ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ, 2022, том 62, № 3, с. 488–498

_____ МАТЕМАТИЧЕСКАЯ _____ ФИЗИКА

УДК 519.634

ПОЛУНЕЯВНЫЕ И ПОЛУДИСКРЕТНЫЕ РАЗНОСТНЫЕ СХЕМЫ ДЛЯ РЕШЕНИЯ НЕСТАЦИОНАРНОГО КИНЕТИЧЕСКОГО УРАВНЕНИЯ ПЕРЕНОСА ТЕПЛОВОГО ИЗЛУЧЕНИЯ И УРАВНЕНИЯ ЭНЕРГИИ

© 2022 г. Н. Я. Моисеев^{1,*}, В. М. Шмаков^{1,**}

¹ 456770 Снежинск, Челябинская обл., а/я 245, ул. Васильева, 13, ФГУП "РФЯЦ-ВНИИТФ им. академ. Е.И. Забабахина", Россия *e-mail: nik.moiseev.43@mail.ru **e-mail: v.m.shmakov@vniitf.ru Поступила в редакцию 11.03.2021 г. Переработанный вариант 12.08.2021 г. Принята к публикации 17.11.2021 г.

Представлены полунеявные и полудискретные разностные схемы повышенной точности для решения кинетических уравнений переноса теплового излучения и уравнения энергии модифицированным методом расшепления. Особенность схем состоит в том, что перенос теплового излучения рассчитывается по явным или неявным разностным схемам, которые аппроксимируют обычное уравнение переноса в частных производных. Взаимодействие излучения с веществом рассчитывается по неявным разностным схемам в полунеявных схемах и из аналитических решений обыкновенных дифференциальных уравнений в полудискретных схемах. Разностные схемы повышенной точности построены на основе метода Рунге–Кутты второго порядка. Решения находятся без внешних итераций по интегралу столкновений и без обращения матриц. Алгоритмы решения разностных уравнений позволяют проводить вычисления в параллельном режиме. Метод естественным образом обобщается на решение задач в многомерных пространствах. Библ. 35. Фиг. 3.

Ключевые слова: метод дискретных ординат, кинетические уравнения переноса теплового излучения и уравнения энергии, метод расщепления.

DOI: 10.31857/S0044466922030115

1. ВВЕДЕНИЕ

Одной из актуальных проблем при решении задач радиационной газовой динамики является проблема повышения точности и эффективности компьютерного моделирования в задачах переноса теплового излучения. В частности, эта проблема относится и к решению интегродифференциальных кинетических уравнений переноса теплового излучения и уравнения энергии в одномерном, двумерном и трехмерном пространствах. Подходы к решению этой проблемы описаны во многих монографиях, например, в [1]–[3].

Широко используемыми методами решения являются: методы дискретных ординат (*Sn*, *DSn*) (см. [1], [3], [4]), методы Фотрие (см. [5]) и Райбики (см. [6]), методы характеристик (см. [7], [8]), квазидиффузионные методы (см. [9], [10]), итерационные методы (см. [11]–[15]), методы расщепления (см. [16]–[20]) и т.д. Каждый метод обладает своими достоинствами и недостатками, которые известны и описаны во многих публикациях. Так, если систему уравнений решать методами Фотрие или Райбики, то приходится иметь дело с решением систем линейных алгебраических уравнений с полными матрицами взаимодействия между группами (см. [21]). Как следствие, в случае решения реальных задач требуются большие объемы оперативной памяти и большие временные затраты. Если решение находить итерационными методами по неявным разностным схемам, то основные трудности возникают со сходимостью внешних итераций по интегралу столкновений и независимому источнику в виде функции Планка. Итерации, как правило, сходятся медленно. Для повышения эффективности методов и ускорения сходимости итераций постоянно разрабатываются различные подходы и "ускорители" (см., например, [22]–[25]). Следует отметить работы [26]–[28], в которых оператор переноса рассчитывается по явной разностной схеме, а оператор взаимодействия излучения с веществом — по неявной разностной схеме.

В настоящей работе подробно рассмотрен вопрос построения полунеявных и полудискретных разностных схем повышенных порядков (второго и третьего) аппроксимации для решения интегродифференциальных кинетических уравнений переноса теплового излучения и уравнения энергии в многогрупповом приближении на основе модифицированного метода расщепления (см. [20]). Оператор взаимодействия излучения с веществом рассчитывается по разностной схеме, которая построена с использованием аналитических решений обыкновенных дифференциальных уравнений (ОДУ). Оператор переноса может рассчитываться по известным явным или неявным разностным схемам повышенной точности, например, по схемам из [29], [30]. Решения разностных уравнений находятся без итераций по интегралу столкновений и без обращения матриц.

Основные свойства и особенности численного метода демонстрируются на примерах решения модельной задачи. Результаты расчетов по предлагаемой методике хорошо согласуются с результатами, рассчитанными по методике из [15]. Расчеты модельной задачи показали работоспособность и эффективность предлагаемой методики.

