Физиология человека, 2023, T. 49, № 6, стр. 128-136

Риск тромбообразования и механизмы активации гемостаза у дайверов после погружений

Д. С. Кузичкин 1, А. А. Маркин 1*, О. А. Журавлева 1

1 ФГБУН ГНЦ РФ – Институт медико-биологических проблем РАН
Москва, Россия

* E-mail: andre_markine@mail.ru

Поступила в редакцию 17.01.2023
После доработки 23.05.2023
Принята к публикации 08.06.2023

Аннотация

В данном обзоре рассмотрены риски возникновения декомпрессионной болезни и ее осложнений у профессиональных водолазов и дайверов при различных способах погружения в реальных и моделируемых условиях. Обсуждается патогенез нарушений системы плазменного и сосудистого гемостаза при воздействии на организм факторов внешней среды при различных видах и типах погружений. Обобщение результатов исследований показало, что механизмы активации тромбообразования при данном воздействии являются комплексными и обусловлены опосредованной микропузырьками активацией тромбоцитов, а также развитием эндотелиальной дисфункции, оксидативного и психофизиологического стресса. Исследование параметров гемостаза у профессиональных водолазов и дайверов-любителей может быть одним из основных способов оценки риска ее развития. Рассмотренные средства профилактики тромбообразования при погружениях и декомпрессии, согласно результатам, включенных в обзор работ, являются достаточно эффективными.

Ключевые слова: морская медицина, водолазы, декомпрессионная болезнь, гемостаз, профилактика.

Список литературы

  1. Levett D.Z., Millar I.L. Bubble trouble: a review of diving physiology and disease // Postgrad. Med. J. 2008. V. 84. № 997. P. 571.

  2. Spira A. Diving and marine medicine review part II: diving diseases // J. Travel Med. 1999. V. 6. № 3. P. 180.

  3. Beale P., Kitchen L., Graf W.R., Fenton M.E. Abdominal decompression illness following repetitive diving: a case report and review of the literature // Undersea Hyperb. Med. 2019. V. 46. № 2. P. 211.

  4. Vann R.D., Butler F.K., Mitchell S.J., Moon R.E. Decompression illness // Lancet. 2011. V. 377. № 9760. P. 153.

  5. Pollock N.W., Buteau D. Updates in decompression illness // Emerg. Med. Clin. North Am. 2017. V. 35. № 2. P. 301.

  6. Kohshi K., Denoble P.J., Tamaki H. et al. Decompression illness in repetitive breath-hold diving: why ischemic lesions involve the brain? // Front. Physiol. 2021. V. 12. P. 711850.

  7. Kohshi K., Tamaki H., Lemaître F. et al. Diving-related disorders in commercial breath-hold divers (Ama) of Japan // Diving Hyperb. Med. 2021. V. 51. № 2. P. 199.

  8. Vann R.D., Denoble P.J., Howle L.E. et al. Resolution and severity in decompression illness // Aviat. Space Environ. Med. 2009. V. 80. № 5. P. 466.

  9. Alcock J., Brainard A.H. Gene-environment mismatch in decompression sickness and air embolism // Med. Hypotheses. 2010. V. 75. № 2. P. 199.

  10. Beuster W., van Laak U. Severe decompression sickness in divers // Wien. Med. Wochenschr. 1999. V. 151. № 5–6. P. 111.

  11. Eichhorn L., Leyk D. Diving medicine in clinical practice // Dtsch. Ärzteblatt Int. 2015. V. 112. № 9. P. 147.

  12. Leffler C.T. Effect of ambient temperature on the risk of decompression sickness in surface decompression divers // Aviat. Space Environ. Med. 2001. V. 72. № 5. P. 477.

  13. Bosco G., Yang Z.J., Savini F. et al. Environmental stress on diving-induced platelet activation // Undersea Hyperb. Med. 2001. V. 28. № 4. P. 207.

  14. Madden L.A., Laden G. Gas bubbles may not be the underlying cause of decompression illness − The at-depth endothelial dysfunction hypothesis // Med. Hypotheses. 2009. V. 72. № 4. P. 389.

