Физиология человека, 2023, T. 49, № 6, стр. 98-116

Иммунологические аспекты реактивации латентных инфекций в условиях космического полета и Антарктики

С. М. Шульгина 1*, М. П. Рыкова 1, О. В. Кутько 1, В. А. Шмаров 1, Е. Н. Антропова 1, Э. А. Жирова 1, Е. А. Лысенко 12, К. Д. Орлова 1, Д. Д. Власова 1, С. А. Пономарёв 1**

1 ФГБУН ГНЦ РФ – Институт медико-биологических проблем РАН
Москва, Россия

2 Университет Падуи
Падуя, Италия

* E-mail: sofiya.kayunova@mail.ru
** E-mail: dr.grey@bk.ru

Поступила в редакцию 22.12.2022
После доработки 17.04.2023
Принята к публикации 10.05.2023

Аннотация

Комплекс факторов космического полета (КП) может оказывать негативное влияние на организм человека, в том числе и на системы врожденного и адаптивного иммунитета. Одним из негативных эффектов нарушения функциональной активности иммунной системы является снижение иммунологического контроля латентных инфекций. В ходе кратко- и долгосрочных КП была показана реактивация латентных вирусных агентов, при этом вирус обнаруживался в биологических жидкостях организма и в течение некоторого времени после возвращения на Землю. Несмотря на то, что в большинстве случаев реактивация проявлялось бессимптомно, есть опасения, что во время продолжительных экспедиций в дальний космос реактивация латентных патогенов может привести к развитию заболеваний, опасных для жизни и здоровья экипажа. Имеются довольно обширные сведения о реактивации вирусных патогенов в условиях КП, однако реактивация бактериальных агентов у космонавтов практически не изучена. В связи со сложностью проведения исследований в космических условиях, важную роль приобретают наземные аналоговые эксперименты, моделирующие условия пребывания человека в космосе. Одним из наиболее показательных аналогов КП является долгосрочное пребывание человека в условиях Антарктиды, которое дает возможность получить уникальные сведения о влиянии изоляции, повышенного психического и физиологического стресса на реактивацию латентных инфекций. В настоящее время латентность все чаще рассматривается с точки зрения симбиотического существования патогена и хозяина, в ходе которого организм человека получает дополнительную устойчивость к некоторым инфекционным агентам. Таким образом, важной задачей предстоящих исследований является комплексный анализ иммунологического статуса человека в условиях КП, установление его взаимосвязи с реактивацией латентных инфекций и разработка систем мониторинга, профилактики и лечения негативных последствий реактивации с учетом реалий КП.

Ключевые слова: латентные инфекции, реактивация, космический полет, Антарктида, герпесвирусы, хламидии, аутоиммунитет, цитокины.

Список литературы

  1. Jordan M.C. Latent Infection and the Elusive Cytomegalovirus // Rev. Infect. Dis. 1983. V. 5. № 2. P. 205.

  2. Stevens J.G. Latent characteristics of selected herpesviruses // Adv. Cancer Res. 1978. V. 26. P. 227.

  3. Babel N., Brestrich G., Gondek L.P. et al. Clonotype analysis of cytomegalovirus-specific cytotoxic T lymphocytes // J. Am. Soc. Nephrol. 2009. V. 20. № 2. P. 344.

  4. Glaser R., Strain E.C., Tarr K.L. et al. Changes in Epstein-Barr virus antibody titers associated with aging // Proc. Soc. Exp. Biol. Med. 1985. V. 179. № 3. P. 352.

  5. Ison M.G., Hayden R.T. Adenovirus // Microbiol. Spectr. 2016. V. 4. № 4. https://doi.org/10.1128/microbiolspec.DMIH2-0020-2015

  6. Neumann R., Genersch E., Eggers H.J. Detection of adenovirus nucleic acid sequences in human tonsils in the absence of infectious virus // Virus Res. 1987. V. 7. № 1. P. 93.

  7. Hertzen L.C. Role of persistent infection in the control and severity of asthma: focus on Chlamydia pneumonia // Eur. Respir. J. 2002. V. 19. № 3. P. 546.

  8. Mackowiak P.A. Microbial latency // Rev. Infect. Dis. 1984. V. 6. № 5. P. 649.

  9. Mansel J.K., Rosenow E.C., Smith T.F., Martin J.W. Mycoplasma pneumoniae pneumonia // Chest. 1989. V. 95. № 3. P. 639.

  10. McCune R.M., McDermott W., Tompsett R. The fate of Mycobacterium tuberculosis in mouse tissues as determined by the microbial enumeration technique II. The conversion of tuberculous infection to the latent state by the administration of pyrazinamide and a companion drug // J. Exp. Med. 1956. V. 104. № 5. P. 763.

  11. Parrish N.M., Dick J.D., Bishai W. Mechanism of latency in Mycobacterium tuberculosis // Trends Microbiol. 1998. V. 6. № 3. P. 107.