2. РАЗНОСТНЫЕ СХЕМЫ ДЛЯ РЕШЕНИЯ КИНЕТИЧЕСКИХ УРАВНЕНИЙ ПЕРЕНОСА ТЕПЛОВОГО ИЗЛУЧЕНИЯ И УРАВНЕНИЯ ЭНЕРГИИ

2.1. Постановка задачи

Особенности подхода к численному решению кинетических уравнений переноса излучения и уравнения энергии в многогрупповом изотропном приближении рассмотрим на примерах решения задач для плоской геометрии. Систему уравнений запишем в виде

$$\frac{1}{c}\frac{\partial I_g}{\partial t} + \mu \frac{\partial I_g}{\partial x} + (\alpha_g + \beta_g)I_g = 0.5\alpha_g B_g + 0.5\beta_g U_g + 0.5f_g,$$

$$U_g = \int_{-1}^{1} I_g d\mu,$$

$$\frac{dE}{dt} = \sum_{g=1}^{G} \alpha_g (U_g - B_g).$$
(1)

Здесь t, x — независимые переменные по времени и по пространству, μ — косинус угла между вектором движения частиц (фотонов) и осью $x, -1 \le \mu \le 1, c$ — скорость света, g — индекс группы, $I_g(t, x, \mu)$ — интенсивность энергии излучения в группе $g, U_g(t, x)$ — плотность энергии излучения, умноженная на скорость света,

$$B_g = \frac{8\pi}{c^2 \overline{h}^3} \int_{\varepsilon_g}^{\varepsilon_{g+1}} \frac{\varepsilon^3}{\exp(\varepsilon/T) - 1} d\varepsilon$$

есть интенсивность равновесного излучения (функция Планка), умноженная на скорость света, \overline{h} – постоянная Планка, α_g , β_g – коэффициенты поглощения и рассеяния, f_g – функция источника. Разностная сетка по энергии фотонов включает *G* независимых групп с энергиями $\varepsilon_1...\varepsilon_g...\varepsilon_G$, ε_g – энергия фотонов. Разностная сетка по переменной μ с центрами $\mu_m = 0.5(\mu_{m+1/2} + \mu_{m-1/2})$ и шагами $\Delta \mu = \mu_{m+1/2} - \mu_{m-1/2}$, m = 1, 2, ..., M, включает *M* направлений движения частиц.

Система уравнений (1) замыкается уравнением состояния вещества в форме E = E(T). Предполагаем, что плотность вещества $\rho = 1$. Начальные условия: $T(0, x) = T^0(x)$, $I_g(0, x, \mu) = I_g^0(x, \mu)$.

Граничные условия: на левой границе – $I_g(t, x_L, \mu) = \varphi_L(t, x_L, \mu)$ для $\mu > 0$, на правой – $I_g(t, x_R, \mu) = \varphi_R(t, x_R, \mu)$ для $\mu < 0$, где $\varphi_L(t, x_L, \mu)$, $\varphi_R(t, x_R, \mu)$ – известные функции. Требуется найти решение системы уравнений (1) в области $D = \{x_L \le x \le x_R, -1 \le \mu \le 1\}$ для t > 0.

2.2. Полунеявные разностные схемы

Разностную схему для решения системы уравнений (1) будем конструировать на основе *Sn*-метода из [1] и методов из [16], [17], [20]. В пространстве (*t*, *x*) построим разностную сетку с шагами интегрирования τ , h_j вдоль координатных линий *t*, *x* соответственно. Границы ячеек разностной сетки с центрами в точках x_j обозначим как $x_{j-1/2}$, $x_{j+1/2}$, где *j* – индекс ячейки. Введем обозначения: E_j^{n+1} , E_j^n – удельные внутренние энергии вещества, T_j^{n+1} , T_j^n – температуры вещества, $I_{g,j}^{n+1}$, $I_{g,j}^n$ – интенсивности излучения, $U_{g,j}^{n+1}$, $U_{g,j}^n$ – плотности энергии излучения, $B_{g,j}^{n+1}$, $B_{g,j}^n$ – функции Планка, $\alpha_{g,j}^{n+1}$, $\alpha_{g,j}^n$ – коэффициенты поглощения, $\beta_{g,j}^{n+1}$, $\beta_{g,j}^n$ – коэффициенты рассеяния, $f_{g,j}^{n+1}$, $f_{g,j}^n$ – источники. Величины с индексами n + 1, n и с целым индексом *j* являются основными и относятся к центрам ячеек в моменты времени $t^{n+1} = t^n + \tau$ и t^n соответственно. Величины с дробными индексами $I_{g,j+1/2}$, $I_{g,j-1/2}$, которые будем называть "большими", как в схемах С.К. Годунова (см. [31]), являются вспомогательными и относятся к границам ячеек. В дальнейшем индекс *j* у величин в центрах ячеек опущен.

Проинтегрировав уравнения (1) по ячейке фазового пространства (*t*, *x*), заменив интеграл в (1) квадратурной формулой и применив теорему Гаусса–Остроградского, получим для вычисления основных величин систему разностных уравнений

$$I_{g}^{n+1} = \left\{ I_{g}^{n} - \frac{c\tau\mu}{h_{j}} (I_{g,j+1/2} - I_{g,j-1/2}) \right\} + c\tau [0.5(\alpha_{g}^{*}B_{g}^{*} + \beta_{g}^{*}U_{g}^{*} + f_{g}^{*}) - (\alpha_{g}^{*} + \beta_{g}^{*})I_{g}^{*}],$$

$$U_{g}^{n+1} = \int_{-1}^{1} I_{g}^{n+1}d\mu = \sum_{m=1}^{M} I_{g,m}^{n+1}\Delta\mu,$$

$$E^{n+1} = E^{n} + \tau \sum_{g=1}^{G} \alpha_{g}^{*}(U_{g}^{*} - B_{g}^{*}).$$
(2)