  15. Lambrechts K., Pontier J.M., Balestra C. et al. Effect of a single, open-sea, air scuba dive on human micro- and macrovascular function // Eur. J. Appl. Physiol. 2013. V. 113. № 10. P. 2637.

  16. Toyota S., Nagata S., Yoshino S. et al. Mesenteric venous thrombosis as a rare complication of decompression sickness // Surg. Case Rep. 2020. V. 6. № 1. P. 24.

  17. Gertler S.L., Stein J., Simon T., Miyai K. Mesenteric venous thrombosis as sole complication of decompression sickness // Dig. Dis. Sci. 1984. V. 29. № 1. P. 91.

  18. Kassar E.V., Bass J.R., Douglas E., Speake M.R. Portal and mesenteric vein thrombosis associated with decompression sickness in a 48-year-old deep sea self-contained underwater breathing apparatus (SCUBA) diver // Am. J. Case Rep. 2022. V. 23. P. e935473.

  19. Boussuges A., Succo E., Juhan-Vague I., Sainty J.M. Activation of coagulation in decompression illness // Aviat. Space Environ. Med. 1998. V. 69. № 2. P. 129.

  20. Gempp E., Morin J., Louge P., Blatteau J.E. Reliability of plasma D-dimers for predicting severe neurological decompression sickness in scuba divers // Aviat. Space Environ. Med. 2012. V. 83. № 8. P. 771.

  21. Bolboli L., Khodadadi D., Azimi F. Can Diving Depth Affect Blood Hemostasis System Responses? // Sport Physiology. 2019. V. 11. № 41. P. 123.

  22. Pontier J.M., Jimenez C., Blatteau J.E. Blood platelet count and bubble formation after a dive to 30 msw for 30 min // Aviat. Space Environ. Med. 2008. V. 79. № 12. P. 1096.

  23. Lambrechts K., Balestra C., Theron M. et al. Venous gas emboli are involved in post-dive macro, but not microvascular dysfunction // Eur. J. Appl. Physiol. 2017. V. 117. № 2. P. 335.

  24. Pontier J.M., Gempp E., Ignatescu M. Blood platelet-derived microparticles release and bubble formation after an open-sea air dive // Appl. Physiol. Nutr. Metab. 2012. V. 37. № 5. P. 888.

  25. Moon R.E. Hyperbaric oxygen treatment for decompression sickness // Undersea Hyperb. Med. 2014. V. 41. № 2. P. 151.

  26. Barratt D.M., Harch P.G., Van Meter K. Decompression illness in divers: a review of the literature // Neurologist. 2002. V. 8. № 3. P. 186.

  27. Malmgren R., Thorsen T., Nordvik A., Holmsen H. Microbubble-induced phospholipase C activation does not correlate with platelet aggregation // Thromb. Haemost. 1993. V. 69. № 4. P. 394.

  28. Eckmann D.M, Armstead S.C. Influence of endothelial glycocalyx degradation and surfactants on air embolism adhesion // Anesthesiology. 2006. V. 105. № 6. P. 1220.

  29. Barak O.F., Janjic N., Drvis I. et al. Vascular dysfunction following breath-hold diving // Can. J. Physiol. Pharmacol. 2020. V. 98. № 2. P. 124.

  30. Eichhorn L., Dolscheid-Pommerich R., Erdfelder F. et al. Sustained apnea induces endothelial activation // Clin. Cardiol. 2017. V. 40. № 9. P. 704.

  31. Leite A.R., Borges-Canha M., Cardoso R. et al. Novel biomarkers for evaluation of endothelial dysfunction // Angiology. 2020. V. 71. № 5. P. 397.

  32. El-Gamal H., Parray A.S., Mir F.A. et al. Circulating microparticles as biomarkers of stroke: A focus on the value of endothelial- and platelet-derived microparticles // J. Cell. Physiol. 2019. V. 234. № 10. P. 16739.