  12. Jordan M.C., Jordan G.W., Stevens J.G., Miller G. Latent herpesviruses of humans // Ann. Intern. Med. 1984. V. 100. № 6. P. 866.

  13. Laing K.J., Ouwendijk W.J., Koelle D.M., Verjans G.M. Immunobiology of Varicella-Zoster Virus Infection // J. Infect. Dis. 2018. V. 218. № 2. P. 68

  14. Steain M., Sutherland J.P., Rodriguez M. et al. Analysis of T cell responses during active varicella-zoster virus reactivation in human ganglia // J. Virol. 2014. V. 88. № 5. P. 2704.

  15. White D.V., Beard R.S., Barton E.S. Immune Modulation During Latent Herpesvirus Infection // Immunol. Rev. 2012. V. 245. № 1. P. 189.

  16. Virgin H.W., Wherry E.J., Ahmed R. Redefining chronic viral infection // Cell. 2009. V. 138. № 1. P. 30.

  17. Selin L.K., Brehm M.A., Naumov Y.N. Memory of mice and men: CD8+ T-cell cross-reactivity and heterologous immunity // Immunol. Rev. 2006. V. 211. № 1. P. 164.

  18. Barton E.S., Rajkarnikar S., Langston P.K. et al. Gammaherpesvirus Latency Differentially Impacts the Generation of Primary versus Secondary Memory CD8+ T Cells during Subsequent Infection // J. Virol. 2014. V. 88. № 21. P. 12740.

  19. Sandalova E., Laccabue D., Boni C. et al. Contribution of Herpesvirus Specific CD8 T Cells to Anti-Viral T Cell Response in Humans // PLoS Pathog. 2010. V. 6. № 8. P. e1001051.

  20. Barton E.S., White D.W., Cathelyn J.S. et al. Herpesvirus latency confers symbiotic protection from bacterial infection // Nature. 2007. V. 447. № 7142. P. 326.

  21. Nilsson C., Linde A., Montgomery S.M. et al. Does early EBV infection protect against IgE sensitization? // J. Allergy Clin. Immunol. 2005. V. 116. № 2. P. 438.

  22. Calvani M., Alessandri C., Paolone G. et al. Correlation between Epstein Barr virus antibodies, serum IgE and atopic disease // Pediatr. Allergy Immunol. 1997. V. 8. № 2. P. 91.

  23. Crucian B., Simpson R.J., Mehta S. et al. Terrestrial stress analogs for spaceflight associated immune system dysregulation // Brain Behav. Immun. 2014. V. 39. P. 23.

  24. Mehta S.K., Laudenslager M.L., Stowe R.P. et al. Latent virus reactivation in astronauts on the international space station // NPJ Microgravity. 2017. V. 3. P. 11.

  25. Crucian B., Babiak-Vazquez A., Johnston S. et al. Incidence of clinical symptoms during long-duration orbital spaceflight // Int. J. Gen. Med. 2016. V. 9. P. 383.

  26. Mehta S.K., Szpara M.L., Rooney B.V. et al. Dermatitis during Spaceflight Associated with HSV-1 Reactivation // Viruses. 2022. V. 14. № 4. P. 789.

  27. AlQarni S., Al-Sheikh Y., Campbell D. et al. Lymphomas driven by Epstein–Barr virus nuclear antigen-1 (EBNA1) are dependent upon Mdm2 // Oncogene. 2018. V. 37. № 29. P. 3998.

  28. Tsai M.-H., Lin X., Shumilov A. et al. The biological properties of different Epstein–Barr virus strains explain their association with various types of cancers // Oncotarget. 2017. V. 8. № 6. P. 10238.

  29. Zhang B., Kracker S., Yasuda T. et al. Immune surveillance and therapy of lymphomas driven by Epstein–Barr virus protein LMP1 in a mouse model // Cell. 2012. V. 148. № 4. P. 739.

  30. Balfour H.H., Dunmire S.K., Hogquist K.A. Infectious mononucleosis // Clin. Transl. Immunol. 2015. V. 4. № 2. P. e33.

  31. Dittmer D., Lagunoff M., Renne R. et al. A cluster of latently expressed genes in Kaposi’s sarcoma-associated herpesvirus // J. Virol. 1998. V. 72. № 10. P. 8309.

  32. Sin S.-H., Dittmer D.P. Viral latency locus augments B-cell response in vivo to induce chronic marginal zone enlargement, plasma cell hyperplasia, and lymphoma // Blood. 2013. V. 121. № 15. P. 2952.

  33. Jha H.C., Banerjee S., Robertson E.S. The Role of Gammaherpesviruses in Cancer Pathogenesis // Pathogens. 2016. V. 5. № 1. P. 18.