Здесь I_g^* , α_g^* , B_g^* , U_g^* – средние значения функций на интервале t^n , t^{n+1} . Эти величины относятся к временному слою $t^n + \tau^*$. Введем интенсивности $I_g^{n+1/2}$, где $0 \le \tau^* \le \tau$, которые вычисляются из выражения в фигурных скобках в (2) по разностным уравнениям

$$I_g^{n+1/2} = I_g^n - \frac{c\tau\mu}{h_j} (I_{g,j+1/2} - I_{g,j-1/2}).$$
(3)

Разностная схема (3) консервативная и аппроксимирует дифференциальное уравнение переноса в частных производных

$$\frac{1}{c}\frac{\partial I_g}{\partial t} + \mu \frac{\partial I_g}{\partial x} = 0.$$
(4)

Если "большие" величины $I_{g,j+1/2}$, $I_{g,j+1/2}$ вычисляются по величинам с нижнего временного слоя t^n , то разностная схема (3) будет явной. Шаг интегрирования по времени выбирается в этом случае из условия устойчивости схемы:

$$1 - \frac{c\tau\mu}{h_i} > 0 \Rightarrow \tau \le k \frac{h_i}{c\mu}, \quad 0 \le k \le 1.$$
(5)

Здесь k — коэффициент запаса устойчивости. Условие (5) — это обычное ограничение на шаг интегрирования по времени при решении гиперболических уравнений, которое не зависит от коэффициентов поглощения.

Если интенсивности $I_g^{n+1/2}$ вычисляются по величинам с верхнего временного слоя t^{n+1} , то схема (3) будет неявной без ограничения на выбор шага интегрирования по времени. Однако известно, что для обеспечения точности в неявных разностных схемах желательно, чтобы число Куранта было близким к единице.

В дальнейшем предполагаем, что интенсивности $I_g^{n+1/2}$ находятся по какой-либо известной разностной схеме повышенной точности, которая аппроксимирует уравнение переноса (4).

Подставив выражение для I_g^{n+1} из первого уравнения (2) в квадратурную формулу для U_g^{n+1} второго уравнения (2), получим с учетом введенной интенсивности $I_g^{n+1/2}$ эквивалентную систему разностных уравнений, которую запишем в виде

$$\frac{I_g^{n+1} - I_g^{n+1/2}}{c\tau} + (\alpha_g^* + \beta_g^*)I_g^* = 0.5\alpha_g^*B_g^* + 0.5\beta_g^*U_g^* + 0.5f_g^*,$$

$$\frac{U_g^{n+1} - U_g^{n+1/2}}{c\tau} = -\alpha_g^*(U_g^* - B_g^*) + f_g^*, \quad U_g^{n+1/2} = \sum_{m=1}^M I_g^{n+1/2}\Delta\mu,$$

$$E^{n+1} = E^n + \frac{1}{c}\sum_{g=1}^G c\tau\alpha_g^*(U_g^* - B_g^*).$$
(6)

Особенность разностной схемы (6) в том, что плотность энергии излучения U_g^{n+1} вычисляется из разностного уравнения, а не по квадратурной формуле, как в системе уравнений (2). Решение системы уравнений (6) в этом случае не вызывает затруднений и находится без итераций по интегралу столкновений и без обращения матриц.

Первые дифференциальные приближения (ПДП) (см. [32]) разностной схемы (6) запишем в виде

$$\frac{1}{c}\frac{dI_g}{dt} + (\alpha_g + \beta_g)I_g = 0.5(\alpha_g B_g + \beta_g U_g + f_g) + (\tau^* - 0.5\tau)\frac{dF_1}{dt},$$

$$\frac{dU_g}{dt} = -\alpha_g(U_g - B_g) + f_g + (\tau^* - 0.5\tau)\frac{dF_2}{dt},$$

$$\frac{dE}{dt} = \sum_{g=1}^G \alpha_g(U_g - B_g) + \sum_{g=1}^G (\tau^* - 0.5\tau)\frac{dF_2}{dt},$$

$$= 0.5(\alpha_g B_g + \beta_g U_g + f_g) - (\alpha_g + \beta_g)I_g, \quad F_2 = -\alpha_g(U_g - B_g) + f_g.$$
(7)

Из ПДП (7) следует, что разностная схема (6) аппроксимирует систему ОДУ

 F_1

$$\frac{1}{c}\frac{dI_g}{dt} + (\alpha_g + \beta_g)I_g = 0.5(\alpha_g B_g + \beta_g U_g + f_g),$$

$$\frac{1}{c}\frac{dU_g}{dt} = -\alpha_g(U_g - B_g) + f_g,$$

$$\frac{dE}{dt} = \sum_{g=1}^G \alpha_g(U_g - B_g)$$
(8)

с первым порядком по времени. Начальные данные для первых двух уравнений в (8) — это решения уравнения переноса (4).

Погрешность аппроксимации разностной схемы (6) зависит от выбора величин $I_g^*, \alpha_g^*, B_g^*, U_g^*$. Если $\tau^* = \tau$, то величины $I_g^*, \alpha_g^*, B_g^*, U_g^*$ вычисляются по величинам с верхнего временного слоя $I_g^{n+1}, \alpha_g^{n+1}, B_g^{n+1}, U_g^{n+1}$. Разностная схема (6) будет неявной схемой Эйлера, которая аппроксимирует ОДУ (8) с первым порядком по времени с погрешностью $O(\tau)$.