  33. Culic V.C., Van Craenenbroeck E., Muzinic N.R. et al. Effects of scuba diving on vascular repair mechanisms // Undersea Hyperb. Med. 2014. V. 41. № 2. P. 97.

  34. Olszański R., Sićko Z., Baj Z. et al. Effect of saturated air and nitrox diving on selected parameters of haemostasis // Bull. Inst. Marit. Trop. Med. Gdynia. 1997. V. 48. № 1–4. P. 75.

  35. Bao X.-C., Shen Q., Fang Y.-Q., Wu J.-Q. Human Physiological Responses to a Single Deep Helium-Oxygen Diving // Front. Physiol. 2021. V. 12. P. 735986.

  36. Durgin B.G., Straub A.C. Redox control of vascular smooth muscle cell function and plasticity // Lab. Invest. 2018. V. 98. № 10. P. 1254.

  37. Laurindo F.R.M. Redox cellular signaling pathways in endothelial dysfunction and vascular disease / Endothelium and Cardiovascular Diseases // Eds. Da Luz P.L., Libby P., Chagas A.C.P., Laurindo F.R.M. Academic Press; Cambridge, MA, USA, 2018. Ch. 10. P. 127.

  38. Madamanchi N.R., Vendrov A., Runge M.S. Oxidative stress and vascular disease // Arterioscler. Thromb. Vasc. Biol. 2005. V. 25. № 1. P. 29.

  39. Cadroy Y., Dupouy D., Boneu B., Plaisancié H. Polymorphonuclear leukocytes modulate tissue factor production by mononuclear cells: role of reactive oxygen species // J. Immunol. 2000. V. 164. № 7. P. 3822.

  40. Görlach A., Brandes R.P., Bassus S. et al. Oxidative stress and expression of p22phox are involved in the up-regulation of tissue factor in vascular smooth muscle cells in response to activated platelets // FASEB J. 2000. V. 14. № 11. P. 1518.

  41. Herkert O., Diebold I., Brandes R.P. et al. NADPH oxidase mediates tissue factor-dependent surface procoagulant activity by thrombin in human vascular smooth muscle cells // Circulation. 2002. V. 105. № 17. P. 2030.

  42. Swiatkowska M., Szemraj J., Al-Nedawi K.N., Pawłowska Z. Reactive oxygen species upregulate expression of PAI-1 in endothelial cells // Cell. Mol. Biol. Lett. 2002. V. 7. № 4. P. 1065.

  43. BerenjiArdestani S., Matchkov V.V., Eftedal I., Pedersen M.A. Single simulated heliox dive modifies endothelial function in the vascular wall of ApoE knockout male rats more than females // Front. Physiol. 2019. V. 10. P. 1342.

  44. Brubakk A.O., Duplancic D., Valic Z. et al. A single air dive reduces arterial endothelial function in man // J. Physiol. 2005. V. 566. Pt. 3. P. 901.

  45. Obad A., Marinovic J., Ljubkovic M. et al. Successive deep dives impair endothelial function and enhance oxidative stress in man // Clin. Physiol. Funct. Imaging. 2010. V. 30. № 6. P. 432.

  46. Roka-Moiia Y., Ammann K.R., Miller-Gutierrez S. et al. Shear-mediated platelet activation in the free flow II: Evolving mechanobiological mechanisms reveal an identifiable signature of activation and a bi-directional platelet dyscrasia with thrombotic and bleeding features // J. Biomech. 2021. V. 123. P. 110415.

  47. Casa L.D.C., Ku D.N. Thrombus formation at high shear rates // Annu. Rev. Biomed. Eng. 2017. V. 19. P. 415.

  48. Sandrini L., Ieraci A., Amadio P. et al. Impact of acute and chronic stress on thrombosis in healthy individuals and cardiovascular disease patients // Int. J. Mol. Sci. 2020. V. 21. № 21. P. 7818.

  49. Thorsen T., Lie R.T., Holmsen H. Induction of platelet aggregation in vitro by microbubbles of nitrogen // Undersea Biomed. Res. 1989. V. 16. № 6. P. 453.