  34. Reynolds R., Little M.P., Day S. et al. Cancer incidence and mortality in the USA Astronaut Corps, 1959–2017 // Occup. Environ. Med. 2021. V. 78. P. 869.

  35. Akbar A.N., Fletcher J.M. Memory T cell homeostasis and senescence during aging // Curr. Opin. Immunol. 2005. V. 17. № 5. P. 480.

  36. Berger R., Florent G., Just M. Decrease of the lymphoproliferative response to varicella-zoster virus antigen in the aged // Infect. Immun. 1981. V. 32. № 1. P. 24.

  37. Khan N., Hislop A., Gudgeon N. et al. Herpesvirus-specific CD8 T cell immunity in old age: cytomegalovirus impairs the response to a coresident EBV infection // J. Immunol. 2004. V. 173. № 12. P. 7481.

  38. Mekker A., Tchang V.S., Haeberli L. et al. Immune Senescence: Relative Contributions of Age and Cytomegalovirus Infection // PLoS Pathog. 2012. V. 8. № 8. P. e1002850.

  39. Messaoudi I., Lemaoult J., Guevara-Patino J.A. et al. Age-related CD8 T cell clonal expansions constrict CD8 T cell repertoire and have the potential to impair immune defense // J. Exp. Med. 2004. V. 200. № 10. P. 1347.

  40. Fukuda K., Straus S.E., Hickie I. et al. The chronic fatigue syndrome, a comprehensive approach to its definition and study // Ann. Intern. Med. 1994. V. 121. № 12. P. 953.

  41. Iwakami E., Arashima Y., Kato K. et al. Treatment of chronic fatigue syndrome with antibiotics: a pilot study assessing the involvement of coxiella burnetii // Intern. Med. 2005. V. 44. № 12. P. 1258.

  42. Loebel M., Eckey M., Sotzny F. et al. Serological profiling of the EBV immune response in Chronic Fatigue Syndrome using a peptide microarray // PLoS One. 2017. V. 12. № 6. P. e0179124.

  43. Walch C.M., Zainal N.Z., Middleton S.J. et al. A family history study of chronic fatigue syndrome // Psychiatr. Genet. 2001. V. 11. № 3. P. 123.

  44. Ariza M.E. Myalgic Encephalomyelitis / Chronic Fatigue Syndrome: The Human Herpesviruses Are Back! // Biomolecules. 2021. V. 11. № 2. P. 185.

  45. Chia J.K., Chia L.Y. Chronic Chlamydia pneumoniae infection: a treatable cause of chronic fatigue syndrome // Clin. Infect. Dis. 1999. V. 29. № 2. P. 452.

  46. Nicolson G.L., Gan R., Haier J. Multiple co-infections (Mycoplasma, Chlamydia, human herpes virus-6) in blood of chronic fatigue syndrome patients: association with signs and symptoms // APMIS. 2003. V. 111. № 5. P. 557.

  47. Nijs J., Nicolson G.L., Becker P.D. et al. High prevalence of Mycoplasma infections among European chronic fatigue syndrome patients. Examination of four Mycoplasma species in blood of chronic fatigue syndrome patients // FEMS Immunol. Med. Microbiol. 2002. V. 34. № 3. P. 209.

  48. Cooper G.S., Dooley M.A., Treadwell E.L. et al. Hormonal, environmental, and infectious risk factors for developing systemic lupus erythematosus // Arthritis Rheum. 1998. V. 41. № 10. P. 1714.

  49. Iliopoulos A.G., Tsokos G.C. Immunopathogenesis and spectrum of infections in systemic lupus erythematosus // Semin. Arthritis Rheum. 1996. V. 25. № 5. P. 318.

  50. Kalden J.R., Gay S. Retroviruses and autoimmune rheumatic diseases // Clin. Exp. Immunol. 1984. V. 98. № 1. P. 1.

  51. Sabbatini A., Bombardieri S., Migliorini P. Autoantibodies from patients with systemic lupus erythematosus bind a shared sequence of SmD and Epstein-Barr virus-encoded nuclcar antigcn EBNA I // Eur. J. Immunol. 1993. V. 23. № 5. P. 1146.

  52. Zamansky G.B. Sunlight-induced pathogenesis in systemic lupus erythematosus // J. Invest. Dermatol. 1985. V. 85. № 3. P. 179.

  53. Uetrecht J.P. Mechanism of drug-induccd lupus // Chem. Res. Toxicol. 1988. V. 1. № 3. P. 133.

  54. Shah M., Adams-Huet B., Kavanaugh A. et al. Nutrient intake and diet quality in patients with systemic lupus erythematosus on a culturally sensitive cholesterol lowering dietary program // J. Rheumatol. 2004. V. 31. № 1. P. 71.

  55. Ansar A.S., Penhale W.J., Talal N. Sex hormones, immune responses, and autoimmune diseases: mechanisms of sex hormone action // Am. J. Pathol. 1985. V. 121. № 3. P. 531.