Просуммировав по всем группам второе уравнение в (8) и сложив результат с уравнением энергии в (8), получим для суммарной удельной внутренней энергии вещества и энергии излучения ОДУ

$$\frac{d}{dt}\left(E+\frac{1}{c}\sum_{g=1}^{G}U_{g}\right)=\sum_{g=1}^{G}f_{g},$$

ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ том 62 № 3 2022

первый интеграл которого записывается в виде

$$\left(E^{n+1} + \frac{1}{c}\sum_{g=1}^{G}U_{g}^{n+1}\right) - \left(E^{n} + \frac{1}{c}\sum_{g=1}^{G}U_{g}^{n+1/2}\right) = \sum_{g=1}^{G}\int_{t^{n}}^{t^{n+1}}f_{g}(\tau)d\tau.$$
(9)

Следовательно, в системе ОДУ (8) изменение суммарной удельной внутренней энергии вещества и энергии излучения за промежуток времени τ равно энергии, вложенной от внешних источников за время τ . Разностная схема (9) является консервативной. Аналогичное уравнение и вывод можно получить и в разностной схеме (6) из анализа двух последних уравнений в (6). Поэтому температуру T^{n+1} вещества будем находить из решения уравнения (9) методом Ньютона, как в [20].

Вычитая первое уравнение в (8) из второго, умноженного на 0.5, получим ОДУ

$$\frac{1}{c}\frac{d(0.5U_g - I_g)}{dt} = -(\alpha_g - \beta_g)(0.5U_g - I_g),$$

решение которого выписывается в квадратурах. Это решение позволяет получить для вычисления интенсивности энергии излучения дополнительное уравнение

$$I_{g}^{n+1} = 0.5U_{g}^{n+1} - (0.5U_{g}^{n+1/2} - I_{g}^{n+1/2}) \exp\left(-c \int_{t^{n}}^{t^{n+1}} (\alpha_{g} - \beta_{g}) d\tau\right),$$

которое можно использовать для контроля точности или как основное уравнение для вычисления интенсивности энергии излучения I_g^{n+1} . Здесь плотность энергии излучения U_g^{n+1} находится из решения второго уравнения в (6).

Если интенсивности $I_g^{n+1/2}$ находятся по явной разностной схеме (3), а интенсивности I_g^{n+1} – по неявной разностной схеме (6), то разностную схему (3), (6) будем называть полунеявной разностной схемой.

Основное достоинство представленных полунеявных разностных схем — это то, что решения находятся без итераций по интегралу столкновений и могут быть найдены в параллельном режиме.

2.3. Полунеявные разностные схемы повышенной точности

Известно, что разностные схемы Эйлера первого порядка точности для решения "жестких" ОДУ не эффективны и малопригодны (см. [33]). Поэтому для решения ОДУ желательно применять разностные схемы повышенной точности, например, схемы Рунге–Кутты второго порядка, в которых решения находятся по схеме предиктор-корректор. Рассмотрим построение такой схемы для решения системы ОДУ (8). В дальнейшем, не нарушая общности изложения, предположим, что источники $f_g = 0$. Из ПДП (7) следует, что, если величины I_g^* , α_g^* , B_g^* , U_g^* вычислять в момент времени $\tau^* = 0.5\tau$, то разностная схема (6) аппроксимирует ОДУ (8) со вторым порядком по времени с погрешностью $O(\tau^2)$. Для реализации такой схемы температура T^* вещества в общем случае предварительно вычисляется на этапе предиктор в момент времени $t^* = t^n + \tau^*$, $\tau^* \ge 0.5\tau$ из уравнения энергии (9), которое запишем в виде

$$E^* = E^n + \frac{1}{c} \sum_{g=1}^G (1 - \xi_1) (U_g^{*, n+1/2} - B_g^*), \quad \xi_1 = \frac{1}{1 + c\tau^* \alpha_g^*}.$$
 (10)

Уравнение (10) получено из уравнения энергии в (9) после подстановки выражения для плотности энергии излучения U_g^{n+1} из второго уравнения в (6). Вспомогательные плотности энергии излучения $U_g^{*,n+1/2}$ вычисляются приближенно линейной интерполяцией по формуле

$$U_g^{*,n+1/2} = (1 - \xi_3) U_g^n + \xi_3 U_g^{n+1/2}, \quad 0 \le \xi_3 \le 1,$$

в момент времени $t^* = t^n + \tau^*$. Здесь ξ_3 – параметр, который подбирается, исходя из какого-либо условия, например, $\xi_3 = \tau^*/\tau$. Вычислив температуру вещества T^* из уравнения (10), удельные внутренние энергии E^{n+1} и интенсивности I_g^{n+1} найдем на этапе корректор в момент времени $t^{n+1} = t^n + \tau$ из разностных уравнений, которые запишем в виде

$$E^{n+1} = E^{n} + \frac{1}{c} \sum_{g=1}^{G} (1 - \xi_{1}) (U_{g}^{n+1/2} - B_{g}^{*}),$$

$$I_{g}^{n+1} = \frac{I_{g}^{n+1/2} + 0.5c\tau(\alpha_{g}^{*} + \beta_{g}^{*})((1 - \xi_{2})B_{g}^{*} + \xi_{2}U_{g}^{n+1/2})}{1 + c\tau(\alpha_{g}^{*} + \beta_{g}^{*})},$$

$$\xi_{1} = \frac{1}{1 + c\tau\alpha_{g}^{*}}, \quad \xi_{2} = \frac{\beta_{g}^{*}}{\alpha_{g}^{*} + \beta_{g}^{*}}.$$
(11)

Здесь величины B_g^* , α_g^* , β_g^* вычисляются по температуре T^* в момент времени $t^* = t^n + \tau^*$. Разностная схема (10), (11) – это схема предиктор-корректор повышенной точности.

