УРАВНЕНИЯ В ЧАСТНЫХ ПРОИЗВОДНЫХ

УДК 519.67

СИМВОЛЬНО-ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ РАСПРОСТРАНЕНИЯ АДИАБАТИЧЕСКОЙ ВОЛНОВОДНОЙ МОДЫ В ПЛАВНОМ ВОЛНОВОДНОМ ПЕРЕХОДЕ¹⁾

© 2023 г. Д. В. Диваков^{1,*}, А. А. Тютюнник^{2,**}

¹ 117198 Москва, ул. Миклухо-Маклая, 6, Российский университет дружбы народов, Россия ² 141980 Дубна, М.о., ул. Жолио-Кюри, 6, Объединённый институт ядерных исследований, Россия

> *e-mail: divakov-dv@rudn.ru **e-mail: tyutyunnik-aa@rudn.ru Поступила в редакцию 25.04.2022 г. Переработанный вариант 25.04.2022 г. Принята к публикации 17.09.2022 г.

В работе исследуется модель адиабатических волноводных мод средствами компьютерной алгебры. В рамках модели решение системы уравнений Максвелла приводится к форме, которая выражается через решение системы четырех обыкновенных дифференциальных уравнений и двух алгебраических уравнений для шести компонент электромагнитного поля. В случае многослойных волноводов средствами системы компьютерной алгебры уравнения модели сводятся к однородной системе линейных алгебраических уравнения, которая исследуется в работе символьно. Условие нетривиальной разрешимости системы задает дисперсионное уравнение, которое решается символьно-численным методом, тогда как система решается символьно. В статье представлены решения, описывающие адиабатические волноводные моды в нулевом приближении с учетом малого наклона границы раздела волноводного слоя, качественно отличающиеся от решений, не учитывающих наклон границы раздела. Библ. 19. Фиг. 7.

Ключевые слова: символьное решение линейных уравнений, символьное решение дифференциальных уравнений, адиабатические волноводные моды, направляемые моды, плавно-нерегулярный волновод.

DOI: 10.31857/S0044466923010076, EDN: LKQVIF

1. ВВЕДЕНИЕ

Метод расчета электромагнитного поля волноводных мод, распространяющихся в нерегулярных волноводах с медленно меняющимися параметрами, сформировался в работах [1]–[8] и др. В русскоязычной научно-исследовательской литературе наибольшее распространение получил "метод поперечных сечений", разработанный в трудах Б.З. Каценеленбаума [3], [4] для закрытых волноводов, и его "обобщение" для открытых волноводов, разработанное В.В. Шевченко [5], [9].

Основной сложностью постановки задачи отыскания направляемых волноводных мод в нерегулярных волноводах — волноводах с криволинейной границей — является учет условий непрерывности тангенциального поля на криволинейной границе. Понятие направляемой волноводной моды определено для планарных волноводов — волноводов с плоскими границами. Применяя классическую процедуру разделения переменных к волноводной задаче для планарных волноводов, можно сформулировать самосопряженную спектральную задачу, собственными значениями которой являются вещественные коэффициенты фазового замедления направляемых мод, собственные функции определяют соответствующие стоячие волны в поперечном сечении волновода. В случае наличия криволинейной границы переменные уже не разделяются, и понятие направляемой волноводной моды в нерегулярном волноводе строго не определено, хотя можно строить различные приближенные направляемые моды нерегулярного волновода. Как правило, методы приближенного построения направляемых мод плавно-нерегулярного волно-

¹⁾Работа выполнена при финансовой поддержке РНФ (код проекта 20-11-20257).

вода основаны на приближении по малому параметру, характеризующему медленное изменение геометрии структуры или поля по одной из координат.

В подходах Б.З. Каценеленбаума и В.В. Шевченко при построении приближенных мод нерегулярного волновода учтен только вклад нулевого порядка в условия сопряжения на криволинейной границе – т.е. учтена переменная толщина волноводного слоя, но отброшены вклады более высоких порядков, описывающие малый наклон криволинейной границы раздела. Подход Б.З. Каценеленбаума и В.В. Шевченко позволяет получить медленно меняющиеся вдоль волновода направляемые моды, причем полученные в каждом поперечном сечении нерегулярного волновода направляемые моды совпадают с направляемыми модами регулярного волновода аналогичной толщины. В каждом поперечном сечении спектральная задача самосопряженная, поэтому коэффициенты фазового замедления представляют собой вещественные медленно меняющиеся функции. Однако вклады первого и высших порядков малости по углу наклона границы в радианах в методе поперечных сечений не учитываются.