  56. Poole B.D., Scofield R.H., Harley J.B., James J.A. Epstein-Barr virus and molecular mimicry in systemic lupus erythematosus // Autoimmunity. 2006. V. 39. № 1. P. 63.

  57. Munroe M.E., Anderson J.R., Gross T.F. et al. Epstein-Barr Functional Mimicry: Pathogenicity of Oncogenic Latent Membrane Protein-1 in Systemic Lupus Erythematosus and Autoimmunity // Front. Immunol. 2020. V. 11. P. 606936.

  58. Jog N.J., Chakravarty E.F., Guthridge J.M., James J.A. Epstein Barr Virus Interleukin 10 Suppresses Anti-inflammatory Phenotype in Human Monocytes // Front. Immunol. 2018. V. 9. P. 2198.

  59. Sairenji T., Ohnishi E., Inouye S., Kurata T. Induction of Interleukin-10 on Activation of Epstein-Barr Virus in EBV-Infected B-Cell Lines // Viral Immunol. 1998. V. 11. № 4. P. 221.

  60. Berner B.R., Tary-Lehmann M., Yonkers N.L. et al. Phenotypic and functional analysis of EBV-specific memory CD8 cells in SLE // Cell. Immunol. 2005. V. 235. P. 29.

  61. Tsokos G.C., Magrath I.T., Balow J.E. Epstein–Barr virus induces normal B cell responses but defective suppressor T cell responses in patients with systemic lupus erythematosus // J. Immunol. 1983. V. 131. № 4. P. 1797.

  62. McInnes I.B., Schett G. The pathogenesis of rheumatoid arthritis // N. Engl. J. Med. 2011. V. 365. № 23. P. 2205.

  63. Volkov M., van Schie K.A., van der Woude D. Autoantibodies and B Cells: The ABC of rheumatoid arthritis pathophysiology // Immunol. Rev. 2020. V. 294. № 1. P. 148.

  64. Beck H.W., Clausen J. An epidemiological study on paramyxovirus antibody titers in multiple sclerosis, systemic lupus erythematosus, and rheumatoid arthritis // Zentralbl. Bakteriol. Orig. A. 1977. V. 238. № 4. P. 431.

  65. Freimanis G., Hooley P., Ejtehadi H.D. et al. A role for human endogenous retrovirus-K (HML-2) in rheumatoid arthritis: investigating mechanisms of pathogenesis // Clin. Exp. Immunol. 2010. V. 160. № 3. P. 340.

  66. Tamori A., Koike T., Goto H. et al. Prospective study of reactivation of hepatitis B virus in patients with rheumatoid arthritis who received immunosuppressive therapy: evaluation of both HBsAg-positive and HBsAg-negative cohorts // J. Gastroenterol. 2011. V. 46. № 4. P. 556.

  67. Toussirot E., Roudier J. Pathophysiological links between rheumatoid arthritis and the Epstein-Barr virus: an update // Joint Bone Spine. 2007. V. 74. № 5. P. 418.

  68. Sriram S., Stratton C.W., Yao S. et al. Chlamydia pneumoniae infection of the central nervous system in multiple sclerosis // Ann. Neurol. 1999. V. 46. № 1. P. 6.

  69. Dunn N., Kharlamova N., Fogdell-Hahn A. The role of herpesvirus 6A and 6B in multiple sclerosis and epilepsy // Scand. J. Immunol. 2020. V. 92. № 6. P. e12984.

  70. Bjornevik K., Cortese M., Healy B.C. et al. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis // Science. 2022. V. 375. № 6578. P. 296.

  71. Вайншенкер Ю.И., Нуралова И.В., Онищенко Л.С. Хламидиоз центральной нервной системы. Лабораторная диагностика и клинико-морфологические особенности // Архив Патологии. 2014. Т. 76. № 1. С. 57. Va$\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{\iota } $nshenker Iu.I., Nuralova I.V., Onishenko L.S. [Chlamydial infection of the central nervous system. Laboratory diagnosis and clinic and morphological features] // Arkhiv Patologii. 2014. V. 76. № 1. P. 57.

  72. Hackstadt T., Rockey D.D., Heinzen R.A., Scidmore M.A. Chlamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane // EMBO J. 1996. V. 15. № 5. P. 964

  73. Khaki M., Ghazavi A., Ghasami K. et al. Evaluation of viral antibodies in Iranian multiple sclerosis patients // Neurosciences. 2011. V. 16. № 3. P. 224.

  74. Ramroodi N., Sanadgol N., Ganjali Z. et al. Monitoring of active human herpes virus 6 infection in Iranian patients with different subtypes of multiple sclerosis // J. Pathog. 2013. V. 2013. P. 194932.