Из практики известно, что, если $\tau^* = \tau$, то решения, как правило, монотонные. Это следует и из того, что коэффициенты в разностных схемах положительные. Однако, если $\tau^* = 0.5\tau$, то решения могут оказаться немонотонными. В этом случае параметр τ^* полагается равным $\tau^* = \xi \tau$, где $0.5 < \xi \le 1$, и подбирается так, чтобы решение стало монотонным. Это известный прием подавления осцилляций в гибридных разностных схемах (см. [34]).

2.4. Полудискретные разностные схемы

Поскольку разностные уравнения (6) аппроксимируют ОДУ (8), то можно рассмотреть подход, в котором интенсивности I_g^{n+1} и удельные внутренние энергии вещества E^{n+1} вычисляются из аналитических решений ОДУ (8). Такой подход к повышению точности разностных схем отмечается в [3], где утверждается, что в этом случае решения оказываются более точными, чем решения, полученные по разностной схеме. Проинтегрировав по времени ОДУ (8), с учетом того, что первые два уравнения линейные относительно неизвестных I_g , U_g , получим для вычисления основных величин I_g , U_g , E следующие уравнения:

$$I_{g}(t) = \gamma_{2}I_{g}(t_{0}) + 0.5\gamma_{2}\int_{t_{0}}^{t} c(\alpha_{g} + \beta_{g})[(1 - \lambda)B_{g} + \lambda U_{g}]\exp(c(\alpha_{g} + \beta_{g})\tau)d\tau,$$

$$U_{g}(t) = \gamma_{1}U_{g}(t_{0}) + \gamma_{1}\int_{t_{0}}^{t} c\alpha_{g}B_{g}\exp(c\alpha_{g}\tau)d\tau,$$

$$E(t) = E(t_{0}) + \sum_{g=1}^{G}\int_{t_{0}}^{t} \alpha_{g}(U_{g} - B_{g})d\tau,$$

$$\gamma_{1} = \exp(-ct\alpha_{g}), \quad \gamma_{2} = \exp(-c(\alpha_{g} + \beta_{g})t), \quad \lambda = \frac{\beta_{g}}{\alpha_{g} + \beta_{g}}.$$
(12)

В общем случае интегралы вычисляются приближенно по квадратурным формулам. В частном случае, если коэффициенты поглощения, рассеяния и функция Планка постоянные, то интегралы в (12) берутся в квадратурах, которые запишем в виде

$$I_g(t) = \gamma_2 I_g^{n+1/2} + 0.5(\gamma_1 - \gamma_2) U_g^{n+1/2} + 0.5(1 - \gamma_1) B_g,$$

ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ том 62 № 3 2022

$$U_{g}(t) = \gamma_{1}U_{g}^{n+1/2} + (1 - \gamma_{1})B_{g},$$

$$E(t) = E(t_{0}) + \frac{1}{c}\sum_{g=1}^{G}(1 - \gamma_{1})(U_{g}^{n+1/2} - B_{g}),$$

$$\gamma_{1} = \exp(-ct\alpha_{g}), \quad \gamma_{2} = \exp(-ct(\alpha_{g} + \beta_{g})).$$
(13)

Аналитические решения (13) будем использовать при построении разностных схем. Пусть $t \equiv t^{n+1}, t_0 \equiv t^n$. Зафиксируем температуру $T = T^*$ в момент времени $t^* = t^n + \tau^*, 0 \leq \tau^* \leq \tau$. При построении разностных схем предполагается, что коэффициенты поглощения, рассеяния и функция Планка усредняются по фиксированной температуре T^* и остаются постоянными на интервале [t^n, t^{n+1}]. Следовательно, численные решения можно найти из уравнений (13) в момент времени t^{n+1} , которые записываются в виде

$$E^{n+1} = E^{n} + \frac{1}{c} \sum_{g=1}^{G} (1 - \gamma_{1}) (U_{g}^{n+1/2} - B_{g}^{*}),$$

$$I_{g}^{n+1} = \gamma_{2} I_{g}^{n+1/2} + 0.5(\gamma_{1} - \gamma_{2}) U_{g}^{n+1/2} + 0.5(1 - \gamma_{1}) B_{g}^{*},$$

$$\gamma_{1} = \exp(-c\tau \alpha_{g}^{*}), \quad \gamma_{2} = \exp(-c\tau (\alpha_{g}^{*} + \beta_{g}^{*})).$$
(14)

Если $\tau^* = \tau$, то температура $T^* = T^{n+1}$ находится из уравнения энергии (14) в момент времени $t^{n+1} = t^n + \tau$. Величины α_g^* , β_g^* , B_g^* вычисляются по температуре T^{n+1} . Интегралы в (12) вычисляются по квадратурным формулам методом правых прямоугольников с погрешностью $O(\tau)$.

