УРАВНЕНИЯ В ЧАСТНЫХ ПРОИЗВОДНЫХ

УДК 519.642

ПРИБЛИЖЕННЫЙ МЕТОД РЕШЕНИЯ КРАЕВЫХ ЗАДАЧ С ПОДВИЖНЫМИ ГРАНИЦАМИ ПУТЕМ СВЕДЕНИЯ К ИНТЕГРОДИФФЕРЕНЦИАЛЬНЫМ УРАВНЕНИЯМ

© 2022 г. В. Л. Литвинов^{1,*}, К. В. Литвинова^{2,**}

¹ 119991 Москва, Воробьевы горы, 1, МГУ им. М.В. Ломоносова, Россия ² 443100 Самара, ул. Молодогвардейская, 244, СамГТУ, Россия *e-mail: vladlitvinov@rambler.ru **e-mail: kristinalitvinova900@rambler.ru Поступила в редакцию 24.12.2021 г. Переработанный вариант 30.01.2022 г. Принята к публикации 11.02.2022 г.

Задача о колебаниях тел с подвижными границами, сформулированная в виде дифференциального уравнения с граничными и начальными условиями, является неклассическим обобщением гиперболической задачи. Для облегчения построения решения этой задачи и обоснования выбора вида решения строятся эквивалентные интегродифференциальные уравнения с симметричными и нестационарными ядрами и нестационарными пределами интегрирования. Преимущества метода интегродифференциальных уравнений раскрываются при переходе к более сложным динамическим системам, несущим сосредоточенные массы, колеблющиеся под действием подвижных нагрузок. Метод распространен на более широкий класс модельных краевых задач, учитывающих изгибную жесткость, сопротивление внешней среды и жесткость основания колеблющегося объекта. Решение приводится в безразмерных переменных с точностью до значений второго порядка малости относительно малых параметров, характеризующих скорость движения границы. Находится приближенное решение задачи о поперечных колебаниях каната грузоподъемной установки, обладающего изгибной жесткостью, один конец которого наматывается на барабан, а на втором закреплен груз. Библ. 22.

Ключевые слова: резонансные свойства, колебания систем с подвижными границами, законы движения границ, интегродифференциальные уравнения, амплитуда колебаний.

DOI: 10.31857/S0044466922060126

1. ВВЕДЕНИЕ

Среди всего множества задач динамики упругих систем с точки зрения технических приложений весьма актуальными являются задачи о колебаниях в системах с изменяющимися во времени геометрическими размерами. В технике широко распространены системы, границы которых подвижны (канаты грузоподъемных установок [1]–[8], гибкие передаточные звенья [4], [6], [9], бурильные колонны [10], твердотопливные стержни [10], [11] и др.). Исследования многих авторов по динамике подъемных канатов привели к необходимости постановки новых задач механики о динамике одномерных объектов переменной длины. В математической постановке это сводится к новым задачам математической физики – к исследованию соответствующих уравнений гиперболического типа в переменных диапазонах изменения обоих аргументов. Наличие подвижных границ вызывает значительные трудности при описании таких систем, поэтому здесь в основном используются приближенные методы решения [1]–[10], [12]–[18].

Из аналитических методов наиболее эффективным является метод, предложенный в [19], [20], заключающийся в подборе новых переменных, оставляющих волновое уравнение инвариантным. В [21] решение ищется в виде суперпозиции двух волн, бегущих навстречу друг другу. Эффективен также метод, использованный в [22], заключающийся в замене геометрической переменной чисто мнимой, что позволяет свести волновое уравнение к уравнению Лапласа и применить методологию теории функций комплексного переменного для решения. Однако точные методы решения ограничены волновым уравнением и относительно простыми граничными условиями.

Из приближенных методов наиболее эффективным является метод Канторовича – Галеркина [10], [14], а также метод построения решений интегродифференциальных уравнений, описанный в данной статье. Задача о колебаниях тел с подвижными границами, сформулированная в виде дифференциального уравнения с граничными и начальными условиями, является неклассическим обобщением гиперболической задачи. Для облегчения построения решения этой задачи и обоснования выбора вида решения строятся эквивалентные интегродифференциальные уравнения с симметричными и нестационарными ядрами и нестационарными пределами интегрирования. Построение интегродифференциальных уравнений движения объектов переменной длины основано на прямом интегрировании дифференциальных уравнений в сочетании со стандартной заменой искомой функции новой переменной.

В тривиальных случаях методы интегральных уравнений не имеют преимущества перед методом дифференциальных уравнений применительно к исследованию колебаний системы с бесконечным числом степеней свободы [4], [6]. Преимущества метода интегродифференциальных уравнений раскрываются при переходе к более сложным динамическим системам, несущим сосредоточенные массы, колеблющимся под действием движущихся нагрузок и т.д. Эти методы могут быть весьма плодотворными применительно к динамике канатов переменной длины и другим механическим объектам с движущимися границами.

В данной работе метод построения решений интегродифференциальных уравнений распространен на более широкий класс модельных краевых задач, учитывающих изгибную жесткость колеблющегося объекта [5], [7], [11], сопротивление внешней среды [11] и жесткость основания (подложки) объекта [4], [6]. Особое внимание уделено рассмотрению наиболее распространенного на практике случая, когда на границах действуют внешние возмущения. При фиксированной длине объекта построенные интегродифференциальные уравнения переходят в классические уравнения Фредгольма II рода.