  50. Pendergast D.R., Moon R.E., Krasney J.J. et al. Human physiology in an aquatic environment // Compr. Physiol. 2015. V. 5. № 4. P. 1705.

  51. Anegg U., Dietmaier G., Maier A. et al. Stress-induced hormonal and mood responses in scuba divers: a field study // Life Sci. 2002. V. 70. № 23. P. 2721.

  52. Zarezadeh R., Azarbayjani M.A. The effect of air scuba dives up to a depth of 30 metres on serum cortisol in male divers // Diving Hyperb. Med. 2014. V. 44. № 3. P. 158.

  53. Olszański R., Radziwon P., Piszcz J. et al. Activation of platelets and fibrinolysis induced by saturated air dives // Aviat. Space Environ. Med. 2010. V. 81. № 6. P. 585.

  54. Domoto H., Nakabayashi K., Hashimoto A. et al. Decrease in platelet count during saturation diving // Aviat. Space Environ. Med. 2001. V. 72. № 4. P. 380.

  55. Lambrechts K., Pontier J.M., Mazur A. et al. Effect of decompression-induced bubble formation on highly trained divers microvascular function // Physiol. Rep. 2013. V. 1. № 6. P. e00142.

  56. Olszański R., Radziwon P., Baj Z. et al. Changes in the extrinsic and intrinsic coagulation pathways in humans after decompression following saturation diving // Blood Coagul. Fibrinolysis. 2001. V. 12. № 4. P. 269.

  57. Radziwon P., Olszański R., Tomaszewski R. et al. Decreased levels of PAI-1 and alpha 2-antiplasmin contribute to enhanced fibrinolytic activity in divers // Thromb. Res. 2007. V. 121. № 2. P. 235.

  58. Baj Z., Olszański R., Majewska E., Konarski M. The effect of air and nitrox divings on platelet activation tested by flow cytometry // Aviat. Space Environ. Med. 2000. V. 71. № 9. P. 925.

  59. Olszański R., Radziwon P., Galar M. et al. Diving up to 60 m depth followed by decompression has no effect on pro-enzyme and total thrombin activatable fibrinolysis inhibitor antigen concentration // Blood Coagul. Fibrinolysis. 2003. V. 14. № 7. P. 659.

  60. Olszanski R., Radziwon P., Siermontowski P. et al. Trimix instead of air, decreases the effect of short-term hyperbaric exposures on platelet and fibrinolysis activation // Adv. Med. Sci. 2010. V. 55. № 2. P. 313.

  61. Bosco G., Yang Z.J., Di Tano G. et al. Effect of in-water oxygen prebreathing at different depths on decompression-induced bubble formation and platelet activation // J. Appl. Physiol. 2010. V. 108. № 5. P. 1077.

  62. Pontier J.M., Lambrechts K. Effect of oxygen-breathing during a decompression-stop on bubble-induced platelet activation after an open-sea air dive: oxygen-stop decompression // Eur. J. Appl. Physiol. 2014. V. 114. № 6. P. 1175.

  63. Madden D., Thom S.R., Milovanova T.N. et al. Exercise before scuba diving ameliorates decompression-induced neutrophil activation // Med. Sci. Sports Exerc. 2014. V. 46. № 10. P. 1928.

  64. Philp R.B., Bennett P.B., Andersen J.C. et al. Effects of aspirin and dipyridamole on platelet function, hematology, and blood chemistry of saturation divers // Undersea Biomed. Res. 1979. V. 6. № 2. P. 127.

  65. Philp R.B., Freeman D., Francey I., Bishop B. Hematology and blood chemistry in saturation diving: I. Antiplatelet drugs, aspirin, and VK744 // Undersea Biomed. Res. 1975. V. 2. № 4. P. 233.

  66. Bakken A.M., Farstad M., Holmsen H. Fatty acids in human platelets and plasma. Fish oils decrease sensitivity toward N2 microbubbles // J. Appl. Physiol. 1991. V. 70. № 6. P. 2669.

Дополнительные материалы отсутствуют.