Если $\tau^* = 0.5\tau$, то интегралы в (12) вычисляются по квадратурным формулам методом средних с погрешностью $O(\tau^2)$. Для реализации такой схемы температура $T^* = T^{n+1/2}$ вещества предварительно вычисляется на этапе предиктор в момент времени $t^{n+1} = t^n + 0.5\tau$ из уравнения энергии в (14), которое записывается в виде

$$E^{n+1/2} = E^{n} + \frac{1}{c} \sum_{g=1}^{G} (1 - \gamma_{1}) (U_{g}^{*n+1/2} - B_{g}^{n+1/2}),$$

$$\gamma_{1} = \exp(-c\tau^{*} \alpha_{g}^{n+1/2}), \quad \tau^{*} = 0.5\tau.$$
(15)

Величины α_g^* , β_g^* , B_g^* вычисляются по температуре $T^* = T^{n+1/2}$. Удельные внутренние энергии E^{n+1} и интенсивности I_g^{n+1} находятся из явных разностных уравнений (14) на этапе корректор в момент времени $t^{n+1} = t^n + \tau$. В результате получаем разностную схему (15), (14) типа предиктор-корректор повышенной точности.

Если для вычисления интегралов в (12) применить двухточечную формулу Гаусса (см. [33]), которая имеет погрешность $O(\tau^3)$, то на этапе предиктор необходимо вычислить два набора вспомогательных температур $T_1^{n+1/2}$, $T_2^{n+1/2}$ из уравнения (15) в моменты времени

$$t_1^{n+1/2} = t^n + 0.5\tau - \frac{\tau}{2\sqrt{3}}, \quad t_2^{n+1/2} = t^n + 0.5\tau + \frac{\tau}{2\sqrt{3}}$$

соответственно. Подынтегральная функция в этом случае усредняется по формуле

$$F = 0.5(F(T_2^{n+1/2}) + F(T_1^{n+1/2}))$$

Поскольку разностные схемы (14), (15) получены из аналитических решений (14), то разностные схемы (3), (14), (15) будем называть полудискретными разностными схемами повышенной точности.

При вычислении интегралов в (12) приближенно по квадратурным формулам коэффициенты поглощения, рассеяния и функция Планка полагаются равными усредненным значениям на ин-

тервале интегрирования $[t^n, t^{n+1}]$. Очевидно, что, если шаг интегрирования по времени $\tau = t^{n+1} - t^n$ большой и функции резко изменяются, то усреднение может оказаться грубым. Следовательно, численное решение будет найдено с большой погрешностью. Погрешность можно уменьшить, если интегралы в (12) вычислять по обобщенной квадратурной формуле с шагом интегрирова-

ния $\tilde{\tau} < \tau$, разбив интервал интегрирования $[t^n, t^{n+1}]$ на K подынтервалов. В этом случае интегралы в (12) представляются в виде суммы интегралов, которые вычисляются на этих подынтерва-

лах. На этапе предиктор дополнительно вычисляются температуры $T^{k+1/2}$ в точках $\tau_k^* = k\tilde{\tau}$, $\tau_k^* = (k - 0.5)\tilde{\tau}$, k = 1, 2, ..., K, в схемах первого и второго порядков точности соответственно.

Для обеспечения гарантированной точности в схемах (9), (14) вычисления в каждой точке желательно проводить с контролем точности. Например, иметь критерий точности или проводить два расчета с шагами интегрирования τ и 0.5 τ . Если различие результатов расчетов не превосходит заданной величины, то решение получено с заданной точностью. В противном случае шаг уменьшается в 2 раза и расчет повторяется. В обоих случаях такая технология счета обеспечит гарантированную точность и эффективность расчетов.

3. ВЕРИФИКАЦИЯ ПРОГРАММЫ И МЕТОДИКИ

Работоспособность представленной методики и программы проверялась путем сравнения результатов расчетов модельной задачи на сходимость с результатами, которые получены по методике из [15] на разностной сетке с шагом интегрирования по пространству h = 0.000125. Расчеты на сходимость проведены на последовательности сгущающихся разностных сетках с шагами интегрирования по пространству $h_{i+1} = 0.5h_i$, $h_0 = 0.002$, i = 0,1,...,5, которым соответствует число интервалов 100, 200, 400 и т.д. Шаги интегрирования по времени выбирались из условия устойчивости (5) с коэффициентами запаса k = 1, k = 0.25. В расчетах перенос излучения рассчитывался по явной разностной схеме повышенной точности из [29]. Коэффициент интерполяции $\xi_3 = 0.0625$.

3.1. Постановка модельной задачи

На левую границу (x = 0) плоского слоя толщиной 0.2 см падает планковский поток излучения, соответствующий температуре вещества T = 10 кэВ. На правой границе (x = 0.2) задается условие свободной поверхности $I_g(t) = 0$ для $\mu > 0$. Слой состоит из двух физических областей. Коэффициент поглощения взят из [35] и вычисляется в первой области по формуле

$$\alpha_{g} = \begin{cases} \frac{27(1 - e^{-\varepsilon_{g}/T})}{\varepsilon_{g}^{3}}, & 0 \le x \le 0.1, & \varepsilon_{g} \le 30\\ 10000.0, & 0 \le x \le 0.1, & \varepsilon_{g} > 30, \end{cases}$$

во второй области -

$$\alpha_g = \frac{0.001(1 - e^{-\varepsilon_g/T})}{\varepsilon_g^3}, \quad 0.1 \le x \le 0.2.$$

Коэффициент рассеяния $\beta_g = 0$. Начальная температура вещества T = 0.001 кэВ. Уравнение состояния вещества E = 0.81Т. По энергии фотонов взято 15-групповое приближение из [9] с границами интервалов, умноженными на 10: [0, 3, 6, 8, 12, 15, 18, 24, 27, 30, 40, 50, 70, 90, 110, 150]. Средние значения энергии в группах относятся к центрам интервалов и равны полусумме значений энергий на границах интервалов. Надо найти состояние системы в момент времени t = 0.002.

