-\varepsilon}), \quad |\xi| \ge \xi_0$$

Пики (большие отклонения) функции *P*. Дадим ряд необходимых определений. Рассмотрим функцию *P* в интервале [*T*, 2*T*], $T \ge 1$. Множество *X* точек *x*, в которых $|P(x)| \ge T^{1/4}$, представляет собой объединение конечного числа непересекающихся интервалов:

$$X \doteq \{x : |P(x)| \ge T^{1/4}\} = \bigcup_{\alpha \in A} X_{\alpha}$$

ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ том 62 № 12 2022

Если для некоторого интервала X_{α} выполнено условие

$$h_{\alpha} \doteq \sup_{x \in X_{\alpha}} |P(x)| \ge 2T^{1/4}, \tag{14}$$

то график сужения функции *P* на этот интервал назовем *пиком с основанием* X_{α} и будем обозначать через \mathcal{P}_{α} . Величину $h_{\alpha} \equiv h(\mathcal{P}_{\alpha})$ назовем *высотой* пика.

Пусть $\overline{\mathcal{P}}_{\alpha}$ – замыкание графика \mathcal{P}_{α} . Множество $\{(x, p) \in \overline{\mathcal{P}}_{\alpha} : p = h_{\alpha}\}$ содержит конечное число точек (как правило, одну точку). *Вершиной* пика назовем ту точку указанного множества, координата *x* которой минимальна, т.е.

$$\mathbf{v}(\mathcal{P}_{\alpha}) \equiv (x_{\alpha}, h_{\alpha}) = \min_{x} \{ (x, p) \in \overline{\mathcal{P}}_{\alpha} : p = h_{\alpha} \}$$

при этом $x_{\alpha} \equiv x(\mathcal{P}_{\alpha})$ – координата вершины.

Пусть $U_{\alpha} \subset X_{\alpha}$ – наибольшая полуокрестность (левая или правая) координаты вершины пика x_{α} , такая что $|P(x)| \ge h_{\alpha}/2$, $x \in U_{\alpha}$. Определим *ширину* пика $u_{\alpha} \equiv u(\mathcal{P}_{\alpha})$ (одностороннюю ширину) как размер этой окрестности: $u_{\alpha} \doteq |U_{\alpha}|$.

Пусть $W_{\alpha} \subset X_{\alpha}$ – наибольший интервал, содержащий координату вершины пика x_{α} , такой что $|P(x)| \ge h_{\alpha}/2$, $x \in W_{\alpha}$. Определим *полную ширину* пика $w_{\alpha} \equiv w(\mathcal{P}_{\alpha})$ (двустороннюю ширину пи-ка) как длину этого интервала: $w_{\alpha} \doteq |W_{\alpha}|$.

Определим знак пика \mathcal{P}_{α} следующим образом: sgn $(\mathcal{P}_{\alpha}) = 1$, если $P(x) \ge T^{1/4}$, $x \in X_{\alpha}$, и sgn $(\mathcal{P}_{\alpha}) = -1$, если $P(x) \le -T^{1/4}$, $x \in X_{\alpha}$. В зависимости от знака будем называть пики положительными и отрицательным.

Расстоянием $D(\mathcal{P}_{\alpha_1}, \mathcal{P}_{\alpha_2})$ между пиками \mathcal{P}_{α_1} и \mathcal{P}_{α_2} будем считать расстояние между координатами их вершин: $D(\mathcal{P}_{\alpha_1}, \mathcal{P}_{\alpha_2}) \doteq |x(\mathcal{P}_{\alpha_1}) - x(\mathcal{P}_{\alpha_2})|.$

Используем обозначение \Re_T для множества всех пиков в интервале $[T, 2T], T \ge 1$.

Связь высот и ширин пиков. Рассмотрим некоторый пик $\mathcal{P}_{\alpha} \in \mathfrak{F}_{T}$. С учетом данных выше определений результат работы [10], устанавливающий связь высоты и ширины максимума, можно сформулировать следующим образом: если ширина пика достаточно велика, т.е. выполнено неравенство

$$u_{\alpha} \ge T^{1/2} (\ln T)^{-\rho}, \tag{15}$$

где $\rho = \rho(\alpha, T) > 0$, то для высоты пика справедливо неравенство

$$h_{\alpha} \le CT^{1/4} (\ln T)^{\rho/2}.$$
 (16)

Из приведенных в Приложении результатов вытекает, что для константы C в (16) имеет место следующая оценка сверху: $C \leq \overline{C} = 20$.

Пусть $\mathfrak{P}_{\eta,T} \subseteq \mathfrak{P}_T$, $\eta \ge 2$, множество пиков, таких что $h_{\alpha} \ge \eta T^{1/4}$, $\mathfrak{P}_{\alpha} \in \mathfrak{P}_{\eta,T}$. В случае $\eta = 2$ имеем все множество пиков ($\mathfrak{P}_{2,T} = \mathfrak{P}_T$), поскольку по определению высота любого пика удовлетворяет неравенству $h_{\alpha} \ge 2T^{1/4}$. В случае $\eta = \sup_{x \in [T,2T]} |P(x)| T^{-1/4}$ множество $\mathfrak{P}_{\eta,T}$ состоит из одного самого высокого пика.

Рассмотрим множество $\mathfrak{P}_{\eta,T}$. Если это множество не пустое и существует $\rho = \rho(\eta,T) > 0$, такое что неравенство (15) выполняется для всех пиков $\mathcal{P}_{\alpha} \in \mathfrak{P}_{\eta,T}$, то для всех пиков выполняется неравенство (16) и, следовательно, имеет место оценка

$$|P(x)| \le C x^{1/4} (\ln x)^{\rho(\eta, T)/2}, \quad x \in [T, 2T].$$
(17)

Очевидно, что $\rho(\eta_2, T) \le \rho(\eta_1, T)$ при $\eta_2 \ge \eta_1$, т.е. увеличение параметра η позволяет улучшить оценку (17).

ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ том 62 № 12 2022

2006

Если $\rho_h(T) > 0$ такое, что неравенство (15) выполняется для самого высокого пика, то для этого пика выполняется и неравенство (16) и, следовательно, имеет место оценка

$$|P(x)| \le C x^{1/4} (\ln x)^{\rho_h(T)/2}, \quad x \in [T, 2T].$$
(18)

Гипотеза о ширинах максимумов. Выдвинутая в [4], [10] гипотеза о ширинах максимумов может быть переформулирована в терминах пиков следующим образом: существуют константы $\eta \ge 2$ и $\rho > 0$, такие что для любого $T \gg 1$ ширины всех пиков $\mathcal{P}_{\alpha} \in \mathfrak{F}_{\eta,T}$ удовлетворяют неравенству (15), т.е. все достаточно высокие пики являются достаточно широкими. Если гипотеза справедлива, то из (17) следует

$$|P(x)| \le C x^{1/4} (\ln x)^{\rho/2}, \quad x \ge 1,$$
(19)

т.е. решение проблемы круга. Отметим, что из Ω -оценки (9) следует, что $\rho > 1/2$.

3. ЧИСЛЕННЫЙ ЭКСПЕРИМЕНТ

Значения функции R(x) (число целых точек в круге радиуса \sqrt{x}) вычислялись для всех целых значений x = n в интервалах I^i , i = 0, 1, ..., 13, где

$$I^{0} = [1, 10^{7}], \quad I^{1} = [10^{7}, 2 \times 10^{7}], \quad I^{2} = [2 \times 10^{7}, 4 \times 10^{7}], \quad I^{3} = [4 \times 10^{7}, 8 \times 10^{7}],$$

$$I^{4} = [8 \times 10^{7}, 1.6 \times 10^{8}], \quad I^{5} = [1.6 \times 10^{8}, 3.2 \times 10^{8}], \quad I^{6} = [5 \times 10^{8}, 5 \times 10^{8} + 10^{8}],$$

$$I^{7} = [10^{9}, 10^{9} + 10^{8}], \quad I^{8} = [5 \times 10^{9}, 5 \times 10^{9} + 10^{8}], \quad I^{9} = [10^{10}, 10^{10} + 10^{8}],$$

$$I^{10} = [5 \times 10^{10}, 5 \times 10^{10} + 10^{8}], \quad I^{11} = [10^{11}, 10^{11} + 10^{8}],$$

$$I^{12} = [5 \times 10^{11}, 5 \times 10^{11} + 10^{8}], \quad I^{13} = [10^{12}, 10^{12} + 10^{8}].$$

Интервалы $I^1, ..., I^5$ имеют вид [T, 2T]. Интервалы $I^6, ..., I^{13}$ имеют вид $[T, T'], T' = T + 10^8$; для этих интервалов $T + 100\sqrt{T} \le T' \le 2T$. Будем использовать следующие обозначения: $I^{\cup} = \bigcup_{1 \le i \le 13} I^i, \ \mathcal{I} = \{I^1, ..., I^{13}\}.$

Вычисление значений функции R(x) осуществлялось по формуле (8) с использованием 64-разрядной плавающей и целой арифметики, что обеспечивает получение точных значений. Для каждого интервала результат представляет собой массив 64-разрядных целых чисел. Соответствующие значения функции P(x) вычислялись по формуле (1) с использованием 64-разрядной плавающей арифметики. Результат представляет собой массив 64-разрядных плавающих чисел. Погрешность вычислений для используемых значений аргумента ($x \leq 10^{12}$) заведомо не превы-

шает 10⁻³, что вполне достаточно для решения всех задач численного эксперимента.

Для каждого интервала $I \in \mathcal{I}$ по значениям R(n) во всех целых точках *n* интервала, исключая начальную точку, вычислялись величины r(n) (см. (6)). В табл. 1 для каждого интервала приведено значение величины $\overline{r} = \max_{n \in I} \{r(n)\}$, значение \tilde{r} , вычисленное для конечной точки интервала с использованием главного члена асимптотической формулы (7), а также значения величины $T^{1/4}$, играющей роль порога в определении пиков. Сравнение величин \overline{r} и \tilde{r} показывает, что величина r(n) не выходит на асимптотику даже при максимальных используемых значениях $n \sim 10^{12}$.

Для каждого из интервалов $I \in \mathcal{F}$ по массиву значений $P(n), n \in I$, строится множество пиков \mathfrak{F}_T функции P, точнее, описание пиков этого множества. Каждый пик $\mathcal{P}_{\alpha} \in \mathfrak{F}_T$, описывается следующими величинами: x_{α}^{b} – начало пика, x_{α}^{e} – конец пика, x_{α} – координата вершины пика, h_{α} – высота пика, u_{α} – ширина пика, w_{α} – полная ширина пика, s_{α} – знак пика. Перечисленные величины определены в разд. 2.