Авторам известен альтернативный подход к построению волноводных мод в адиабатическом приближении, который учитывает вклады более высоких порядков малости, описывающие наклон криволинейной границы раздела. В основе модели адиабатических волноводных мод (ABM) [10]–[12] лежит адаптированное для волноводного распространения приближение коротких волн, описанное в книге В.М. Бабича и В.С. Булдырева [13]. Решение уравнений Максвелла в модели ABM представляется в виде асимптотического ряда. В нулевом приближении асимптотического разложения модели ABM уравнения Максвелла редуцируются к системе четырех обыкновенных дифференциальных уравнений первого порядка и двум соотношениям. Условия сопряжения на криволинейной границе в нулевом приближении асимптотического разложения формулируется с учетом наклона, который является малой величиной в волноводах с медленно меняющимися параметрами.

В работе рассматривается модель ABM в нулевом приближении асимптотического разложения, в рамках которого рассматривается несколько первых приближений по малости наклона криволинейной границы. Приводятся результаты нулевого приближения по малости наклона криволинейной границы, а также первого и второго порядков малости, качественно отличающиеся от нулевого приближения.

2. МОТИВАЦИЯ ИСПОЛЬЗОВАНИЯ СИСТЕМ КОМПЬЮТЕРНОЙ АЛГЕБРЫ

Асимптотические методы удобны тем, что нулевое приближение, описывающее основной вклад решения, отыскивается, как правило, в символьном виде. Учитывая асимптотический характер решения, в модели ABM удается получить ряд промежуточных результатов в символьном виде, что и предопределяет использование компьютерной алгебры в качестве одного из инструментов исследования. В серии работ по модели ABM [10]–[14] в символьном виде получены как дифференциальные уравнения модели, так и их символьные решения. Благодаря символьному решению дифференциальных уравнений модели, удается в символьном виде сформулировать задачу отыскания направляемых мод нерегулярных волноводов. Эта задача формулируется в виде однородной системы линейных уравнений с символьной матрицей коэффициентов, которую в некоторых случаях можно решить символьно [15]. Условие разрешимости системы – равенство нулю детерминанта матрицы коэффициентов – определяет нелинейное уравнение, которому удовлетворяет коэффициент фазового замедления.

В настоящей работе для приближенного учета условий сопряжения на криволинейной границе раздела применяется разложение по малому параметру, характеризующему малость угла наклона границы. В нулевом приближении условие разрешимости системы представляет собой нелинейное уравнение с вещественными корнями, а в первом и старших приближениях корни могут быть комплексными. В работе и уравнение, и его корни представляются в виде разложений по степеням малого параметра, что позволяет получить простые формулы для первого и второго приближений. Важно отметить, что рассматриваемое уравнение представляет собой равенство нулю детерминанта, который необходимо представить в виде разложения по степеням малого параметра, что требует символьных манипуляций. Представление корней уравнения в виде разложения по степеням малого параметра, подстановка в уравнение и получение расчетных формул первых двух приближений также требуют символьных манипуляций. Поэтому основным инструментом решения задачи отыскания комплексных корней выступает система компьютерной алгебры. После отыскания корней детерминанта в виде разложений по степеням малого параметра решается задача отыскания направляемых мод нерегулярных волноводов, которая формулируется в виде однородной системы линейных уравнений с символьной матрицей коэффициентов. В работе эта задача решается символьно с помощью алгоритма из [15].

3. МЕТОДЫ

3.1. Модель адиабатических волноводных мод в общем случае

В работе [14] получен нулевой вклад в адиабатическое приближение волноводного решения уравнений Максвелла вида:

$$\begin{cases} \mathbf{E}(x, y, z, t) \\ \mathbf{H}(x, y, z, t) \end{cases} = \begin{cases} \mathbf{E}_0(x; y, z) \\ \mathbf{H}_0(x; y, z) \end{cases} \exp\{i\omega t - ik_0\varphi(y, z)\},$$
(1)