2. ПОСТАНОВКА ЗАДАЧИ

Дифференциальное уравнение движения механических объектов переменной длины имеет вид [9]

$$U_{\tau\tau}(\xi,\tau) + L[U(\xi,\tau)] = \varphi(\xi,\tau). \tag{1}$$

Граничные условия

$$Y_{ji}\left[U\left(\ell_{j}(\varepsilon\tau),\tau\right)\right] = F_{ji}(\tau);$$

$$i = \overline{1,m}; \quad j = \overline{1,2}.$$
(2)

Начальные условия

$$U(\xi, 0) = \Phi_0(\xi); \quad U_{\tau}(\xi, 0) = \Phi_1(\xi).$$
(3)

Здесь $U(\xi, \tau)$ — функция продольного или поперечного смещения объекта от положения равновесия, τ — безразмерное время, ξ — безразмерная пространственная координата; L — линейный однородный дифференциальный оператор по ξ второго либо четвертого порядка; Y_{ji} — линейные однородные дифференциальные операторы по ξ до второго порядка включительно; $\varphi(\xi, \tau)$ — заданные функции класса C; $\Phi_0(\xi)$, $\Phi_1(\xi)$, $F_{ji}(\tau)$ — заданные функции класса C^2 ; $\ell_j(\varepsilon\tau) = 1 + \varepsilon\tau$ — равномерный закон движения границы; ε — малый параметр ($\varepsilon = V/a$, V и a — заданные скорости движения границы и распространения колебаний соответственно).

Движение границ по закону $\ell_i(\varepsilon \tau)$ соответствует режиму медленного движения.

Дифференциальное уравнение (1) и граничные условия (2) описывают широкий ряд математических моделей для анализа одномерных краевых задач с движущимися границами с учетом действия сил сопротивления внешней среды, жесткости подложки и изгибной жесткости объекта, когда внешние возмущения действуют на границах.

Для исключения неоднородностей в граничных условиях, в уравнение (1) вводится новая функция

$$U(\xi, \tau) = V(\xi, \tau) + H(\xi, \tau), \tag{4}$$

где

$$H(\xi,\tau) = \sum_{k=1}^{2} \sum_{r=1}^{m} D_{kr}(\xi,\epsilon\tau) F_{kr}(\tau),$$
(5)

при этом функция $D_{kr}(\xi, \varepsilon \tau)$ удовлетворяет уравнению

$$L[D_{kr}(\xi,\varepsilon\tau)] = 0 \tag{6}$$

и условиям

$$Y_{ji}[D_{kr}(\ell_j(\varepsilon\tau),\tau)] = \begin{cases} 1, & k = j \land r = i; \\ 0, & k \neq j \lor r \neq i. \end{cases}$$

При подстановке (4) в уравнение (1) с учетом (5), (6), функция $V(\xi, \tau)$ находится как решение следующей задачи:

$$V_{\tau\tau}(\xi,\tau) + L[V(\xi,\tau)] = \varphi(\xi,\tau) - H_{\tau\tau}(\xi,\tau), \tag{7}$$

$$Y_{ii}[V(\ell_i(\varepsilon\tau),\tau)] = 0.$$
(8)

В работе [6] получено интегродифференциальное уравнение, соответствующее задаче (7), (8), в виде

$$V(\xi,\tau) = -\int_{\ell_1(\varepsilon\tau)}^{\ell_2(\varepsilon\tau)} K(\xi,\zeta,\varepsilon\tau) \left[V_{\tau\tau}(\zeta,\tau) - \varphi(\zeta,\tau) + H_{\tau\tau}(\zeta,\tau) \right] d\zeta,$$
(9)

где $K(\xi, \zeta, \varepsilon \tau)$ – симметричное по ξ и ζ ядро, зависящее от времени через параметр $\varepsilon \tau$.

Теорема 1. В интервале времени $\Delta \tau$, соизмеримом с единицей, уравнение колебаний объекта с фиксированным параметром $l = l(\tau_0) = \text{const}$ отличается от соответствующего уравнения колебаний объекта с переменным параметром $l = l(\tau)$ членами, пропорциональными множителю ε , при условии ограниченности производной ядра K(x, s, l) по параметру $l(\tau)$.

Доказательство. Разложим правую часть уравнения

$$V(\xi,\tau) = -\int_{0}^{l(\tau)} K(\xi,\zeta,l(\tau)) \left[V_{\tau\tau}(\zeta,\tau) - \varphi(\zeta,\tau) \right] d\zeta$$
⁽¹⁰⁾

по параметру $l(\tau)$ в окрестности некоторого фиксированного значения безразмерной длины $l(\tau_0)$ в ряд Тейлора.