Алгоритм построения множества пиков достаточно прямолинеен. Выполняется просмотр последовательности значений $P(n), n \in I$, и выделение таких участков последовательности

Ι	I^1	I^2	I^3	I^4	I^5	<i>I</i> ⁶	I ⁷	I^8	<i>I</i> ⁹	I^{10}	<i>I</i> ¹¹	<i>I</i> ¹²	<i>I</i> ¹³
\overline{r}	192	256	288	320	384	384	384	512	640	768	768	1024	1024
ĩ	62.1	69.3	77.3	86.1	95.9	105.7	116.0	146.5	162.4	206.3	228.7	289.8	320.7
$T^{1/4}$	56.2	66.9	79.5	94.6	112.5	149.5	177.8	265.9	316.2	472.9	562.3	840.9	1000.0

Таблица 1. Величины \overline{r} , \tilde{r} и $T^{1/4}$ для интервалов $I \in \mathcal{I}$

 $X_{\alpha} = \{x_{\alpha}^{b}, x_{\alpha}^{b} + 1, ..., x_{\alpha}^{e}\},$ что $|P(n)| \ge T^{1/4}, n \in X_{\alpha}$. Если $h_{\alpha} \doteq \max_{n \in X_{\alpha}} \{|P(n)|\} \ge 2T^{1/4}$ для данного участка, то такой участок последовательности представляет пик, начало и конец участка – это начало и конец пика, h_{α} – высота пика. Точка x_{α} , такая что $|P(x_{\alpha})| = h_{\alpha}$, – координата вершины пика (если таких точек несколько, то координатой вершины считается самая левая из них). Далее выполняется последовательный просмотр значений $P(n), n \in X_{\alpha}$, вправо и влево, начиная от координаты вершины x_{α} , и находятся крайние точки x_{α}^{+} и x_{α}^{-} , в которых выполняется неравенство $|P(x_{\alpha}^{\pm})| \ge h_{\alpha}/2$, после чего полагается

$$u_{\alpha} = \max\{(x_{\alpha}^{+} - x_{\alpha} + 1), (x_{\alpha} - x_{\alpha}^{-} + 1)\}, \quad w_{\alpha} = x_{\alpha}^{+} - x_{\alpha}^{-} + 1.$$

Наконец, $s_{\alpha} = \text{sgn}(P(x_{\alpha}))$. Величины $x_{\alpha}^{\text{b}}, x_{\alpha}^{\text{e}}, x_{\alpha}, h_{\alpha}, u_{\alpha}, w_{\alpha}$ изображены на фиг. 1, $s_{\alpha} = -1$.

В результате применения описанного алгоритма мы получаем конечную последовательность наборов чисел { $x_{\alpha}^{b}, x_{\alpha}^{e}, x_{\alpha}, h_{\alpha}, u_{\alpha}, w_{\alpha}, s_{\alpha}$ }, $\alpha \in A_{I} = \{0, ..., N_{I} - 1\}$, которая представляет (описывает) множество пиков \mathfrak{P}_{T} , при этом каждый набор представляет (описывает) отдельный пик \mathcal{P}_{α} . Количество наборов $N_{I} \doteq |A_{I}| \equiv |\mathfrak{P}_{T}|$ в последовательности есть число пиков в интервале I. Наборы нумеруются слева направо, так что $x_{\alpha_{1}}^{e} < x_{\alpha_{2}}^{b}$ при $\alpha_{1} < \alpha_{2}$.

Везде далее набор чисел, представляющий пик \mathscr{P}_{α} , и совокупность таких наборов, представляющую множество пиков \mathfrak{P}_T , мы также будем называть *пиком и множеством пиков* и использовать те же обозначения, что не должно вызывать недоразумений. Как и ранее (см. разд. 2), будем использовать обозначение $\mathfrak{P}_{\eta,T} \subseteq \mathfrak{P}_T$, $\eta \ge 2$, для множества пиков интервала I, таких что $h_{\alpha} \ge \eta T^{1/4}$ (при этом $\mathfrak{P}_{2,T} = \mathfrak{P}_T$).

Фиг. 1. Отрицательный пик \mathcal{P}_{α} и описывающие его величины $x_{\alpha}^{b}, x_{\alpha}^{e}, x_{\alpha}, h_{\alpha}, u_{\alpha}, w_{\alpha}$.

Ι	I^1	I^2	I^3	<i>I</i> ⁴	<i>I</i> ⁵	<i>I</i> ⁶	Ι7	<i>I</i> ⁸	<i>I</i> 9	I^{10}	<i>I</i> ¹¹	<i>I</i> ¹²	<i>I</i> ¹³
N_I	19938	29308	42818	62606	91233	33498	24102	11082	8108	3745	2603	1171	859
$N_{3,I}$	6640	9746	13857	19929	28786	9593	6796	3077	2134	1010	696	322	224
$N_{4,I}$	2390	3344	4932	6961	9987	2960	2019	867	634	273	201	98	60
$N_{5,I}$	724	983	1482	2147	3069	766	540	222	162	63	59	25	17
$N_{6,I}$	179	277	393	569	829	169	132	55	36	16	12	5	1

Таблица 2. Число пиков в интервалах $I \in \mathcal{I}$

Таблица 3. Величина \overline{C} для интервалов $I \in \mathcal{I}$

Ι	I^1	I^2	I^3	I^4	<i>I</i> ⁵	<i>I</i> ⁶	I^7	I^8	<i>I</i> ⁹	I^{10}	I^{11}	I^{12}	<i>I</i> ¹³
\overline{C}	3.031	3.185	3.473	3.331	3.493	2.647	2.626	2.381	2.508	2.369	2.470	1.992	1.830

В табл. 2 представлено число пиков N_I , вычисленное для всех интервалов $I \in \mathcal{P}$. Кроме того, в таблице представлены величины $N_{\eta,I} \doteq |\mathfrak{P}_{\eta,T}|$ – число пиков $\mathcal{P}_{\alpha} \in \mathfrak{P}_{\eta,T}$ в интервале I – для значений $\eta = 3, 4, 5, 6$.