  75. Behzad-Behbahani A., Mikaeili M.H., Entezam M. et al. Human herpesvirus-6 viral load and antibody titer in serum samples of patients with multiple sclerosis // J. Microbiol. Immunol. Infect. 2011. V. 44. № 4. P. 247.

  76. Ortega-Madueno I., Garcia-Montojo M., Dominguez-Mozo M.I. et al. Anti-Human Herpesvirus 6A/B IgG Correlates with Relapses and Progression in Multiple Sclerosis // PLoS One. 2014. V. 9. № 8. P. e104836.

  77. Simpson S., Taylor B., Dwyer D.E. et al. Anti-HHV-6 IgG titer significantly predicts subsequent relapse risk in multiple sclerosis // Mult. Scler. 2012. V. 18. № 6. P. 799.

  78. Paulson K.E., Zhu S.N., Chen M. et al. Resident intimal dendritic cells accumulate lipid and contribute to the initiation of atherosclerosis // Circ. Res. 2010. V. 106. № 2. P. 383.

  79. Tabas I., Lichtman A.H. Monocyte-Macrophages and T Cells in Atherosclerosis Immunity // Immunity. 2017. V. 47. № 4. P. 621.

  80. Алекперов Э.З., Наджапов Р.Н. Современные концепции о роли воспаления при атеросклерозе // Кардиология. 2010. Т. 50. № 6. С. 88. Alekperov É.Z., Nadzhafov R.N. [Contemporary concepts of the role of inflammation in atherosclerosis] // Kardiologiia. 2010. V. 50. № 6. P. 88.

  81. Spagnoli L.G., Bonanno E., Sangiorgi G., Mauriello A. Role of Inflammation in atherosclerosis // J. Nucl. Med. 2007. V. 48. № 11. P. 1800.

  82. Blum A., Peleg A., Weinberg M. Anti-Cytomegalovirus (CMV) IgG Antibody Titer in Patients with Risk Factors to Atherosclerosis // Clin. Exp. Med. 2003. V. 3. № 3. P. 157.

  83. Cherry D.K., Burt C.W., Woodwell D.A. National ambulatory medical care survey: 2001 summary // Adv. Data. 2003. V. 337. P. 1.

  84. Guetta E., Scarpati E.M., DiCorleto P.E. Effect of cytomegalovirus immediate early gene products on endothelial cell gene activity // Cardiovasc. Res. 2001. V. 50. № 3. P. 538.

  85. Wang B., Zhang L., Zhang T. et al. Chlamydia pneumoniae infection promotes vascular smooth muscle cell migration through a Toll-like receptor 2-related signaling pathway // Infect. Immun. 2013. V. 81. № 12. P. 4583.

  86. Chukkapalli S.S., Ambadapadi S., Varkoly K. et al. Impaired innate immune signaling due to combined Toll-like receptor 2 and 4 deficiency affects both periodontitis and atherosclerosis in response to polybacterial infection // Pathog. Dis. 2018. V. 76. № 8. P. fty076.

  87. Lee G.-L., Yeh C.-C., Wu J.-Y. et al. TLR2 Promotes Vascular Smooth Muscle Cell Chondrogenic Differentiation and Consequent Calcification via the Concerted Actions of Osteoprotegerin Suppression and IL-6-Mediated RANKL Induction // Arterioscler. Thromb. Vasc. Biol. 2019. V. 39. № 3. P. 432.

  88. Higuchi M.d.L., Reis M.M., Sambiase N.V. et al. Coinfection with Mycoplasma Pneumoniae and Chlamydia Pneumoniae in ruptured plaques associated with acute myocardial infarction // Arq. Bras. Cardiol. 2003. V. 81. № 1. P. 12.

  89. Roggerio A., Sambiase N.V., Palomino S.A.P. et al. Correlation of Bacterial Coinfection Versus Matrix Metalloproteinase 9 and Tissue Inhibitor of Metalloproteinase 1 Expression in Aortic Aneurysm and Atherosclerosis // Ann. Vasc. Surg. 2013. V. 27. № 7. P. 964.

  90. Crucian B., Makedonas G., Sams C.F. Countermeasures-based Improvements in Stress, Immune System Dysregulation and Latent Herpesvirus Reactivation onboard the International Space Station – Relevance for Deep Space Missions and Terrestrial Medicine // Neurosci. Biobehav. Rev. 2020. V. 115. P. 68.

  91. Christeff N., Gherbi N., Mammes O. et al. Serum cortisol and DHEA concentrations during HIV infection // Psychoneuroendocrinology. 1997. V. 22. Suppl 1. P. S11.

  92. Padgett D.A., Loria R.M., Sheridan J.F. Steroid hormone regulation of antiviral immunity // Ann. N.Y. Acad. Sci. 2000. V. 917. P. 935.