Полагая

$$l(\tau_0 + \Delta \tau) = l(\tau_0) + \Delta l(\tau) + \dots,$$

получаем

$$V(\xi,\tau) = -\int_{0}^{l(\tau_{0})} K(\xi,\zeta,l(\tau_{0})) [V_{\tau\tau}(\zeta,\tau) - \varphi(\zeta,\tau)] d\zeta - \Delta l(\tau) \left\{ K(\xi,l(\tau_{0}),l(\tau_{0})) [V_{\tau\tau}(l(\tau_{0}),\tau) - \varphi(l(\tau_{0}),\tau)] + \int_{0}^{l(\tau_{0})} \frac{\partial K(\xi,\zeta,l(\tau_{0}))}{\partial l(\tau)} [V_{\tau\tau}(\zeta,\tau) - \varphi(\zeta,\tau)] d\zeta \right\} - (11) - \frac{(\Delta l(\tau))^{2}}{2!} \left[\frac{\partial K(\xi,l(\tau_{0}),l(\tau_{0}))}{\partial l(\tau)} \cdots \right].$$

Будем считать, что функция $l(\tau)$ является функцией медленного времени $l = l(\tau_1)$, $\tau_1 = \varepsilon \tau$, т.е. является функцией времени, производная которой по времени пропорциональна некоторому малому параметру ε . Дифференциал длины объекта $\Delta l(\tau_1)$ в соответствии с правилом дифферен-

цирования функции медленного времени [4], [6] вычисляется по формуле $\Delta l(\tau_1) = \varepsilon \frac{d l(\tau_1)}{d\tau_1} \Delta \tau$.

Выберем интервал времени $\Delta \tau$ в виде

$$\Delta \tau = \theta(\tau), \tag{12}$$

где $\theta(\tau)$ – некоторая функция порядка единицы.

ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ том 62 № 6 2022

979

Подставляя (12) в (11), найдем, что в интервале времени ∆т, имеющем порядок единицы, разложение (11) имеет вид

$$V(\xi, \tau) = -\int_{0}^{l(\tau_{0})} K(\xi, \zeta, l(\tau_{0})) \left[V_{\tau\tau}(\zeta, \tau) - \varphi(\zeta, \tau) \right] d\zeta - \\ - \varepsilon l'(\tau) \Theta(\tau) \left\{ K(\xi, l(\tau_{0}), l(\tau_{0})) \left[V_{\tau\tau}(l(\tau_{0}), \tau) - \varphi(l(\tau_{0}), \tau) \right] + \int_{0}^{l(\tau_{0})} \frac{\partial K(\xi, \zeta, l(\tau_{0}))}{\partial l(\tau)} \left[V_{\tau\tau}(\zeta, \tau) - \varphi(\zeta, \tau) \right] d\zeta \right\} - (13) \\ - \varepsilon^{2} l'^{2}(\tau) \frac{\Theta(\tau)}{2!} \left[\frac{\partial K(\xi, l(\tau_{0}), l(\tau_{0}))}{\partial l(\tau)} \dots \right].$$

Принимая во внимание условие теоремы об ограниченности производной ядра K(x, s, l) по параметру $l(\tau)$ и сравнивая (13) и (10), находим, что уравнение с фиксированным параметром $l = l(\tau_0) = \text{const}$ отличается от уравнения с переменным параметром в интервале $\Delta \tau \sim 1$ членами, пропорциональными множителю ε . Это завершает доказательство теоремы.

3. РЕШЕНИЕ ЗАДАЧИ

Решение задачи (9) будем искать в виде ряда:

$$V(\xi,\tau) = \sum_{n=1}^{\infty} f_n(\tau) X_n(\xi,\varepsilon\tau),$$
(14)

где $X_n(\xi, \varepsilon \tau)$ — собственные функции, в качестве которых выбраны формально построенные решения интегрального уравнения

$$X_n(\xi, \varepsilon\tau) = \omega_{0n}^2(\varepsilon\tau) \int_{\ell_1(\varepsilon\tau)}^{\ell_2(\varepsilon\tau)} K(\xi, \zeta, \varepsilon\tau) X_n(\zeta, \varepsilon\tau) d\zeta,$$
(15)

где $\varepsilon \tau$ рассматривается как параметр; $\omega_{0n}(\varepsilon \tau)$ – собственные частоты задачи.

Решение (14) является точным в случае, если границы неподвижны.

Собственные функции $X_n(\xi, \varepsilon \tau)$ удовлетворяют граничным условиям (8) и играют в данном случае роль динамических мод.

Используя результаты [6], разложим симметричное по ξ и ζ ядро в ряд по собственным функциям $X_n(\xi, \varepsilon \tau)$:

$$K(\xi,\zeta,\varepsilon\tau) = \sum_{n=1}^{\infty} \frac{X_n(\xi,\varepsilon\tau)X_n(\zeta,\varepsilon\tau)}{\omega_{0n}^2(\varepsilon\tau)},$$
(16)

где $\omega_{0n}(\epsilon\tau)$ – определяется по формуле

$$\frac{1}{\omega_{0n}^{2}(\varepsilon\tau)} = \int_{\ell_{1}(\varepsilon\tau)}^{\ell_{2}(\varepsilon\tau)} \int_{\ell_{1}(\varepsilon\tau)}^{\ell_{2}(\varepsilon\tau)} K(\xi,\zeta,\varepsilon\tau) X_{n}(\xi,\varepsilon\tau) X_{n}(\zeta,\varepsilon\tau) d\xi d\zeta.$$
(17)