3.2. Результаты расчетов по полунеявным и полудискретым разностным схемам

Представим результаты расчетов по полунеявным и полудискретным разностным схемам предиктор-корректор повышенной точности в момент времени t = 0.002. Температура веще-

Фиг. 1. Зависимости от *x* температур вещества в расчетах на сходимость: (a) -k = 1, (б) -k = 0.25.

Фиг. 2. Зависимости от *x* температур излучения в расчетах на сходимость: (a) -k = 1, (b) -k = 0.25.

ства $T^{n+1/2}$ вычисляется в момент времени $t^{n+1/2} = t^n + \tau^{n+1/2}$, где $\tau^{n+1/2} = 0.78\tau$. Параметр $\tau^{n+1/2}$ подобран так, чтобы решения уравнения энергии оставались монотонными. Результаты расчетов по полунеявным и полудискретным разностным схемам близки между собой. Поэтому на графиках приведены результаты расчетов по полудискретным разностным схемам. Разностные схемы повышенной точности обозначим символом C_2^3 , а на фиг. 1–3 – С32. Это означает, что разностная схема аппроксимирует уравнение переноса (4) на гладких решениях с третьим порядком по времени и по пространству, а уравнение энергии со вторым порядком по времени. На фиг. 1, 2 методика из [15] обозначена аббревиатурой "era".

Зависимости от *x* температур вещества в расчетах задачи на сходимость по полудискретной разностной схеме C_2^3 приведены на фиг. 1 в момент времени *t* = 0.002.

Зависимости от *x* температур излучения в расчетах задачи на сходимость по полудискретной разностной схеме C_2^3 приведены на фиг. 2 в момент времени *t* = 0.002.

Результаты расчетов входящих и выходящих спектральных потоков излучения по полудискретной схеме C_2^3 представлены на фиг. 3 в момент времени t = 0.002. Графики потоков, рассчитанные с коэффициентами запаса k = 1, k = 0.25, практически совпадают между собой. Поэтому приведены результаты расчетов с коэффициентом запаса k = 1.

Из фиг. 1–3 следует, что результаты расчетов температуры вещества, температуры излучения и выходящего спектрального потока излучения по полудискретной разностной схеме (3), (14) удовлетворительно согласуются с результатами расчетов по методике из [15]. Времена расчетов в последовательном режиме по обеим методикам сравнимы между собой.

Фиг. 3. Зависимости от є спектральных потоков излучения: квадраты — входящий поток, кружки и треугольники — выходящий.

4. ЗАКЛЮЧЕНИЕ

Построены полунеявные и полудискретные разностные схемы предиктор-корректор повышенной точности для решения кинетических уравнений переноса теплового излучения и уравнения энергии в многогрупповом изотропном приближении.

Результаты расчетов модельной задачи по полунеявным и полудискретным разностным схемам повышенной точности удовлетворительно согласуются между собой и с результатами расчетов, которые получены по методике из [15].

Показано, что решение кинетических уравнений переноса теплового излучения и уравнения энергии по полунеявным и полудискретным разностным схемам повышенной точности можно получить без итераций по интегралу столкновений и без обращения матриц.

Алгоритм решения системы ОДУ для учета взаимодействия излучения с веществом не зависит от размерности пространства и может применяться в одномерном, двумерном и трехмерном пространствах.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Карлсон Б., Белл Дж*. Решение транспортного уравнения Sn-методом. Физика ядерных реакторов. М.: Атомиздат, 1959. С. 408–432.
- 2. Бай Ши-и. Динамика излучающего газа. М.: Мир, 1968.
- 3. Четверушкин Б.Н. Математическое моделирование задач динамики излучающего газа. М.: Наука, 1985.
- 4. Басс Л.П., Волощенко А.М., Гермогенова Т.А. Методы дискретных ординат в задачах о переносе излучения. М.: ИПМ им. М.В. Келдыша РАН, 1986.
- 5. *Featrier P.C.R.* Sur la resolution numerique de l'equation de transfert // Acad. Sci. Paris. 1964. V. 258. P. 3198–3210.
- Rybicki G. A modified Feautrier method // J. of Quantitative Spectroscopy and Radiative Transfer. 1971. V. 11. P. 589–596.
- 7. *Владимиров В.С.* Численное решение уравнения для сферы // Вычисл. матем. М.: ВЦ АН СССР, 1958. С. 3–33.
- 8. *Никифорова А.В., Тарасов В.А., Трощиев В.Е.* О решении кинетических уравнений дивергентным методом характеристик // Ж. вычисл. матем. и матем. физ. 1972. Т. 12. № 4. С. 1041–1048.
- 9. Гольдин В.Я. Квазидиффузионный метод решения кинетического уравнения // Ж. вычисл. матем. и матем. физ. 1964. Т. 4. № 6. С. 1070–1087.
- Карлыханов Н.Г. Применение метода квазидиффузии для решения задач переноса излучения // Вопросы атомной науки и техники. Сер. Матем. моделирование физ. процессов. 2010. Вып. 1. С. 32–38.
- 11. *Гусев В.Ю., Козманов М.Ю., Рачилов Е.Б.* Метод решения неявных разностных уравнений, аппроксимирующих системы уравнений переноса и диффузии излучения // Ж. вычисл. матем. и матем. физ. 1984. Т. 24. № 12. С. 1842–1849.