причем

$$\varepsilon \frac{\partial E_0^y}{\partial x} = -ik_0 \left(\frac{\partial \varphi}{\partial y} \right) \left(\frac{\partial \varphi}{\partial z} \right) H_0^y - ik_0 \left(\varepsilon \mu - \left(\frac{\partial \varphi}{\partial y} \right)^2 \right) H_0^z, \tag{2}$$

$$\varepsilon \frac{\partial E_0^z}{\partial x} = ik_0 \left(\varepsilon \mu - \left(\frac{\partial \varphi}{\partial z} \right)^2 \right) H_0^y + ik_0 \left(\frac{\partial \varphi}{\partial z} \right) \left(\frac{\partial \varphi}{\partial y} \right) H_0^z, \tag{3}$$

$$\mu \frac{\partial H_0^y}{\partial x} = ik_0 \left(\frac{\partial \varphi}{\partial y}\right) \left(\frac{\partial \varphi}{\partial z}\right) E_0^y + ik_0 \left(\epsilon \mu - \left(\frac{\partial \varphi}{\partial y}\right)^2\right) E_0^z,\tag{4}$$

$$\mu \frac{\partial H_0^z}{\partial x} = -ik_0 \left(\epsilon \mu - \left(\frac{\partial \varphi}{\partial z} \right)^2 \right) E_0^y - ik_0 \left(\frac{\partial \varphi}{\partial z} \right) \left(\frac{\partial \varphi}{\partial y} \right) E_0^z, \tag{5}$$

$$E_0^x = -\frac{\partial \varphi}{\partial y} \frac{1}{\varepsilon} H_0^z + \frac{\partial \varphi}{\partial z} \frac{1}{\varepsilon} H_0^y, \tag{6}$$

$$H_0^x = \frac{\partial \varphi}{\partial y} \frac{1}{\mu} E_0^z - \frac{\partial \varphi}{\partial z} \frac{1}{\mu} E_0^y.$$
⁽⁷⁾

Для тонкопленочного многослойного волновода, состоящего из оптически однородных слоев, систему уравнений (2)—(7) следует дополнить условиями сопряжения электромагнитного поля на границах раздела сред [16]. На границах раздела диэлектрических сред выполняются граничные условия сопряжения полей:

$$\left[n \times \mathbf{E}\right]_{x=h(y,z)} = \mathbf{0}, \quad \left[n \times \mathbf{H}\right]_{x=h(y,z)} = \mathbf{0}, \tag{8}$$

где через $[\mathbf{f}]_{x=h(y,z)}$ обозначен скачок векторной величины **f** на границе x = h(y,z). Кроме того, выполняются асимптотические граничные условия на бесконечности [16]:

$$\|\mathbf{E}\| \xrightarrow[x \to \pm\infty]{} 0, \quad \|\mathbf{H}\| \xrightarrow[x \to \pm\infty]{} 0.$$
(9)

3.2. Модель адиабатических волноводных мод для регулярных по у волноводов

3.2.1. Уравнения модели. В работе рассматривается случай, когда от одной из горизонтальных координат не зависят ни геометрия интегрально-оптического волновода, ни решения уравнений Максвелла для ABM, а именно случай $\partial/\partial y \equiv 0$. В этом случае уравнения (2)–(5) принимают более простой вид:

$$\varepsilon \frac{\partial E_0^y}{\partial x} = -ik_0 \varepsilon \mu H_0^z, \quad \varepsilon \frac{\partial E_0^z}{\partial x} = ik_0 \left(\varepsilon \mu - \left(\varphi'(z) \right)^2 \right) H_0^y,$$

$$\mu \frac{\partial H_0^y}{\partial x} = ik_0 \varepsilon \mu E_0^z, \quad \mu \frac{\partial H_0^z}{\partial x} = -ik_0 \left(\varepsilon \mu - \left(\varphi'(z) \right)^2 \right) E_0^y,$$
(10)

ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ том 63 № 1 2023

Фиг. 1. Геометрия двумерного плавно-нерегулярного волноводного перехода между двумя регулярными волноводами.

дополнительные соотношения (6) и (7) также принимают упрощенный вид:

$$E_0^x = \frac{1}{\varepsilon} \varphi'(z) H_0^y, \quad H_0^x = -\frac{1}{\mu} \varphi'(z) E_0^y.$$
(11)

Замечание. Систему (10) и соотношения (11) можно также сформулировать в виде уравнений второго порядка относительно компонент E_0^y , H_0^y и дополнительных соотношений, которые разбиваются на две независимые подсистемы.

3.2.2. Условия сопряжения. Рассмотрим более подробно условия (8) на наклонной части границы раздела волноводных слоев. В точке $(h(z), z)^{T}$ границы раздела x = h(z) условия сопряжения представляют собой непрерывность следующих величин:

$$[\mathbf{n} \times \mathbf{E}] = (h'(z) E_y; -E_z - h'(z) E_x; E_y)^{\mathrm{T}}, \qquad (12)$$

$$[\mathbf{n} \times \mathbf{H}] = (h'(z) \cdot H_y; -H_z - h'(z)H_x; H_y)^{\mathrm{T}}, \qquad (13)$$

причем экспоненциальный множитель $\exp\{i\omega t - ik_0\varphi(z)\}$ принимает одинаковые ненулевые значения по обе стороны границы раздела слоев.