Продифференцируем ряд (14) по времени:

$$V_{\tau}(\xi,\tau) = \sum_{n=1}^{\infty} \left[f'_n(\tau) X_n(\xi,\varepsilon\tau) + \varepsilon X_{n_{\tau}}(\xi,\varepsilon\tau) f_n(\tau) \right].$$

После повторного дифференцирования получим

$$V_{\tau\tau}(\xi,\tau) = \sum_{n=1}^{\infty} \left\{ f_n''(\tau) X_n(\xi,\varepsilon\tau) + 2\varepsilon X_{n_\tau}(\xi,\varepsilon\tau) f_n'(\tau) + \varepsilon^2 X_{n_{\tau\tau}}(\xi,\varepsilon\tau) f_n(\tau) \right\}.$$
 (18)

ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ том 62 № 6 2022

Подставим ряды (14), (16), (18) в уравнение (9) с учетом ортогональности функций $X_n(\xi, \varepsilon \tau)$ на интервале [$\ell_1(\varepsilon \tau)$; $\ell_2(\varepsilon \tau)$] с весом $g(\xi)$ и замены

$$f_n(\tau) = \mu_n(\tau) + \sum_{k=1}^2 \sum_{r=1}^m Q_{n_{kr}}(\varepsilon \tau) F_{kr}(\tau),$$
(19)

где

$$Q_{n_{kr}}(\varepsilon\tau) = -\int_{\ell_1(\varepsilon\tau)}^{\ell_2(\varepsilon\tau)} D_{kr}(\xi,\varepsilon\tau) X_n(\xi,\varepsilon\tau) g(\xi) d\xi / \int_{\ell_1(\varepsilon\tau)}^{\ell_2(\varepsilon\tau)} X_n^2(\xi,\varepsilon\tau) g(\xi) d\xi$$

Заметим, что если разложить функцию $H(\xi, \tau)$ в ряд Фурье:

$$H(\xi,\tau)=\sum_{n=1}^{\infty}\varphi_n(\tau)X_n(\xi,\varepsilon\tau),$$

где

$$\varphi_n(\tau) = \int_{\ell_1(\varepsilon\tau)}^{\ell_2(\varepsilon\tau)} H(\xi,\tau) X_n(\xi,\varepsilon\tau) g(\xi) d\xi / \int_{\ell_1(\varepsilon\tau)}^{\ell_2(\varepsilon\tau)} X_n^2(\xi,\varepsilon\tau) g(\xi) d\xi,$$

здесь $g(\xi)$ – весовая функция, то замену можно произвести в более простом виде:

 $f_n(\tau) = \mu_n(\tau) - \varphi_n(\tau).$

При резонансных явлениях амплитуды всех динамических мод, за исключением резонансной, малы. Поэтому нерезонансными членами рядов (14), (18) в связи с их малостью, пренебрегают. В этом случае получим расщепленную систему обыкновенных дифференциальных уравнений с переменными коэффициентами [10]

$$A_{1n}(\varepsilon\tau)\mu_n''(\tau) + 2\varepsilon A_{2n}(\varepsilon\tau)\mu_n'(\tau) + \varepsilon^2 A_{3n}(\varepsilon\tau)\mu_n(\tau) + A_{1n}(\varepsilon\tau)\omega_{0n}^2(\varepsilon\tau)\mu_n(\tau) = \theta_n(\tau),$$
(20)

где

$$\begin{aligned} \theta_n(\tau) &= E_n(\tau) - 2\varepsilon \sum_{k=1}^2 \sum_{r=1}^m B_{n_{kr}}(\varepsilon \tau) F_{kr}'(\tau) - \varepsilon^2 \sum_{k=1}^2 \sum_{r=1}^m C_{n_{kr}}(\varepsilon \tau) F_{kr}(\varepsilon \tau) - \\ &- \omega_{0n}^2(\varepsilon \tau) A_{1n}(\varepsilon \tau) \sum_{k=1}^2 \sum_{r=1}^m Q_{n_{kr}}(\varepsilon \tau) F_{kr}(\varepsilon \tau). \end{aligned}$$

Здесь $A_{1n}(\varepsilon\tau)$, $A_{2n}(\varepsilon\tau)$, $A_{3n}(\varepsilon\tau)$, $B_{n_{kr}}(\varepsilon\tau)$, $C_{n_{kr}}(\varepsilon\tau)$, $E_n(\tau)$ определены в работе [10].

Коэффициенты взаимовлияния между отдельными уравнениями входят в систему (20) с малым параметром. В дальнейшем под точностью порядка ε^2 будем понимать точность, имеющую место после пренебрежения членами с ε^2 и членами вида $\varepsilon F'_{ji}(\varepsilon \tau)$, которые несмотря на малость порядка ε на резонансные свойства влияют как члены порядка ε^2 . Система (20) с точностью до величин порядка малости ε^2 будет иметь вид

$$A_{1n}(\varepsilon\tau)\mu_n''(\tau) + 2\varepsilon A_{2n}(\varepsilon\tau)\mu_n'(\tau) + A_{1n}(\varepsilon\tau)\omega_{0n}^2(\varepsilon\tau)\mu_n(\tau) = \theta_n(\tau),$$
(21)