Получим экспериментальную оценку константы *C* в формуле (16), определив для пиков \mathcal{P}_{α} , $\alpha \in A_I$, интервала *I* величины $C(\alpha, T)$ из условия

$$h_{\alpha} = C(\alpha, T)T^{1/4}(\ln T)^{\rho(\alpha, T)/2},$$

в котором величина $\rho(\alpha, T)$ определяется равенством

$$u_{\alpha} = T^{1/2} (\ln T)^{-\rho(\alpha,T)}.$$

В табл. 3 представлены вычисленные значения величины $\overline{C} = \overline{C}(T) = \max_{\alpha \in A_I} \{C(\alpha, T)\}$ для всех интервалов $I \in \mathcal{I}$. Отметим, что полученные значения величины \overline{C} значительно меньше представленной в разд. 2 теоретической верхней оценки.

Имея множество пиков \mathfrak{P}_T в интервале *I*, можно вычислить значение показателя $\rho(\eta, T)$ для подмножества пиков, таких что $h_{\alpha} \ge \eta T^{1/4}$, из условия

$$u_{\min} = T^{1/2} (\ln T)^{-\rho(\eta,T)}$$

где

$$u_{\min} = \min_{\mathcal{P}_{\alpha} \in \mathfrak{P}_{\eta,T}} \{u_{\alpha}\},\,$$

а также показателя $\rho_h(T)$ для самого высокого пика интервала I из условия

$$u_h = T^{1/2} (\ln T)^{-\rho_h(T)},$$

где u_h – ширина самого высокого пика. Значения показателей ρ , вычисленные для всех интервалов $I \in \mathcal{I}, \eta = 2, 3, 4, 5, 6$ и самых высоких пиков представлены в табл. 4.

Из неравенства (18) следует, что

$$|P(x)| \le C x^{1/4} (\ln x)^{\lambda}, \quad x \in I^{\cup},$$
 (20)

где

$$\lambda = \max_{T \in \mathcal{A}} \{\rho_h(T)\}/2.$$

Таким образом (см. последнюю строку табл. 4), мы получаем для показателя степени логарифма в (20) верхнюю оценку λ ≤ 0.6, что соответствует утверждению работы [9].

Рассмотрим зависимость числа пиков от ширины. Пусть $\tilde{N}_{\eta,I}(\rho)$ – число пиков $P_{\alpha} \in \mathfrak{P}_{\eta,T}$ в интервале I, таких что $u_{\alpha} < T^{1/2}(\ln T)^{-\rho}$, $\overline{N}_{\eta,I}(\rho)$ – число пиков $P_{\alpha} \in \mathfrak{P}_{\eta,T}$ в интервале I, таких что

Ι	I^1	I^2	I^3	I^4	ľ	<i>I</i> ⁶	I ⁷	I^8	<i>I</i> ⁹	I^{10}	<i>I</i> ¹¹	<i>I</i> ¹²	I^{13}
ρ(2, <i>T</i>)	1.859	1.883	1.919	1.953	1.995	2.023	2.012	2.030	1.973	1.955	2.023	1.934	1.951
$\rho(3, T)$	1.700	1.729	1.760	1.761	1.788	1.761	1.765	1.875	1.815	1.624	1.693	1.567	1.618
$\rho(4, T)$	1.581	1.578	1.605	1.643	1.672	1.688	1.648	1.641	1.502	1.501	1.410	1.375	1.259
$\rho(5, T)$	1.397	1.453	1.459	1.466	1.505	1.484	1.478	1.451	1.328	1.279	1.174	1.277	1.123
$\rho(6, T)$	1.284	1.380	1.339	1.358	1.364	1.362	1.285	1.186	1.231	1.200	1.008	0.959	0.846
$\rho_h(T)$	0.856	0.923	0.875	1.007	1.085	0.895	0.848	1.186	0.758	0.782	0.966	0.950	0.846

Таблица 4. Значение показателей $\rho(\eta, T)$, $\rho_h(T)$ для интервалов $I \in \mathcal{I}$

Таблица 5. Число пиков в зависимости от ширины в интервалах $I \in \mathcal{I}$

Ι	I^1	I^2	I^3	I^4	<i>I</i> ⁵	<i>I</i> ⁶	<i>I</i> ⁷	I^8	<i>I</i> ⁹	I^{10}	I^{11}	I^{12}	I^{13}
$\tilde{N}_{3,I}(2)$	0	0	0	0	0	0	0	0	0	0	0	0	0
$\tilde{N}_{3,I}(3/2)$	383	576	846	1214	1713	505	326	128	78	28	16	3	3
$\tilde{N}_{3,I}(1)$	5499	8117	11489	16372	23607	7990	5656	2494	1686	783	554	248	170
$\overline{N}_{3,I}(1)$	1141	1629	2368	3557	5179	1603	1140	583	448	227	142	74	54
$\overline{N}_{3,I}(3/4)$	94	137	218	298	478	125	81	39	32	11	9	8	2
$\overline{N}_{3,I}(1/2)$	1	0	0	4	2	0	0	0	0	0	1	0	0

 $u_{\alpha} \geq T^{1/2}(\ln T)^{-\rho}$. В табл. 5 приведены значения величин $\tilde{N}_{\eta,I}(\rho), \eta = 3, \rho = 2, 3/2, 1, и \overline{N}_{\eta,I}(\rho), \eta = 3, \rho = 1, 3/4, 1/2$, вычисленные для каждого из интервалов $I \in \mathcal{I}$.

Данные первой строки табл. 5 означают, что на множестве $x \in I^{\cup}$ гипотеза о ширинах максимумов справедлива при $\eta = 3$, $\rho = 2$. Отсюда следует, что

$$|P(x)| \le C x^{1/4} \ln x, \quad x \in I^{\cup}.$$

Последняя строка таблицы показывает, что пики шире $T^{1/2}(\ln T)^{-1/2}$ встречаются крайне редко, что согласуется с Ω -оценкой (9).