В работе используются приближенные условия сопряжения: нулевое приближение условий сопряжения, получаемое из (12) и (13) в пренебрежении малостью величины h'(z), а также первое и второе приближения по малой величине h'(z).

3.2.3. Геометрия рассматриваемой структуры. Рассматривается трехслойный плавно-нерегулярный волновод, геометрия которого представлена на фиг. 1. Параметры волновода следующие: $\mu_c = \mu_f = \mu_s = 1$, $\varepsilon_c = 1$, $\varepsilon_f = 1.565^2$, $\varepsilon_s = 1.47^2$, толщины определены как $h_1 = 2\lambda$, $h_2 = 3\lambda$, а $L = 100\lambda$, где $\lambda -$ длина волны, $\lambda = 0.55$ [μm]. Переменная толщина h(z) определена следующим образом:

$$h(z) = 2(h_1 - h_2) \left(\frac{z}{L}\right)^3 - 3(h_1 - h_2) \left(\frac{z}{L}\right)^2 + h_1,$$
(14)

причем для h'(z) выполняется $|h'(z)| \ll 1$, т.е. h'(z) является малым параметром при каждом фиксированном *z*. Для описанной выше структуры вычисляем адиабатические волноводные моды.

3.2.4. Символьный метод решения задачи. Для вычисления адиабатических волноводных мод рассматривается система (10). Система (10) сформулирована в символьном виде, коэффициенты системы є, µ для рассматриваемого волновода есть кусочно-постоянные функции, поэтому в каждой области их постоянства систему (10) решаем символьно в системе компьютерной алгебры Maple, используя встроенную функцию dsolve [17]. В результате применения функции dsolve в каждом слое получаем разложение решения по фундаментальной системе решений (ФСР) с неопределенными коэффициентами. Решения в полубесконечных слоях не должны нарастать на бесконечности согласно условиям (9), благодаря чему константы, стоящие перед нарастающими на бесконечности функциями ФСР, будут определены и равны нулю.

Записывая условия непрерывности (12) и (13) на границах слоев в системе компьютерной алгебры Maple [17], получаем однородную систему алгебраических уравнений вида

$$M(\gamma(z))\mathbf{C}(z) \equiv [M_0(\gamma(z)) + h'(z)M_1(\gamma(z))]\mathbf{C}(z) = \mathbf{0},$$
(15)

где $\gamma(z) = \varphi'(z)$, вектор **C**(*z*) определяет константы разложения решения по ФСР в каждом слое при фиксированном *z*. Условие разрешимости системы (15) есть равенство нулю определителя системы, представляющее собой нелинейное уравнение

$$\det M(\gamma(z)) \equiv D_0(\gamma(z)) + h'(z)D_1(\gamma(z)) + h'^2(z)D_2(\gamma(z)) = 0.$$
(16)

Разложение (16) осуществляется в системе компьютерной алгебры Maple, символьное выражение детерминанта осуществляется с помощью функции Determinant пакета LinearAlgebra, разложение по степеням h'(z) осуществляется с помощью функции coeff [17]. Нулевое приближение представляет собой уравнение $D_0(\gamma(z)) = 0$, которое характеризуется вещественными корнями и при каждом фиксированном *z* корни отыскиваются с помощью встроенной в Maple функции RootOf [17].

Учитывая разложение уравнения (16), искомые корни также представляются в виде аналогичного разложения

$$\gamma(z) = \gamma^{0}(z) + h'(z)\gamma^{1}(z) + {h'}^{2}(z)\gamma^{2}(z) + ...,$$
(17)

которое представляет собой разложение по малому параметру при каждом фиксированном z и определяются с помощью представленного в следующем разделе метода, реализованного в системе компьютерной алгебры Maple [17]. В работе с помощью описанного ниже метода отыскиваются первое и второе приближения корней уравнения (16).

Каждому корню уравнения (16) соответствует система линейных алгебраических уравнений (15), которая решается символьно с помощью метода из [15].

Описанная процедура вычисления корней нелинейного уравнения (16) в виде разложения (17), а также символьное решение системы (15) реализованы в системе компьютерной алгебры Maple [17].