  93. Agha N.H., Baker F.L., Kun H.E. et al. Salivary antimicrobial proteins and stress biomarkers are elevated during a 6-month mission to the International Space Station // J. Appl. Physiol. 2020. V. 128. № 2. P. 264.

  94. Mehta S.K., Laudenslager M.L., Stowe R.P. et al. Multiple latent viruses reactivate in astronauts during Space Shuttle missions // Brain Behav. Immun. 2014. V. 41. P. 210.

  95. Buchheim J.-I., Matzel S., Rykova M. et al. Stress Related Shift Toward Inflammaging in Cosmonauts After Long-Duration Space Flight // Front. Physiol. 2019. V. 10. P. 85.

  96. Hauer D., Schelling G., Gola H. et al. Plasma concentrations of endocannabinoids and related primary fatty acid amides in patients with post-traumatic stress disorder // PLoS One. 2013. V. 8. № 5. P. e62741.

  97. Campolongo P., Roozendaal B., Trezza V. et al. Fat-induced satiety factor oleoylethanolamide enhances memory consolidation // Proc. Natl. Acad. Sci. U.S.A. 2009. V. 106. № 19. P. 8027.

  98. Feuerecker M., Hauer D., Toth R. et al. Effects of exercise stress on the endocannabinoid system in humans under field conditions // Eur. J. Appl. Physiol. 2012. V. 112. № 7. P. 2777.

  99. Amerongen A.V., Bolscher J.G.M., Veerman E.C. Salivary mucins: protective functions in relation to their diversity // Glycobiology. 1995. V. 5. № 8. P. 733.

  100. Fábián T.K., Hermann P., Beck A. et al. Salivary defense proteins: their network and role in innate and acquired oral immunity // Int. J. Mol. Sci. 2012. V. 13. № 4. P. 4295.

  101. Bastian A., Schäfer H. Human alpha-defensin 1 (HNP-1) inhibits adenoviral infection in vitro // Regul. Pept. 2001. V. 101. № 1–3. P. 157.

  102. Daher K.A., Selsted M.E., Lehrer R.I. Direct inactivation of viruses by human granulocyte defensins // J. Virol. 1986. V. 60. № 3. P. 1068.

  103. Dorschner R.A., Pestonjamasp V.K., Tamakuwala S. et al. Cutaneous injury induces the release of cathelicidin anti-microbial peptides active against group A Streptococcus // J. Invest. Dermatol. 2001. V. 117. № 1. P. 91.

  104. Radek K., Gallo R. Antimicrobial peptides: natural effectors of the innate immune system // Semin. Immunopathol. 2007. V. 29. № 1. P. 27.

  105. Tenovuo J. Antimicrobial agents in saliva—protection for the whole body // J. Dent. Res. 2002. V. 81. № 12. P. 807.

  106. Allgrove J.E., Gomes E., Hough J., Gleeson M. Effects of exercise intensity on salivary antimicrobial proteins and markers of stress in active men // J. Sports Sci. 2008. V. 26. № 6. P. 653.

  107. Crucian B.E., Zwart S.R., Mehta S.K. et al. Plasma cytokine concentrations indicate that in vivo hormonal regulation of immunity is altered during long-duration spaceflight // J. Interferon Cytokine Res. 2014. V. 34. № 10. P. 778.

  108. Morukov B.V., Rykova M.P., Antropova E.N. et al. T-cell immunity and cytokine production in cosmonauts after long-duration space flights // Acta Astronautica. 2011. V. 68. № 7–8. P. 739.

  109. Рыкова М.П., Герцик Ю.Г., Антропова Е.Н., Буравкова Л.Б. Уровень сывороточных иммуноглобулинов, аллерген-специфических IgE-антител и интерлейкина-4 у космонавтов до и после космических полeтов на международной космической станции // Физиология человека. 2006. Т. 32. № 4. С. 97. Rykov M.P., Gertsik Iu.G., Antropova E.N., Burav- kova L.B. Serum levels of immunoglobulins, allergen-specific IgE antibodies, and interleukin-4 in cosmonaunts before and after short flights on the international space station // Human Physiology. 2006. V. 32. № 4. P. 457.

  110. Ponomarev S.A., Sadova A.A., Rykova M.P. et al. The impact of short-term confinement on human innate immunity // Sci. Rep. 2022. V. 12. № 1. P. 8372.

  111. Mehta S.K., Crucian B.E., Stowe R.P. et al. Reactivation of latent viruses is associated with increased plasma cytokines in astronauts // Cytokine. 2013. V. 61. № 1. P. 205.

  112. Crucian B.E., Stowe R.P., Pierson D.L., Sams C.F. Immune system dysregulation following short- vs long-duration spaceflight // Aviat. Space Environ. Med. 2008. V. 72. № 9. P. 835.

  113. Crucian B., Stowe R.P., Mehta S. et al. Alterations in adaptive immunity persist during long-duration spaceflight // NPJ Microgravity. 2015. V. 1. P. 15013.