Для каждого из интервалов $I \in \mathcal{I}$ были вычислены сумма длин оснований всех пиков S_X , суммы длин оснований положительных и отрицательных пиков S_X^{\pm} по отдельности, сумма полных (двусторонних) ширин всех пиков S_W и суммы полных (двусторонних) ширин положительных и отрицательных пиков S_W^{\pm} по отдельности:

$$S_X = \sum_{\alpha} (x_{\alpha}^e - x_{\alpha}^b + 1), \quad S_X^{\pm} = \sum_{\alpha:s_{\alpha} = \pm 1} (x_{\alpha}^e - x_{\alpha}^b + 1), \quad S_W = \sum_{\alpha} w_{\alpha}, \quad S_W^{\pm} = \sum_{\alpha:s_{\alpha} = \pm 1} w_{\alpha}.$$

В табл. 6 представлены отношения указанных величин к длине интервала |I|.

Значения $S_W^{\pm}/|I|$ суть экспериментальные оценки сверху для констант C^{\pm} в (12) при условии, что в (11) $C_{\pm} = 2$. Отметим, что представленные отношения слабо зависят от интервала I, для которого они вычислены, хотя некоторая тенденция к уменьшению этих величин при увеличении T наблюдается.

Рассмотрим вопрос перемены знаков s_{α} в последовательности пиков { \mathcal{P}_{α} }, $\alpha \in A_{I}$, интервала I. Выберем из исходной последовательности { \mathcal{P}_{α} } подпоследовательность пиков с чередующимися знаками { $\mathcal{P}_{\alpha_{k}}^{alt}$ }, $\alpha_{k} \in A_{I}^{alt} = {\alpha_{0}, ..., \alpha_{K-1}} \subseteq A_{I}$, используя следующую рекуррентную формулу:

$$\alpha_0 = 0, \quad \alpha_k = \min\{\alpha' \in A_I : \alpha' > \alpha_{k-1}, s_{\alpha'} = -s_{\alpha_{k-1}}\},\$$

Ι	I^1	I^2	I^3	I^4	I^5	<i>I</i> ⁶	I^7	I^8	<i>I</i> ⁹	I^{10}	I^{11}	I^{12}	<i>I</i> ¹³
$rac{S_X}{ I }$	0.449	0.450	0.447	0.448	0.447	0.410	0.403	0.398	0.399	0.399	0.398	0.390	0.401
$rac{S_X^+}{ I }$	0.236	0.236	0.233	0.234	0.232	0.211	0.207	0.203	0.204	0.203	0.201	0.200	0.205
$rac{S_X^-}{ I }$	0.213	0.214	0.214	0.215	0.215	0.199	0.196	0.195	0.195	0.196	0.197	0.190	0.195
$rac{S_W}{ I }$	0.230	0.226	0.224	0.222	0.221	0.209	0.207	0.203	0.203	0.203	0.198	0.194	0.193
$\frac{S_W^+}{ I }$	0.123	0.121	0.119	0.119	0.118	0.111	0.110	0.107	0.108	0.107	0.106	0.103	0.101
$rac{S_W^-}{ I }$	0.108	0.105	0.105	0.104	0.103	0.098	0.097	0.096	0.095	0.096	0.092	0.091	0.092

Таблица 6. Отношения сумм длин оснований и ширин пиков к длине интервала $|I|, I \in \mathcal{I}$

Таблица 7. Значение величин v, \overline{d} и d_{\max} для интервалов $I \in \mathcal{I}$

Ι	I^1	I^2	I^3	<i>I</i> ⁴	ľ	<i>I</i> ⁶	<i>I</i> ⁷	I^8	<i>I</i> ⁹	I^{10}	I^{11}	I^{12}	<i>I</i> ¹³
ν	0.25	0.24	0.23	0.23	0.23	0.23	0.22	0.22	0.22	0.21	0.22	0.21	0.21
\overline{d}	0.634	0.634	0.630	0.626	0.615	0.586	0.584	0.580	0.554	0.574	0.546	0.566	0.557
d_{\max}	2.376	2.509	2.449	2.259	2.223	1.882	1.849	1.765	1.624	1.581	1.644	1.437	1.651

и вычислим расстояния D_k между соседними пиками подпоследовательности $\{\mathcal{P}_{\alpha_k}^{\mathrm{alt}}\}$:

$$D_k = D(\mathcal{P}_{\alpha_{k+1}}, \mathcal{P}_{\alpha_k}) \doteq x_{\alpha_{k+1}} - x_{\alpha_k}, \quad k = 0, \dots, K - 2$$

Перемены знака функции P(x) в интервале I с выходом за барьер $\pm 2T^{1/4}$ могут быть охарактеризованы следующими величинами: $v \doteq (K-1)/N_I$ (относительная частота перемены знака), $\overline{d} \doteq \overline{D}T^{-1/2}$, где $\overline{D} = (K-1)^{-1}\sum_k D_k$ – среднее расстояние, и $d_{\max} \doteq D_{\max}T^{-1/2}$, где $D_{\max} = \max_k \{D_k\}$ – максимальное расстояние.

Массив расстояний *D* был построен для каждого из интервалов $I \in \mathcal{P}$. Результаты вычисления величин v, \overline{d} и d_{max} приведены в табл. 7.

Относительная частота перемены знака v изменяется в пределах от 0.21 до 0.25. Это означает, что в последовательностях пиков должны встречаться длинные (≥ 4) серии подряд идущих пиков одного знака. Пример такой серии положительных пиков представлен на фиг. 2, где изображен график функции P(x) на части интервала I^{13} ($T = 10^{12}$) длиной 5×10^4 . Штриховыми горизонтальными линиями на рисунке проведены пороговые значения, используемые в процессе построения положительных пиков функции P(x).