- Долголёва Г.В. Численное решение системы уравнений, описывающей перенос излучения и взаимодействие его с веществом // Вопросы атомной науки и техники. Сер. Матем. моделирование физ. процессов. 1991. Вып. 1. С. 58–60.
- 13. Федотова Л.П., Шагалиев Р.М. Конечно-разностный метод КМ-метод для двумерных нестационарных процессов переноса в многогрупповом кинетическом приближении // Матем. моделирование. 1991. Т. 3. № 6. С. 29–41.
- 14. *Анистратов Д.Ю., Аристова Е.Н., Гольдин В.Я*. Нелинейный метод решения задач переноса излучения в среде // Матем. моделирование. 1996. Т. 8. № 12. С. 3–28.
- 15. *Карлыханов Н.Г.* Построение оптимальных многодиагональных методов решения задач переноса излучения // Ж. вычисл. матем. и матем. физ. 1997. Т. 37. № 4. С. 494–498.
- 16. *Марчук Г.И., Яненко Н.Н.* Решение многомерного кинетического уравнения методом расщепления // Докл. АН СССР. 1964. Т. 157. № 6. С. 1291–1292.
- 17. Яненко Н.Н. Метод дробных шагов решения многомерных задач математической физики. Новосибирск: Наука, 1967.
- 18. Марчук Г.И. Методы расщепления. М.: Наука, 1988.
- 19. Самарский А.А., Вабищев П.Н. Аддитивные схемы для задач математической физики. М.: Наука, 2001.
- 20. *Моисеев Н.Я*. Модифицированный метод расщепления по физическим процессам для решения уравнений радиационной газовой динамики // Ж. вычисл. матем. и матем. физ. 2017. Т. 57. № 2. С. 303–315.
- 21. Михалс Д. Звездные атмосферы. М.: Мир, 1982.
- 22. *Alcouff R.E.* A stable diffusion synthetic acceleration method for neutron transport iterations // Trans. Am. Nucl. Soc. 1976. V. 23. P. 203.
- 23. *Alcouff R.E., McCoy D.R., Larsen E.W.* Finite difference effects in the synthetic acceleration method // Trans. Am. Nucl. Soc. 1981. V. 39. P. 462.
- 24. Гаджиев А.Д., Селезнёв В.Н., Шестаков А.А. DS-п метод с искусственной диссипацией и ВДМ-метод ускорения итераций для численного решения двумерного уравнения переноса теплового излучения в кинетической модели // Вопросы атомной науки и техники. Сер. Матем. моделирование физ. процессов. 2003. Вып. 4. С. 33–46.
- 25. Завьялов В.В., Шестаков А.А. Выделение диагонального элемента для ускорения итераций в кинетическом приближении при расчете теплопереноса // Матем. моделирование. 2010. Т. 22. № 2. С. 93–104.
- 26. *Klar A*. An asymtotic-induced scheme for nonstationary transport equations in the diffusive limit // SIAM J. 1998. Numer. Anal. V. 35. № 3. P. 1073–1078.
- 27. *Klar A., Unterreiter A.* Uniform stability of a finite difference scheme for transport equations in diffusive regimes // SIAM J. 2002. Numer. Anal. V. 40. № 3. P. 891–913.
- 28. *McClarren R.G., Evans T.M., Lowrie R.B., Densmore J.D.* Semi-implicit time integration for *P_N* thermal radiative transfer // J. of Comp. Phys. 2008. V. 227. Iss. 16. P. 7561–7586.
- 29. *Моисеев Н.Я., Силантьева И.Ю.* Разностные схемы произвольного порядка аппроксимации для решения линейных уравнений переноса с постоянными коэффициентами методом Годунова с антидиффузией // Ж. вычисл. матем. и матем. физ. 2008. Т. 48. № 7. С. 1282–1293.
- 30. *Моисеев Н.Я.* Неявные разностные схемы бегущего счета повышенной точности // Ж. вычисл. матем. и матем. физ. 2011. Т. 51. № 5. С. 920–935.
- 31. Годунов С.К., Забродин А.В., Прокопов Г.П., Иванов М.Я. Численное решение многомерных задач газовой динамики. Под ред. С.К. Годунова. М.: Наука, 1976.
- 32. Шокин Ю.И. Метод дифференциального приближения. Новосибирск: Наука, 1979.
- 33. Каханер Д., Моулер К., Неш С. Численные методы и программное обеспечение. М.: Мир, 2001.
- 34. *Федоренко Р.П.* Применение разностных схем высокой точности для решения гиперболических уравнений // Ж. вычисл. матем. и матем. физ. 1962. Т. 2. № 6. С. 1122–1128.
- 35. *Fleck J.F., Cummings J.D., Jr.,* An implicit Monte-Carlo scheme for calculating time and frequency dependent radiation transport // J. Comp. Phys. 1971. V. 8. № 3. P. 313–342.