3.2.5. Символьно-численный метод поиска корней нелинейного уравнения с малым параметром. Рассмотрим нелинейное уравнение, представленное в виде разложения по степеням малого параметра δ:

$$f(x) + \delta g(x) + \delta^2 u(x) = 0.$$
(18)

Искомый корень представляется в виде разложения

$$x = x_0 + \delta x_1 + \delta^2 x_2 + \dots, \tag{19}$$

которое далее подставляется в уравнение и с помощью разложения в ряд Тейлора формируются уравнения в нулевом, первом и старших приближениях по малому параметру δ . Описанная процедура реализована в системе компьютерной алгебры Maple [17]. В результате имеем следующие уравнения:

~

$$\delta^{0}: f(x_{0}) = 0,$$

$$\delta^{1}: g(x_{0}) + x_{1}f'(x_{0}) = 0,$$

$$\delta^{2}: u(x_{0}) + x_{1}g'(x_{0}) + x_{2}f'(x_{0}) + \frac{1}{2}x_{1}^{2}f''(x_{0}) = 0.$$
(20)

В нулевом приближении необходимо решать нелинейное уравнение для отыскания значений x_0 , а для отыскания поправок первого и второго порядков требуется знать производные функций f и g, которые определяются символьно с помощью функции diff:

$$x_1 = -\frac{g(x_0)}{f'(x_0)},$$
(21)

$$x_{2} = -\frac{x_{1}^{2}f''(x_{0}) + 2x_{1}g'(x_{0}) + 2u(x_{0})}{2f'(x_{0})}.$$
(22)

Описанный подход имеет смысл, если уравнение нулевого приближения f(x) = 0 решается проще исходного уравнения $f(x) + \delta g(x) + \delta^2 u(x) = 0$. Такое возможно, например, если корни уравнения f(x) = 0 вещественные, даже если корни исходного уравнения комплексные.

4. РЕЗУЛЬТАТЫ

4.1. Приближенное вычисление корней нелинейного уравнения

Решаем для рассматриваемой структуры задачу (16). Символьное представление определителя из (16) получаем с помощью функции Determinant пакета LinearAlgebra [17]. Символьное представление детерминанта громоздкое, поэтому не приводим его в работе. Вычисляем $\gamma^0(z)$ для рассматриваемой структуры с помощью встроенной в Maple функции RootOf [17]. Параметры рассматриваемой структуры приведены в п. 3.2.3. Затем, с помощью приведенного выше метода вычисляем $\gamma^1(z)$ и $\gamma^2(z)$. Графики вычисленных $\gamma_i^{0,1,2}(z)$, $j = \overline{1,4}$, приведены на фиг. 2–4.

Величина $\gamma^0(z)$ является вещественной (фиг. 2), в отличие от вкладов первого порядка малости, представленных на фиг. 3, которые являются мнимыми. Вклады второго порядка малости приведены на фиг. 4 и являются вещественными. Важно отметить, что для пары величин $\gamma_{1,3}(z)$ вклады первого и второго порядков являются нулевыми.

Фиг. 2. Графики величин $\gamma_i^0(z), j = \overline{1, 4}$, в волноводном переходе при $z \in [0, L]$.

Фиг. 3. Графики величин Im($\gamma_i^1(z)$), $j = \overline{1,4}$, в волноводном переходе при $z \in [0, L]$.

ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ том 63 № 1 2023

Фиг. 4. Графики величин $\operatorname{Re}(\gamma_i^2(z)), j = \overline{1,4}$, в волноводном переходе при $z \in [0, L]$.

Фиг. 5. График невязки детерминанта $\left|\det M(\tilde{\gamma}_{2}^{0,1,2}(z))\right|$ при $z \in [0, L]$.

Учитывая приближенный характер вычисленных $\gamma_j^{0,1,2}(z)$, приведем график невязки детерминанта $\left|\det M(\tilde{\gamma}^{0,1,2}(z))\right|$ для нулевого, первого и второго приближений, т.е. для $\tilde{\gamma}^0(z) = \gamma^0(z)$, $\tilde{\gamma}^1(z) = \gamma^0(z) + h'(z)\gamma^1(z)$ и $\tilde{\gamma}^2(z) = \gamma^0(z) + h'(z)\gamma^1(z) + h'^2(z)\gamma^2(z)$.

На фиг. 5 изображен график невязки детерминанта для нулевого, первого и второго приближений величины $\gamma_2^{0,1,2}(z)$. С увеличением порядка приближения невязка уменьшается. Аналогично выглядит график невязки детерминанта и для $\gamma_2^{0,1,2}(z)$, поэтому он не приводится в настоящем разделе. Невязки для $\gamma_{1,3}(z)$, для которых вклады первого и второго порядков отсутствуют, имеют порядок 10^{-30} и также не приводятся в настоящем разделе.