На фиг. 3 представлена построенная гистограмма распределения значений функции $Q(x) = P(x)x^{-1/4}$ в целых точках интервала $\bigcup_{0 \le i \le 6} I^i = [1, 3.2 \times 10^8]$, которая представляет собой приближение определенной в (13) плотности распределения $f(\xi)$ значений функции Q(x).

Минимальное и максимальное значения Q в интервале равны –9.324 и 6.283 соответственно. Гистограмма построена с использованием 2000 ячеек, размер ячейки равен 0.008. Максимальное значение гистограммы равно 0.249 и достигается в ячейке, центр которой имеет координату $\xi_{max} = 0.341$.

Фиг. 2. Серия из 4 подряд идущих положительных пиков, $T = 10^{12}$.

Фиг. 3. Гистограмма распределения значений функции $Q(x) = P(x)x^{-1/4}$.

4. ЗАКЛЮЧЕНИЕ

Сформулируем основные выводы относительно поведения функции P(x), $x \in I^{\cup}$, в области больших отклонений от нуля, вытекающие из результатов численного эксперимента.

Все достаточно высокие максимумы являются широкими и гипотеза о ширинах максимумов справедлива при $\eta = 3$ ($h_{\alpha} \ge 3T^{1/4}$), $\rho = 2$. Очень широкие максимумы (такие, что $u_{\alpha} \ge T^{1/2}(\ln T)^{-1/2}$) встречаются редко, что согласуется с Ω -оценкой.

Имеет место оценка

$$|P(x)| \le C x^{1/4} (\ln x)^{0.6}, \quad x \in I^{\cup}$$

Суммарная длина интервалов $X_{\alpha} \subset [T, T + \Delta T], T \ge 1, 1 \ll \Delta T \le T$, в которых имеют место большие отклонения функции P(x) от нуля, именно $|P(x)| \ge T^{1/4}$, $x \in X_{\alpha}$, и $\sup_{x \in X_{\alpha}} |P(x)| \ge 2T^{1/4}$, составляет 40–45% длины общего интервала [$T, T + \Delta T$]. Соседние большие отклонения в одну сторону (положительные и отрицательные) формируют группы; среднее число отклонений в группе составляет 4-5. Знаки соседних групп чередуются, и среднее расстояние между соседними группами составляет ~ $0.6T^{1/2}$.

Анализ приведенных в табл. 4 величин o(n, T) при любом фиксированном значении n показывает, что эти величины слабо зависят от интервала I, для которого они вычислены, и тенденция к увеличению $\rho(n, T)$ при увеличении T не наблюдается. Это можно считать экспериментальным подтверждением гипотезы о ширинах максимумов в целом. Кроме того, данные табл. 4 дают основание полагать, что неравенство (19) выполняется в случае $\rho = 2$ (по крайней мере, при $n \ge 3$). Таким образом, гипотетически

$$|P(x)| \le Cx^{1/4}(\ln x), \quad x \ge 1.$$

. . .

Авторы благодарят М.А. Королёва за помощь и полезные замечания.

ПРИЛОЖЕНИЕ

В этом приложении доказана общая теорема, позволяющая, в частности, связать высоту и ширину максимумов функции |P(x)|. Схема доказательства этой теоремы (без указания констант) была дана в [10].

Теорема. Пусть P(x) — остаточный член в проблеме круга. Пусть T, u — вещественные числа, $1 \le u \le T$, λ – вешественное число, $0 \le \lambda \le 1$. Тогда если при всех $x, T \le x \le T + u$, выполнено неравенство

$$|P(x) - P(T)| \le \lambda |P(T)|,\tag{21}$$

то существует и может быть явно указана абсолютная константа В₁, такая что

$$|P(T)| \le \frac{B_1}{1 - \lambda} \frac{T^{3/4}}{u}.$$
(22)

Если, кроме того, выполнено условие и $< \sqrt{T}$, то существует и может быть явно указана абсолютная константа B_{2} , такая что

$$|P(T)| \le \frac{B_2}{1-\lambda} \sqrt{\frac{T}{u}}.$$
(23)

Доказательство. Рассмотрим величину

$$A = \frac{1}{u} \int_{T}^{T+u} P(x) dx.$$

Имеет место очевилное тожлество

$$P(T) = A + \frac{1}{u} \int_{T}^{T+u} (P(T) - P(x)) dx.$$

Так как в силу условия теоремы для всех $x, T \le x \le T + u$ выполнено неравенство (21), то справедливо неравенство

$$|P(T)| \le |A| + \lambda |P(T)|,$$

и, следовательно, справедливо неравенство

$$P(T)| \le \frac{1}{1-\lambda} |A|. \tag{24}$$

Поэтому для получения оценок (22), (23) достаточно оценить величину А.

ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ том 62 2022 № 12

2014

Запишем величину А в виде

$$A = \frac{1}{u} \int_{0}^{T+u} P(x) dx - \frac{1}{u} \int_{0}^{T} P(x) dx.$$
 (25)

Используем формулу Ландау [17], согласно которой

$$\int_{0}^{x} P(y) dy = \frac{x}{\pi} \sum_{n=1}^{\infty} \frac{r(n)}{n} J_2(2\pi\sqrt{nx}),$$
(26)

где $J_2(\cdot)$ — функция Бесселя, а ряд в правой части (26) сходится абсолютно. Применяя (26) к обоим членам в правой части (25), получаем

$$A = A_0 + \Delta A,$$

где

$$A_0 = \frac{1}{\pi} \frac{T}{u} \sum_{n=1}^{\infty} \frac{r(n)}{n} (J_2(2\pi\sqrt{n(T+u)}) - J_2(2\pi\sqrt{nT})), \quad \Delta A = \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{r(n)}{n} J_2(2\pi\sqrt{n(T+u)}).$$