  114. Kaur I., Simons E.R., Castro V.A. et al. Changes in monocyte functions of astronauts // Brain Behav. Immun. 2005. V. 19. № 6. P. 547.

  115. Stowe R.P., Sams C.F., Mehta S.K. et al. Leukocyte subsets and Neutrophil function after short-term spaceflight // J. Leukoc. Biol. 1999. V. 65. № 2. P. 179.

  116. Bigley A.B., Agha N.H., Baker F.L. et al. NK cell function is impaired during long-duration spaceflight // J. Appl. Physiol. 2019. V. 126. № 4. P. 842.

  117. Konstantinova I.V., Rykova M.P., Lesnyak A.T., Antropova E.A. Immune changes during long duration missions // J. Leukoc. Biol. 1993. V. 54. № 3. P. 189.

  118. Konstantinova I.V., Rykova M., Meshkov D. et al. Natural killer cells after ALTAIR mission // Acta Astronaut. 1995. V. 36. № 8–12. P. 713.

  119. Meshkov D., Rykova M. The natural cytotoxicity in cosmonauts on board space stations // Acta Astronaut. 1995. V. 36. № 8–12. P. 719.

  120. Barcellos-Hoff M.H., Park C., Wright E.G. Radiation and the microenvironment – tumorigenesis and therapy // Nat. Rev. Cancer. 2005. V. 5. № 11. P. 867.

  121. Моруков Б.В., Рыкова М.П., Антропова Е.Н. и др. Показатели врожденного и адаптивного иммунитета у космонавтов после длительных космических полетов на международной космической станции // Физиология человека. 2010. Т. 36. № 3. С. 19. Morukov B.V., Rykova M.P., Antropova E.N. et al. Parameters of the innate and adaptive immunity in cosmonauts after long-term space flight on board the international space station // Human Physiology. 2010. V. 36. № 3. P. 264.

  122. Buravkova L.B., Rykova M.P., Grigorieva V., Antropova E.N. Cell interactions in microgravity: cytotoxic effects of natural killer cells in vitro // J. Gravit. Physiol. 2004. V. 11. № 2. P. 177.

  123. Crucian B., Stowe R., Mehta S. et al. Immune system dysregulation occurs during short duration spaceflight on board the space shuttle // J. Clin. Immunol. 2013. V. 33. № 2. P. 456.

  124. Konstantinova I.V. Immune resistance of man in space flights // Acta Astronaut. 1991. V. 23. P. 123.

  125. Горностаева А.Н., Ратушный А.Ю., Буравкова Л.Б. Восприимчивость к МСК-опосредованной иммуномодуляции клеток адаптивного иммунитета здоровых добровольцев, подвергавшихся воздействию длительной “сухой” иммерсии // Физиология человека. 2022. Т. 48. № 2. С. 51. Gornostaeva A.N., Ratushnyi A.Y., Buravkova L.B. Susceptibility of Healthy Volunteers’ Adaptive Immune Cells to MSC-Mediated Immunomodulation in Long-Term “Dry” Immersion Experiment // Human Physiology. 2022. V. 48. № 2. P. 152.

  126. Пономарёв С.А., Берендеева Т.А., Калинин С.А., Муранова А.В. Состояние системы сигнальных образ-распознающих рецепторов моноцитов и гранулоцитов периферической крови космонавтов до и после длительных полетов на международную космическую станцию // Авиакосм. и эколог. мед. 2016. Т. 50. № 5. С. 18. Ponomarev S.A., Berendeeva T.A., Kalinin S.A., Muranova A.V. [Status of the system of signalling pattern recognition receptors of monocytes and granulocytes in cosmonauts’ peripheral blood before and after long-duration mission to the International Space Station] // Aviakosm. Ekolog. Med. 2016. V. 50. № 5. P. 18.

  127. Власова Д.Д., Садова А.А., Галина В.С. и др. Влияние 21-суточной “сухой” иммерсии на экспрессию генов врожденного иммунитета, ассоциированных с сигнальными путями Toll-подобных рецепторов // Авиакосм. и эколог. мед. 2022. Т. 56. № 2. С. 11. Vlasova D.D., Sadova A.A., Galina V.S. et al. [Effect of 21-day dry immersion on expression of inborn immunity genes associated with the Toll-like receptors’ signalling pathways] // Aviakosm. Ekolog. Med. 2022. V. 56. № 2. P. 11.

  128. Пономарев С.А., Рыкова М.П., Антропова Е.Н. и др. Состояние системы врожденного иммунитета человека в условиях 5-суточной “сухой” иммерсии // Авиакосм. и эколог. мед. 2011. Т. 45. № 3. С. 17. Ponomarev S.A., Rykova M.P., Antropova E.N. et al. [Congenital human immunity during 5-day dry immersion] // Aviakosm. Ekolog. Med. 2011. V. 45. № 3. P. 17.