4.2. Приближенное решение системы граничных уравнений

Вычисление амплитудных компонент полей базируется на использовании алгоритма символьного решения систем линейных уравнений из [15] для решения системы граничных уравнений (15). Уравнения системы громоздкие, поэтому в настоящем разделе не приводятся.

Фиг. 6. Графики абсолютных значений компоненты E_0^y для $\gamma_1^0(z)$ и для $\gamma_3^0(z)$ при $z \in [0, L]$.

Фиг. 7. Графики абсолютных значений компоненты H_0^{y} для $\gamma_2^0(z)$ и для $\gamma_4^0(z)$ при $z \in [0, L]$.

Систему (15) для рассматриваемой структуры (параметры структуры см. в п. 3.2.3) решаем символьно в системе компьютерной алгебры Maple. В результате получаем символьные решения, включающие множество символьных констант, характеризующих рассматриваемую структуру. Важно заметить, что решения, отвечающие $\gamma_{1,3}(z)$ и решения, отвечающие $\gamma_{2,4}(z)$, различаются между собой. В полученные решения подставляем численные значения параметров рассматриваемой структуры, а также численные значения найденных приближенно $\gamma_j(z)$ и получаем приближенные решения системы граничных уравнений (15), используя которые мож-

ДИВАКОВ, ТЮТЮННИК

но построить искомые в задаче (10) амплитудные компоненты электромагнитных полей. На фиг. 6–7 приведены амплитудные компоненты полей, построенные для $\gamma_i^0(z)$.

Амплитудные компоненты полей, отвечающие $\gamma_{1,3}(z)$, не имеют вкладов первого и второго порядков малости, так как для $\gamma_{1,3}(z)$ таковые вклады отсутствуют. Амплитудные компоненты полей, отвечающие $\gamma_{2,4}(z)$ характеризуются наличием вкладов первого и второго порядков малости. Графические различия амплитудных компонент полей H_0^y , E_0^z , построенных в нулевом и страших приближениях, малы и визуально не заметны, поэтому приведем далее вычисленные значения максимумов модулей разности H_0^y , посчитанной в нулевом приближении и H_0^y в первом приближении, а также в первом и втором приближениях. Аналогичные численные оценки приведем и для компоненты E_0^z . Ниже приведены расчеты для $\gamma_2(z)$:

$$\max \left| H_0^{y} \left(x, z; \tilde{\gamma}_2^{l} \right) - H_0^{y} \left(x, z; \tilde{\gamma}_2^{0} \right) \right| \le 1.5 \times 10^{-2}, \quad \max \left| E_0^{z} \left(x, z; \tilde{\gamma}_2^{l} \right) - E_0^{z} \left(x, z; \tilde{\gamma}_2^{0} \right) \right| \le 1.1 \times 10^{-3}, \\ \max \left| H_0^{y} \left(x, z; \tilde{\gamma}_2^{2} \right) - H_0^{y} \left(x, z; \tilde{\gamma}_2^{l} \right) \right| \le 1.3 \times 10^{-5}, \quad \max \left| E_0^{z} \left(x, z; \tilde{\gamma}_2^{2} \right) - E_0^{z} \left(x, z; \tilde{\gamma}_2^{l} \right) \right| \le 7.8 \times 10^{-7}.$$

$$(23)$$

Далее приведены аналогичные расчеты для $\gamma_4(z)$:

$$\max \left| H_0^y \left(x, z; \tilde{\gamma}_4^l \right) - H_0^y \left(x, z; \tilde{\gamma}_4^0 \right) \right| \le 1.4 \times 10^{-2}, \quad \max \left| E_0^z \left(x, z; \tilde{\gamma}_4^l \right) - E_0^z \left(x, z; \tilde{\gamma}_4^0 \right) \right| \le 2.1 \times 10^{-3}, \\ \max \left| H_0^y \left(x, z; \tilde{\gamma}_4^2 \right) - H_0^y \left(x, z; \tilde{\gamma}_4^l \right) \right| \le 2.1 \times 10^{-5}, \quad \max \left| E_0^z \left(x, z; \tilde{\gamma}_4^2 \right) - E_0^z \left(x, z; \tilde{\gamma}_4^l \right) \right| \le 4.1 \times 10^{-6}.$$

$$(24)$$

5. ОБСУЖДЕНИЕ

В рамках приближенного вычисления корней нелинейного уравнения вычислена функция $\gamma_j(z)$, описывающая переменный коэффициент фазового замедления в нулевом и старших приближениях для *j*-й волноводной моды. Нулевое приближение учитывает только переменную толщину волноводного слоя и не учитывает вклады более высоких порядков, описывающие малый наклон криволинейной границы раздела. Результаты, полученные в нулевом приближении, качественно соответствуют результатам метода поперечных сечений [18], [19], а именно искомая функция $\gamma_j^0(z)$ получилась вещественнозначной (см. фиг. 2).