где

$$\theta_n(\tau) = \omega_{0n}^2(\varepsilon\tau) A_{1n}(\varepsilon\tau) \varphi_n(\tau) + E_n(\tau).$$

С учетом (5), (14), (19) решение (4) будет иметь вид:

$$U(\xi,\tau) = \sum_{n=1}^{\infty} \mu_n(\tau) X(\xi,\varepsilon\tau) + \sum_{k=1}^{2} \sum_{r=1}^{m} F_{kr}(\tau) \left[D_{kr}(\xi,\varepsilon\tau) + \sum_{n=1}^{\infty} Q_{n_{kr}}(\varepsilon\tau) X_n(\xi,\varepsilon\tau) \right].$$
(22)

ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ том 62 № 6 2022

Теорема 2. Решение задачи (1)-(3) можно представить в форме

$$U(\xi,\tau) = \sum_{n=1}^{\infty} \mu_n(\tau) X_n(\xi,\varepsilon\tau).$$
(23)

Доказательство. Величины $Q_{n_{ex}}(\varepsilon \tau)$, определяемые выражением

$$Q_{n_{kr}}(\varepsilon\tau) = -\int_{\ell_1(\varepsilon\tau)}^{\ell_2(\varepsilon\tau)} D_{kr}(\xi,\varepsilon\tau) X_n(\xi,\varepsilon\tau) g(\xi) d\xi / \int_{\ell_1(\varepsilon\tau)}^{\ell_2(\varepsilon\tau)} X_n^2(\xi,\varepsilon\tau) g(\xi) d\xi,$$

являются для функции $-D_{kr}(\xi, \varepsilon \tau)$ коэффициентами разложения в ряд Фурье по системе ортогональных с весом $g(\xi)$ собственных функций $X_n(\xi, \varepsilon \tau)$ на интервале [$\ell_1(\varepsilon \tau), \ell_2(\varepsilon \tau)$], т.е.

$$\sum_{n=1}^{\infty} Q_{n_{kr}}(\varepsilon \tau) X_n(\xi, \varepsilon \tau) = -D_{kr}(\xi, \varepsilon \tau)$$

Следовательно, выражение в квадратных скобках равенства (22) равно нулю. Теорема доказана.

Для упрощения введем в уравнение (23) новую функцию

$$\mu_n(\tau) = A_{0n}(\varepsilon \tau) y_n(\tau),$$

где

$$A_{0n}(\varepsilon\tau) = \exp\left[-\int_{0}^{\tau} \frac{\varepsilon A_{2n}(\varepsilon\tau)}{A_{1n}(\varepsilon\tau)} d\tau\right].$$

Тогда уравнение (21) не будет содержать члена с $y'(\tau)$:

$$y_n''(\tau) + \omega_{0n}^2(\varepsilon\tau)y_n(\tau) = \theta_n(\tau)/[A_{0n}(\varepsilon\tau)A_{1n}(\varepsilon\tau)].$$

Начальные условия для функций $y_n(\tau)$ находятся из условий (3) как решения уравнений

$$\sum_{n=1}^{\infty} y_n(0) X_n(\xi, \ell_j(0)) = \Phi_0(\xi);$$

$$\sum_{n=1}^{\infty} \{ y'_n(0) X_n(\xi, \ell_j(0)) + \varepsilon X_{n_t}(\xi, \ell_j(0)) \ell'_j(0) y_n(0) \} = \Phi_1(\xi).$$
(24)

Если в начальный момент движения скорость изменения длины объекта $\ell'_{j}(0)$ равна нулю, то из (24) получим

$$\sum_{n=1}^{\infty} y_n(0) X_n(\xi, \ell_j(0)) = \Phi_0(\xi); \qquad \sum_{n=1}^{\infty} y'_n(0) X_n(\xi, \ell_j(0)) = \Phi_1(\xi).$$
(25)

Принимая во внимание, что $X_n(\xi, \varepsilon \tau)$ образуют ортогональную с весом $g(\xi)$ систему функций, из (25) получаем для функций $y_n(0)$, $y'_n(0)$ следующие выражения:

$$y_{n}(0) = \sum_{n=1}^{\infty} \int_{\ell_{1}(0)}^{\ell_{2}(0)} X_{n}(\xi, \ell_{j}(0)) \Phi_{0}(\xi) g(\xi) d\xi; \quad y_{n}'(0) = \sum_{n=1}^{\infty} \int_{\ell_{1}(0)}^{\ell_{2}(0)} X_{n}(\xi, \ell_{j}(0)) \Phi_{1}(\xi) g(\xi) d\xi.$$
(26)

Из (26) следует, что $y_n(0)$ и $y'_n(0)$ являются коэффициентами разложения в ряд Фурье по функциям $X_n(\xi, \ell_i(0))$ начальных условий (3).

Вопрос о сходимости рядов (18), (23), по крайней мере, в моменты времени, близкие к начальному, может быть разрешен на основании быстроты сходимости разложений (25), т.е. быстроты убывания коэффициентов $y_n(0)$ и $y'_n(0)$. Из теории рядов Фурье известно, что порядок убывания коэффициентов разложения зависит от гладкости функций, разлагаемых в ряды. Поэтому при достаточной гладкости функций $\Phi_0(\xi)$, $\Phi_1(\xi)$, определяющих начальные условия, вопрос о сходимости рядов (18), (23) решается положительно.