  129. Ponomarev S., Kutko O., Rykova M. et al. Changes in the cellular component of the human innate immunity system in short-term isolation // Acta Astronaut. 2020. V. 166. P. 89.

  130. Kunz H.E., Makedonas G., Mehta S.K. et al. Zoster patients on earth and astronauts in space share similar immunologic profiles // Life Sci. Space Res. 2020. V. 25. P. 119.

  131. Pierson D.L., Stowe R.P., Phillips T.M. et al. Epstein-Barr virus shedding by astronauts during space flight // Brain Behav. Immun. 2005. V. 19. № 3. P. 235.

  132. Prusty B.K., Siegl C., Hauck P. et al. Chlamydia trachomatis Infection Induces Replication of Latent HHV-6 // PLoS One. 2013. V. 8. № 4. P. e61400.

  133. Deka S., Vanover J., Dessus-Babus S. et al. Chlamydia trachomatis enters a viable but non-cultivable (persistent) state within herpes simplex virus type 2 (HSV-2) co-infected host cells // Cell. Microbiol. 2006. V. 8. № 1. P. 149.

  134. Prusty B.K., Bohme L., Bergmann B. et al. Imbalanced Oxidative Stress Causes Chlamydial Persistence during Non-Productive Human Herpes Virus Co-Infection // PLoS One. 2012. V. 7. № 10. P. e47427.

  135. Vanover J., Sun J., Deka S. et al. Herpes simplex virus co-infection-induced Chlamydia trachomatis persistence is not mediated by any known persistence inducer or anti-chlamydial pathway // Microbiology. 2008. V. 154. Pt. 3. P. 971.

  136. Brinley A.A., Theriot C.A., Nelman-Gonzalez M. et al. Characterization of Epstein-Barr virus reactivation in a modeled spaceflight system. // J. Cell. Biochem. 2013. V. 114. № 3. P. 616.

  137. Long J.P., Pierson S., Hughes J.H. Suppression of Epstein-Barr virus reactivation in lymphoblastoid cells cultured in simulated microgravity // In Vitro Cell. Dev. Biol. 1999. V. 35. № 1. P. 49.

  138. Wang J., Nagy N., Masucci M.G. The Epstein-Barr virus nuclear antigen-1 upregulates the cellular antioxidant defense to enable B-cell growth transformation and immortalization // Oncogene. 2020. V. 39. № 3. P. 603.

  139. Ilscus L.S., Johnston S.L., Moynihan S. et al. Rashes and exanthems on long duration space flights / 80th Annual Scientific Meeting of the Aerospace Medical Association. May 3–7. 2009. Los Angeles, California, USA.

  140. Wooley B.C., McCollum G.W. Flight crew health stabilization program / Biomedical Results of Apollo // Ed. Jones W.L. SP-368. Houston (TX): BioTechnology Inc. NASA, 1975. P. 141.

  141. Feuerecker M., Crucian B., Salam A.P. et al. Early adaption to the antarctic environment at dome C: Consequences on stresssensitive innate immune functions // High Alt. Med. Biol. 2014. V. 15. № 3. P. 341.

  142. Shirai T., Magara K.K., Motohashi S. et al. TH1- biased immunity induced by exposure to Antarctic winter // J. Allergy Clin. Immunol. 2003. V. 111. № 6. P. 1353.

  143. Strewe C., Moser D., Buchheim J.-I. et al. Sex differences in stress and immune responses during confinement in Antarctica // Biol. Sex Differ. 2019. V. 10. № 1. P. 20.

  144. Williams D.L., Climie A., Muller H.K., Lugg D.J. Cell-mediated immunity in healthy adults in Antarctica and the sub-Antarctic // J. Clin. Lab. Immunol. 1986. V. 20. № 1. P. 43.

  145. Tingate T.R., Lugg D.J., Muller H.K. et al. Antarctic isolation: immune and viral studies // Immunol. Cell Biol. 1997. V. 75. № 3. P. 275 .

  146. Mehta S.K., Pierson D.L., Cooley H. et al. Epstein-Barr Virus Reactivation Associated With Diminished Cell-Mediated Immunity in Antarctic Expeditioners // J. Med. Virol. 2000. V. 61. № 2. P. 235.

  147. Reyes D.P., Brinley A.A., Blue R.S. et al. Clinical Herpes Zoster in Antarctica as a Model for Spaceflight // Aerosp. Med. Hum. Perform. 2017. V. 88. № 8. P. 784.

  148. Yu Y.Z., Wang Z.H., Zhang W., Wu W. Effect of the environment in Antarctica on immune function and electroencephalogram // Chinese J. Polar Res. 1994. V. 5. № 2. P. 45.

Дополнительные материалы отсутствуют.