Более интересны результаты первого приближения: поправка первого порядка малости $\gamma_j^l(z)$ в разложении

$$\gamma_{j}(z) = \gamma_{j}^{0}(z) + h'(z)\gamma_{j}^{1}(z) + h'^{2}(z)\gamma_{j}^{2}(z) + \dots$$

оказалась мнимой величиной для *TM* -моды и машинным нулем для *TE* -моды (см. фиг. 3). Второе приближение также не внесло вклада в $\gamma_{1,3}(z)$, отвечающих *TE* -моде (см. фиг. 4), что также подтверждается и невязкой детерминанта, который принимает значения порядка 10^{-30} для $\gamma_{1,3}^0(z)$. Вклад второго порядка малости в $\gamma_{2,4}(z)$, отвечающих *TM*-моде, нетривиальный (см. фиг. 4), но, в отличие от вклада первого порядка, вещественный.

Фактически из непрерывности магнитной проницаемости μ на криволинейной границе средставми компьютерной алгебры (прямой подстановкой) было получено, что в решении для *TE*-моды обнуляются все слагаемые, содержащие h'(z). Поэтому и другие приближения — третьего порядка и выше — также отсутствуют.

Другими словами, даже малый наклон криволинейной границы раздела вносит нетривиальный вклад в коэффициент фазового замедления *TM* -моды, и не вносит вклада в коэффициент фазового замедления *TE* -моды — *TE* -мода вполне описывается в рамках нулевого приближения по малому наклону границы раздела.

Учет наклона границы раздела делает коэффициент фазового замедления для *TM*-моды комплексной величиной даже для идеального случая, когда показатели преломления вещественные. Напомним, что $\gamma(z) = \varphi'(z)$ и в искомое поле вида (1) входит экспоненциальный множитель

 $\exp\{i\omega t - ik_0\varphi(z)\}$. Следовательно, искомое электромагнитное поле в волноводе будет включать множитель

$$\exp\left\{i\omega t - ik_0\int_{z_0}^{z}\gamma(s)\,ds\right\} \approx \exp\left\{i\omega t - ik_0\int_{z_0}^{z}\gamma^0(s)\,ds + k_0\int_{z_0}^{z}h'(s)\,\mathrm{Im}\left(\gamma^1(s)\right)\,ds\right\} = \\ = \exp\left\{k_0\int_{z_0}^{z}h'(s)\,\mathrm{Im}\left(\gamma^1(s)\right)\,ds\right\}\exp\left\{i\omega t - ik_0\int_{z_0}^{z}\gamma^0(s)\,ds\right\}.$$

Первый сомножитель в полученном произведении экспонент будет описывать некую "накачку", если подынтегральная функция положительна, и некое "поглощение", если она отрицательна. В случае рассматриваемой структуры (см. в п. 3.2.3) имеет место $\text{Im}(\gamma^1(s)) > 0$ для *TM*-моды согласно фиг. 3, $h'(z) \ge 0$ в области волноводного перехода $z \in [0, L]$. Отметим также, что h'(z) = 0 при $z \ge L$, а значит, в области волноводного перехода $z \in [0, L]$ имеет место "накачка", которая прекратится при переходе в область регулярного волновода $z \ge L$.

Расчет амплитудных составляющих полей, изображенных на фиг. 6,7 в нулевом приближении, а также вкладов первого и второго порядков (23), (24) показывает, что наличие вкладов первого и второго порядков не сильно сказывается в численном отношении.

6. ЗАКЛЮЧЕНИЕ

В работе построены направляемые моды плавно-нерегулярного волноводного перехода между двумя регулярными волноводами, используя модель адиабатических волноводных мод. Описан и реализован в системе компьютерной алгебры символьно-численный алгоритм решения дисперсионных уравнений с комплексными корнями. С помощью реализованного алгоритма построены дисперсионные кривые в нулевом, первом и втором приближениях по малому параметру, характеризующему малость угла наклона границы в радианах.