982

Заметим, что начальные условия не влияют на резонансные свойства линейных систем, поэтому принимаются в виде

$$y_n(0) = 0; \quad y'_n(0) = 0.$$

Пусть

$$\varphi(\xi, \tau) = B_0(\xi) \cos W_0(\tau); \tag{27}$$

$$F_{ji}(\tau) = B_{ji} \cos W_{ji}(\tau); \quad j = 1, 2; \quad i = 1, m,$$
(28)

где B_{ji} — постоянные величины; $W_0(\tau)$, $W_{ji}(\tau)$ — монотонно возрастающие функции; $B_0(\xi)$ — функция, характеризующая интенсивность распределенной нагрузки.

Равенства (27), (28) можно принять в следующих случаях:

1) все внешние возмущения $\phi(\xi, \tau)$; $F_{ii}(\tau)$ равны нулю, кроме какого-то одного;

2) производные функций $W_0(\tau)$, $W_{ji}(\tau)$ равны между собой, т.е. сами функции отличаются на постоянную величину;

3) резонансные области нагрузок ϕ , F_{ji} не пересекаются, тогда при рассмотрении резонанса от одной нагрузки действием других можно пренебречь.

Используя математические выкладки, изложенные в работе [10], получаем следующее выражение для полной амплитуды колебаний, соответствующей *n*-й динамической моде:

$$A_n^2(\tau) = \frac{1}{4} A_{0n}^2(\epsilon\tau) a_n^2(\epsilon\tau) \left\{ \left[\int_0^{\tau} F_n(\epsilon\zeta) \cos \Phi_n(\zeta) d\zeta \right]^2 + \left[\int_0^{\tau} F_n(\epsilon\zeta) \sin \Phi_n(\zeta) d\zeta \right]^2 \right\},\tag{29}$$

где

$$a_{n}(\varepsilon\tau) = \frac{1}{\sqrt{\omega_{0n}(\varepsilon\tau)}}; \quad F_{n}(\varepsilon\zeta) = \frac{M_{n}(\varepsilon\zeta)}{a_{n}(\varepsilon\zeta)w_{n}'(\zeta)}; \quad w_{n}(\tau) = \int_{0}^{\tau} \omega_{0n}(\varepsilon\tau)d\tau$$
$$M_{nji}(\varepsilon\tau) = \frac{-B_{ji}\omega_{0n}^{2}(\varepsilon\tau)Q_{nji}(\varepsilon\tau)}{A_{0n}(\varepsilon\tau)}; \quad \Phi_{n}(\zeta) = w_{n}(\zeta) - W_{n}(\zeta).$$

4. ПОПЕРЕЧНЫЕ КОЛЕБАНИЯ КАНАТА ГРУЗОПОДЪЕМНОЙ УСТАНОВКИ

В качестве примера рассмотрим поперечные колебания каната грузоподъемной установки, один конец которого наматывается на барабан, а на втором шарнирно закреплен груз. С помощью приведенной модели можно рассчитывать резонансные свойства несущих звеньев широкого круга грузоподъемных машин.

Уравнение, учитывающее изгибную жесткость и натяжение колеблющегося звена, имеет вид (см. [10])

$$U_{tt}(x,t) + \frac{EI}{\rho} U_{xxxx}(x,t) - a^2 U_{xx}(x,t) = 0.$$
(30)

Граничные условия

$$U(0,t) = 0; \quad U_{xx}(0,t) = 0;$$
 (31)

$$U(l_0(t), t) = B\cos W_0(\omega_0 t); \quad U_x(l_0(t), t) = 0.$$
(32)

В задаче (30)–(32) используются следующие обозначения: U(x,t) – поперечное смещение точки звена с координатой x в момент времени t; I – осевой момент инерции сечения каната; ρ – линейная плотность массы; $a = \sqrt{T/\rho}$ – минимальная скорость распространения волн; T – сила натяжения; $l_0(t) = L_0 - v_0 t$ – закон движения границы каната, L_0 – первоначальная длина каната, v_0 – скорость движения границы; $W_0(z)$ – функция класса C^2 ; B, ω_0 – постоянные величины; E – модуль упругости материала каната.

Введем в задачу (30)-(32) безразмерные переменные:

$$\xi = \omega_0 x / a;$$
 $\tau = \omega_0 t + \frac{\omega_0 L_0 - a}{-v_0};$ $U(x, t) = BV(\xi, \tau).$

Тогда задача примет вид

$$V_{\tau\tau}(\xi,\tau) + \beta^2 V_{\xi\xi\xi\xi}(\xi,\tau) - V_{\xi\xi}(\xi,\tau) = 0;$$
(33)

$$V(0,\tau) = 0; \quad V_{\xi\xi}(0,\tau) = 0;$$
 (34)

$$V(l(\varepsilon\tau),\tau) = \cos W(\tau); \quad V_{\xi}(l(\varepsilon\tau),\tau) = 0,$$
(35)

где

$$\beta^2 = \frac{EI}{\rho} \frac{\omega_0^2}{a^4}; \quad l(\varepsilon\tau) = 1 + \varepsilon\tau; \quad W(\tau) = W_0(\tau - \gamma_0); \quad \gamma_0 = \frac{\omega_0 L_0 - a}{-v_0}; \quad \varepsilon = -v_0/a.$$

Заметим, что значение величины β в технических задачах обычно не превосходит 0.25.