Известно, что асимптотический ряд для функции Бесселя является обертывающим при x > 1 [18], поэтому

$$J_2(x) = -\sqrt{\frac{2}{\pi x}} \cos(x - \pi/4) + \Delta J_2(x),$$
(27)

причем

$$|\Delta J_2(x)| \le \frac{15}{8} \sqrt{\frac{2}{\pi}} x^{-3/2}.$$
(28)

Используя (27), (28), получаем для величины ΔA следующую оценку:

$$|\Delta A| \le C_1 T^{-1/4} + C_2 T^{-3/4}, \tag{29}$$

где

$$C_1 = \frac{1}{\pi^2} \sum_{n=1}^{\infty} \frac{r(n)}{n^{5/4}}, \quad C_2 = \frac{15}{16} \frac{1}{\pi^3} \sum_{n=1}^{\infty} \frac{r(n)}{n^{7/4}}.$$
 (30)

Подставляя (27) в выражение для A_0 , используя (28) и учитывая, что при u < T имеет место неравенство

$$\frac{1}{T^{1/4}} - \frac{1}{(T+u)^{1/4}} \le \frac{1}{4} \frac{u}{T} \frac{1}{T^{1/4}},$$

получаем

 $A_0 = A_{00} + \Delta A_0,$

где

$$A_{00} = \frac{1}{\pi^2} \frac{T}{u} \frac{1}{T^{1/4}} \sum_{n=1}^{\infty} \frac{r(n)}{n^{5/4}} (\cos(2\pi\sqrt{nT} - \pi/4) - \cos(2\pi\sqrt{n(T+u)} - \pi/4))$$

И

$$|\Delta A_0| \le \frac{1}{4} C_1 T^{-1/4} + 2C_2 \frac{T^{1/4}}{u}.$$
(31)

Очевидная оценка для A_{00} имеет вид

$$|A_{00}| \le 2C_1 \frac{T^{3/4}}{u},$$

ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ том 62 № 12 2022

и, следовательно,

$$|A| \leq \frac{T^{3/4}}{u} (2C_1 + 2C_2 T^{-1/2} + \frac{5}{4}C_1 u T^{-1} + C_2 u T^{-3/2}).$$

Учитывая неравенство (24), легко имеем из последнего неравенства первое утверждение теоремы (формулу (22)).

Докажем второе утверждение теоремы (формулу (23)), для чего оценим величину A_{00} в случае $u < T^{1/2}$ более аккуратно. Запишем величину A_{00} в виде

$$A_{00} = \frac{1}{\pi^2} \frac{T^{3/4}}{u} S,$$
(32)

где

$$S = \sum_{n=1}^{\infty} \frac{r(n)}{n^{5/4}} (\cos(2\pi\sqrt{nT} - \pi/4) - \cos(2\pi\sqrt{n(T+u)} - \pi/4)).$$

Ясно, что

$$|S| \le 2\sum_{n=1}^{\infty} \frac{r(n)}{n^{5/4}} |\sin(\pi \sqrt{n}(\sqrt{T+u} - \sqrt{T}))|.$$

Используя неравенства

$$|\sin x| \le x, \quad 0 \le x \le \pi/2, \quad |\sin x| \le 1, \quad x > \pi/2,$$
$$\sqrt{T+u} - \sqrt{T} \le \frac{1}{2}\frac{u}{\sqrt{T}}, \quad u < \sqrt{T},$$

получаем

$$|S| \le \pi \frac{u}{\sqrt{T}} S_1 + 2S_2,\tag{33}$$

где

$$S_1 = \sum_{1 \le n \le x} \frac{r(n)}{n^{3/4}}, \quad S_2 = \sum_{n > x} \frac{r(n)}{n^{5/4}}, \quad x = T/u^2.$$

Оценим суммы S_1 и S_2 , используя формулу частичного суммирования Абеля [19]. Для суммы S_1 формула Абеля дает

$$S_1 = \sum_{1 \le n \le x} r(n) x^{-3/4} + \frac{3}{4} \int_{1}^{x} \sum_{1 \le n \le y} r(n) y^{-7/4} dy$$

Для входящих в последнюю формулу сумм используем следующую грубую оценку:

$$\sum_{1\leq n\leq x} r(n) \leq R(x) \leq \pi(x+2\sqrt{x}+1).$$

В результате элементарных вычислений получаем

$$S_1 \le 4\pi x^{1/4} + 4\pi. \tag{34}$$

Для суммы S₂ формула Абеля дает

$$S_2 = \frac{5}{4} \int_x^{\infty} \sum_{x < n \le y} r(n) y^{-9/4} dy.$$

Для входящей в последнюю формулу суммы снова используем грубую оценку:

$$\sum_{x < n \le y} r(n) < R(y) < \pi(y + 2\sqrt{y} + 1).$$

В результате элементарных вычислений получаем

$$S_2 \le 5\pi x^{-1/4} + \frac{10\pi}{3} x^{-3/4} + \pi x^{-5/4}.$$
(35)

Подставляя (34), (35) в (33) и делая замену $x = T/u^2$, имеем

$$|S| \le (4\pi^2 + 10\pi)\frac{u^{1/2}}{T^{1/4}} + 4\pi^2 \frac{u}{T^{1/2}} + \frac{20\pi}{3}\frac{u^{3/2}}{T^{3/4}} + 2\pi \frac{u^{5/2}}{T^{5/4}}.$$
(36)