Модель адиабатических волноводных мод позволяет сформулировать задачу расчета направляемых мод в символьном виде и решить ее также с использованием символьных манипуляций и алгоритмов, благодаря чему метод решения реализован в системе компьютерной алгебры Maple.

Использование компьютерной алгебры позволило изучить качественно и численно адиабатические волноводные моды в нулевом приближении с учетом малого наклона границы раздела волноводного слоя для волноводного перехода. В статье представлены решения, описывающие адиабатические волноводные моды в нулевом приближении с учетом малого наклона границы раздела волноводного слоя, качественно отличающиеся от решений, не учитывающих наклон границы раздела.

СПИСОК ЛИТЕРАТУРЫ

- 1. Stevenson A.F. General Theory of Electromagnetic Horns // J. Appl. Phys. 1951. V. 22. № 12. P. 1447.
- Schelkunoff S.A. Conversion of Maxwell's equations into generalized telegraphist's equations // Bell Syst. Tech. J. 1955. V. 34. P. 995–1043.
- 3. Каценеленбаум Б.З. Теория нерегулярных волноводов с медленно меняющимися параметрами. Москва: АН СССР, 1961.
- 4. *Katsenelenbaum B.Z., Mercader del Rio L., Pereyaslavets M., Sorolla Ayza M., Thumm M.* Theory of Nonuniform Waveguides: the cross-section method. The Institution of Engineering and Technology, London, 1998.
- 5. Шевченко В.В. Плавные переходы в открытых волноводах: введение в теорию. М.: Наука, 1969.
- 6. *Свешников А.Г.* Приближенный метод расчета слабо нерегулярного волновода // Докл. АН СССР. 1956. Т. 80. № 3. С. 345–347.
- 7. *Свешников А.Г.* К обоснованию методов расчета нерегулярных волноводов // Ж. вычисл. матем. и матем. физ. 1963. Т. З. № 1. С. 170–179.
- 8. *Fedoryuk M.V.* A justification of the method of transverse sections for an acoustic wave guide with nonhomogeneous content // U.S.S.R. Comput. Math. Math. Phys. 1973. V. 13. № 1. P. 162–173.
- 9. Иванов А.А., Шевченко В.В. Плоскопоперечный стык двух планарных волноводов // Радиотехн. и электроника. 2009. Т. 54. № 1. С. 68–77.
- 10. Sevastianov L.A., Egorov A.A. Theoretical analysis of the waveguide propagation of electromagnetic waves in dielectric smoothlyirregular integrated structures // Optics and Spectroscopy. 2008. V. 105. № 4. P. 576–584.

ДИВАКОВ, ТЮТЮННИК

- 11. Egorov A.A., Sevastianov L.A. Structure of modes of a smoothly irregular integrated optical four-layer three-dimensional waveguide // Quantum Electronics. 2009. V. 39. № 6. P. 566–574.
- 12. *Egorov A.A., Lovetskiy K.P., Sevastianov A.L., Sevastianov L.A.* Simulation of guided modes (eigenmodes) and synthesis of a thin-film generalised waveguide Luneburg lens in the zero-order vector approximation // Quantum Electronics. 2010. V.40. № 9. P. 830–836.
- 13. Бабич В.М., Булдырев В.С. Асимптотические методы в задачах дифракции коротких волн. Метод эталонных задач. М.: Наука, 1972.
- Divakov D.V., Sevastianov A.L. The Implementation of the Symbolic-Numerical Method for Finding the Adiabatic Waveguide Modes of Integrated Optical Waveguides in CAS Maple // Lecture Notes in Computer Science. 2019. V. 11661. P. 107–121.
- 15. *Divakov D.V., Tyutyunnik A.A.* Symbolic Investigation of the Spectral Characteristics of Guided Modes in Smoothly Irregular Waveguides // Programming and Computer Software. 2022. V. 48. № 2. P. 80–89.
- 16. Adams M.J. An Introduction to Optical Waveguides. Wiley, New York, 1981.
- 17. Maple homepage, https://www.maplesoft.com/. Last accessed 24 May 2022
- Gevorkyan M., Kulyabov D., Lovetskiy K., Sevastianov L., Sevastianov A. Field calculation for the horn waveguide transition in the single-mode approximation of the cross-sections method // Proceedings of SPIE. 2017. V. 10337. P. 103370H.
- 19. *Divakov D.V., Lovetskiy K.P., Sevastianov L.A., Tiutiunnik A.A.* A single-mode model of cross-sectional method in a smoothly irregular transition between planar thin-film dielectric waveguides // Proceedings of SPIE. 2021. V. 11846. P. 118460T.