Интегрируя уравнение (33) по ξ и освобождаясь от неоднородностей в граничных условиях, по аналогии с (4)–(6) получено интегродифференциальное уравнение поперечных колебаний каната переменной длины в виде:

$$V(\xi,\tau) = -\int_{0}^{l(\varepsilon\tau)} K(\xi,\zeta,\varepsilon\tau) \left[V_{\tau\tau}(\zeta,\tau) + H_{\tau\tau}(\zeta,\tau) \right] d\zeta.$$
(36)

Ядро уравнения (36) в рассматриваемом случае будет определяться функцией

.

$$K(\xi,\zeta,\varepsilon\tau) = \begin{cases} \left(\frac{l(\varepsilon\tau)-\xi}{\beta}\right)^2 \left(\frac{l(\varepsilon\tau)-\xi}{3}+\frac{\xi-\zeta}{2}\right), & \zeta \le \xi, \\ \left(\frac{l(\varepsilon\tau)-\zeta}{\beta}\right)^2 \left(\frac{l(\varepsilon\tau)-\zeta}{3}+\frac{\zeta-\xi}{2}\right), & \zeta \ge \xi. \end{cases}$$
(37)

Функция (37) также симметрична относительно аргументов ξ и ζ и зависит от времени через содержащийся в ней параметр $\varepsilon \tau$. При фиксированном $l(\varepsilon \tau) = \text{const}$ функция (37) совпадает с функцией влияния прогибов каната постоянной длины.

Таким образом, задача (33)–(35) сводится к интегродифференциальному уравнению (36) с симметричным, изменяющимся во времени ядром (37) и переменными во времени пределами интегрирования.

Решение задачи (36) будем вести в безразмерных переменных в соответствии с методикой, изложенной выше.

В результате для амплитуды колебаний, соответствующих *n*-й динамической моде, получим следующее выражение:

$$A_n^2(\tau) = E_n^2(\varepsilon\tau) \left\{ \left[\int_0^{\tau} F_n(\varepsilon\zeta) \cos \Phi_n(\zeta) d\zeta \right]^2 + \left[\int_0^{\tau} F_n(\varepsilon\zeta) \sin \Phi_n(\zeta) d\zeta \right]^2 \right\},$$

где

$$E_n^2(\varepsilon\tau) = \frac{1}{4A_{\ln}(\varepsilon\tau)\omega_{0n}(\varepsilon\tau)}; \quad \Phi_n(\zeta) = w_n(\zeta) - W_n(\zeta); \quad F_n(\varepsilon\zeta) = Q_{n_{21}}(\varepsilon\zeta)\sqrt{\omega_{0n}^3(\varepsilon\zeta)A_{\ln}(\varepsilon\zeta)}.$$

Явление установившегося резонанса в рассматриваемой системе наблюдается, если

$$W_n(\tau) = w_n(\tau) + \gamma,$$

где ү – постоянная величина.

Мода	β\ε	0.02	0.04	0.06	0.08
1	0.01	17.3	10.7	8.8	6.7
	0.2	14.1	9.2	7.3	5.4
2	0.01	12.5	7.7	5.1	4.2
	0.2	9.3	5.4	4.3	3.7

Таблица 1. Зависимость амплитуды колебаний A_n от ε и β при прохождении через резонанс на первой и второй динамических модах

При действии на систему гармонического возмущения с частотой ω_0 , когда $W(\tau) = \tau$, на любой из динамических мод может возникнуть явление прохождения через резонанс. Точка резонансной области τ_0 , в которой $\Phi'_n(\tau_0) = 0$, приближенно определяется по следующей формуле:

$$\tau_0 = \frac{1}{\varepsilon} \left[\sqrt{\frac{2\beta^2}{-1 + \sqrt{1 + 4\beta^2}}} \cdot \pi n - 1 \right].$$

Для исследования явления прохождения через резонанс необходимо найти значения τ_1 и τ_2 , при которых квадрат амплитуды

$$A_n^2(\tau_1,\tau_2) = E_n^2(\varepsilon\tau_2) \left\{ \left[\int_{\tau_1}^{\tau_2} F_n(\varepsilon\zeta) \cos \Phi_n(\zeta) d\zeta \right]^2 + \left[\int_{\tau_1}^{\tau_2} F_n(\varepsilon\zeta) \sin \Phi_n(\zeta) d\zeta \right]^2 \right\}$$
(38)

имеет максимум.

С помощью разработанного программного комплекса численно исследована зависимость максимальной амплитуды поперечных колебаний каната при прохождении через резонанс на первой и второй динамических модах от относительной скорости движения границы при различных значениях безразмерного коэффициента, характеризующего жесткость объекта (см. табл. 1).

Анализ полученных результатов позволяет сделать следующие выводы:

при уменьшении є амплитуда колебаний увеличивается;

— при $\varepsilon \to 0$ амплитуда колебаний стремится к бесконечности;

 – с увеличением номера моды и изгибной жесткости объекта максимальная амплитуда колебаний уменьшается.