Подставляя теперь (36) в (32), получаем искомую оценку для А₀₀:

$$|\mathcal{A}_{00}| \le \left(4 + \frac{10}{\pi}\right) \frac{T^{1/2}}{u^{1/2}} + 4T^{1/4} + \frac{20}{3\pi} u^{1/2} + \frac{2}{\pi} \frac{u^{3/2}}{T^{1/2}}.$$
(37)

Собирая вместе оценки (29), (31) и (37) (напомним, что $|A| \le |A_{00}| + |\Delta A_0| + |\Delta A|$), имеем окончательно

$$|A| \leq \frac{T^{1/2}}{u^{1/2}} \left(\left(4 + \frac{10}{\pi}\right) + 4\frac{u^{1/2}}{T^{1/4}} + \frac{20}{3\pi} \frac{u}{T^{1/2}} + \frac{2}{\pi} \frac{u^2}{T} + \frac{5}{4} C_1 \frac{u^{1/2}}{T^{3/4}} + 2C_2 \frac{1}{T^{1/4} u^{1/2}} + C_2 \frac{u^{1/2}}{T^{5/4}} \right).$$
(38)

Учитывая неравенство (24), легко имеем из неравенства (38) второе утверждение теоремы (формулу (23)). Теорема полностью доказана.

Сделаем следующие замечания.

Утверждения теоремы остаются справедливыми в том случае, если неравенство (21) выполняется при всех $x, T - u \le x \le T$. Доказательство может быть проведено аналогично, константы несколько изменятся.

Как указал М.А. Королёв, суммы рядов, входящих в определение констант C_1 и C_2 (формула (30)), равны

$$\sum_{n=1}^{\infty} \frac{r(n)}{n^{5/4}} = 15.2383229..., \qquad \sum_{n=1}^{\infty} \frac{r(n)}{n^{7/4}} = 7.0100360....$$

Если выбрать $u = T^{1/2} (\ln T)^{-q}$, q > 0, и положить $\lambda = 1/2$, то из (24) и (38) получим следующее неравенство:

$$|P(T)| \le 2T^{1/4} (\ln T)^{q/2} \left(\left(4 + \frac{10}{\pi} \right) + 4(\ln T)^{-q/2} + \frac{20}{3\pi} (\ln T)^{-q} + \frac{2}{\pi} (\ln T)^{-2q} + 2C_2 \frac{(\ln T)^{q/2}}{T^{1/2}} + \frac{5}{4} C_1 \frac{(\ln T)^{-q/2}}{T^{1/2}} + C_2 \frac{(\ln T)^{-q/2}}{T} \right).$$
(39)

При $T \ge 10^7$ и $1/2 \le q \le 2$ из (39) следует

$$|P(T)| \le 20T^{1/4} (\ln T)^{q/2}.$$

СПИСОК ЛИТЕРАТУРЫ

- 1. Krätzel E. Lattice Points. Dordrecht etc.: Kluwer Acad. Publ., 1988. 320 p.
- 2. Huxley M.N. Area, Lattice Points, and Exponential Sups. Oxford: Clarendon Press, 1996. xii+494 P.
- 3. Bourgain J., Watt N. Mean Square of Zeta Function, Circle Problem, and Divisor Problem. arXiv: 1709.04340.
- 4. *Попов Д.А.* Проблема круга и спектр оператора Лапласа на замкнутых двумерных многообразиях // Успехи матем. наук. 2019. Т. 74. В. 5. С. 146–162.
- 5. *Frazer W., Botlieb C.C.* A Calculation of Number of Lattice Points in the Circle and Sphere // Math. Comp. 1962. V. 16. P. 282–290.
- 6. *Keller H.B., Swenson J.R.* Experiments on the Lattice Problem of Gauss // Math. Comp. 1963. V. 17. P. 223–230.
- Mitchell W.C. The Number of Lattice Points in a k-dimensional Hypersphere // Math. Comp. 1966. V. 20. P. 300–310.

- 8. *Keller H.B.* Numerical Studies of the Gauss Lattice Problem. Technical Report. Pasadena, CA: California Institute of Technology, 1997. 11 P.
- 9. Bleher P.M., Cheng Z., Dyson F.J., Lebowitz J.L. Distribution of the Error Term for the Number of Lattice Points Inside a Shifted Circle // Comm. Math. Phys. 1993. V. 154. № 3. P. 433–469.
- 10. *Попов Д.А.* Оценки и поведение величин, на коротких интервалах // Изв. РАН. 2016. Т. 80. № 6. С. 230–246.
- 11. Постников А.Г. Введение в аналитическую теорию чисел. М.: Наука, 1971. 416 С.
- 12. Gangadharan K.S. Two Classical Lattice Point Problems // Proc. Cambr. Phil. Soc. 1961. V. 57. P. 699-721.
- 13. Soundararajan K. Omega Results for Divisor and Circle Problems // IMRN. 2003. N 36. P. 1987–1998.
- 14. Heath-Brown D.R., Tsang K. Sign changes of E(T), $\Delta(x)$, and P(x) // J. Numb. Theory. 1994. V. 49. P. 73–83.
- 15. *Heath-Brown D.R.* The Distribution and Moments of the Error Term in the Dirichlet Divisor Problem // Acta Arith. 1992. V. 60. N. 4. P. 389–415.
- 16. Lan V.-K., Tsang K.-M. Moments of Short Intervals // Arch. Math. 2005. V. 84. N. 3. P. 249-257.
- 17. Landau E. Vorlesungen über Zahlentheorie, v. 2. Leipzig: S. Hirzel, 1927. vii+308 S.
- 18. Ватсон Г.Н. Теория бесселевых функций, часть 1. М.: Изд-во иностр. лит., 1949. 798 с.
- 19. Карацуба А.А. Основы аналитической теории чисел. М.: Наука, 1983. 240 с.