5. ЗАКЛЮЧЕНИЕ

Приближенный метод построения решений интегродифференциальных уравнений распространен на более широкий класс модельных краевых задач о колебаниях объектов с подвижными границами в линейной постановке, описываемой уравнениями гиперболического типа. Данный метод позволяет учесть влияние на систему сил сопротивления внешней среды, изгибной жесткости и жесткости подложки объекта. Решение задачи сводится к получению квадратурных формул амплитуды колебаний, соответствующих *n*-й динамической моде. Вышеуказанные результаты позволяют на этапе проектирования предотвратить возможность высокоамплитудных колебаний в механических объектах с подвижными границами.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Колосов Л.В., Жигула Т.И*. Продольно-поперечные колебания струны каната подъемной установки // Изв. вузов. Горный журнал. 1981. № 3. С. 83–86.
- 2. *Zhu W.D., Chen Y.* Theoretical and experimental investigation of elevator cable dynamics and control // J. Vibr. Acoust. 2006. № 1. P. 66–78.
- 3. *Shi Y., Wu L., Wang Y.* Нелинейный анализ собственных частот тросовой системы // J. Vibr. Engng. 2006. № 2. Р. 173–178.
- 4. *Горошко О.А., Савин Г.Н.* Введение в механику деформируемых одномерных тел переменной длины. Киев: Наук. думка, 1971. 290 с.

ЛИТВИНОВ, ЛИТВИНОВА

- 5. Литвинов В.Л., Анисимов В.Н. Поперечные колебания каната, движущегося в продольном направлении // Известия Самарского научного центра Российской академии наук. 2017. Т. 19. № 4. С. 161–165.
- 6. Савин Г.Н., Горошко О.А. Динамика нити переменной длины. Киев: Наук. думка, 1962. 332 с.
- 7. *Liu Z., Chen G.* Анализ плоских нелинейных свободных колебаний несущего каната с учетом влияния изгибной жесткости // J. Vibr. Engng. 2007. № 1. Р. 57–60.
- 8. *Palm J. et al.* Simulation of mooring cable dynamics using a discontinuous Galerkin method // V Intern. Conference on Comput. Methods in Marine Engng. 2013.
- 9. Литвинов В.Л. Исследование свободных колебаний механических объектов с движущимися границами при помощи асимптотического метода // Ж. Средневолжского матем. общества. 2014. Т. 16. № 1. С. 83–88.
- Литвинов В.Л., Анисимов В.Н. Математическое моделирование и исследование колебаний одномерных механических систем с движущимися границами: монография / В.Л. Литвинов, В.Н. Анисимов. Самара: Самар. гос. техн. ун-т, 2017. 149 с.
- 11. *Лежнева А.А.* Свободные изгибные колебания балки переменной длины // Ученые записки. Пермь: Пермск. Ун-т, 1966. № 156. С. 143–150.
- 12. *Wang L., Zhao Y.* Multiple internal resonances and non–planar dynamics of shallow suspended cables to the harmonic excitations // J. Sound Vib. 2009. № 1–2. P. 1–14.
- 13. *Zhao Y., Wang L.* On the symmetric modal interaction of the suspended cable: three–to one internal resonance // J. Sound Vib. 2006. № 4–5. P. 1073–1093.
- 14. *Литвинов В.Л., Анисимов В.Н.* Применение метода Канторовича–Галеркина для решения краевых задач с условиями на движущихся границах // Известия Российской академии наук. Механ. твердого тела. 2018. № 2. С. 70–77.
- 15. *Berlioz A., Lamarque C.-H.* A non-linear model for the dynamics of an inclined cable // J. of Sound and Vibration. 2005. V. 279. P. 619–639.
- 16. *Sandilo S.H., van Horssen W.T.* On variable length induced vibrations of a vertical string // J. of Sound and Vibration. 2014. V. 333. P. 2432–2449.
- 17. *Zhang W., Tang Y.* Global dynamics of the cable under combined parametrical and external excitations // International Journal of Non-Linear Mechanics. 2002. V. 37. P. 505–526.
- 18. *Faravelli L., Fuggini C., Ubertini F.* Toward a hybrid control solution for cable dynamics: Theoretical prediction and experimental validation // Struct. Control Health Monit. 2010. V. 17. P. 386–403.
- 19. Весницкий А.И. Волны в системах с движущимися границами и нагрузками. М.: Физматлит, 2001. 320 с.
- Анисимов В.Н., Литвинов В.Л., Корпен И.В. Об одном методе получения аналитического решения волнового уравнения, описывающего колебания систем с движущимися границами // Вестн. Самарского гос. техн. университета. Сер. "Физ.-матем. науки". 2012. V. 3(28). Р. 145–151.
- 21. Весницкий А.И. Обратная задача для одномерного резонатора, изменяющего во времени свои размеры // Изв. вузов. Радиофиз. 1971. V. 10. Р. 1538–1542.
- 22. Барсуков К.А., Григорян Г.А. К теории волновода с подвижными границами // Изв. вузов. Радиофиз. 1976. V. 2. Р. 280–285.