Электрохимия, 2023, T. 59, № 10, стр. 632-642

Электрокаталитический синтез п-аминофенола с применением Fe–Ag-композитов

Н. М. Иванова a, Я. А. Висурханова a*, Е. А. Соболева a, З. М. Мулдахметов a

a ТОО “Институт органического синтеза и углехимии Республики Казахстан”
Караганда, Казахстан

* E-mail: yakhavisurkhanova@bk.ru

Поступила в редакцию 30.11.2022
После доработки 23.02.2023
Принята к публикации 06.03.2023

Аннотация

п-Аминофенол получен электрокаталитическим гидрированием п-нитрофенола с применением в качестве катализаторов Ag + Fe + Fe3O4 (или Fe2O3) композитов, образующихся в ходе термической обработки и электрохимического восстановления феррита серебра, AgFeO2. Образцы AgFeO2 синтезированы методом соосаждения в присутствии и без полимера (поливинилового спирта, поливинилпирролидона). Установлено влияние полимеров на фазовые составы металлокомпозитов, формирующихся на стадии синтеза, а также в результате термической обработки и электрохимического восстановления. Показана высокая электрокаталитическая активность приготовленных Fe–Ag-содержащих композитов в электрогидрировании п-нитрофенола с повышением скорости гидрирования в 2.2–2.7 раза по сравнению с его электрохимическим восстановлением в аналогичных условиях.

Ключевые слова: п-аминофенол, электрокаталитическое гидрирование, п-нитрофенол, Fe–Ag-катализаторы, феррит серебра, структурно-фазовые изменения

Список литературы

  1. Sahiner, N., Ozay, H., Ozay, O., and Aktas, N., A soft hydrogel reactor for cobalt nanoparticles preparation and use in the reduction of nitrophenols, Appl. Catal. B., 2010, vol. 101, no. 1, p. 137. https://doi.org/10.1016/j.apcatb.2010.09.022

  2. Zhao, P., Feng, X., Huang, D., Yang, D., and Astruc, D., Basic concepts and recent advances in nitrophenol reduction by gold- and other transition metal nanoparticles, Coord. Chem. Rev., 2015, vol. 287, p. 114. https://doi.org/10.1016/j.ccr.2015.01.002

  3. Zhang, W., Tan, F., Wang, W., Qiu, X., Qiao, X., and Chen, J., Facile, template-free synthesis of silver nanodendrites with high catalytic activity for the reduction of p-nitrophenol, J. Hazard Mater., 2012, vols. 217–218, p. 36. https://doi.org/10.1016/j.jhazmat.2012.01.056

  4. Negrete-Vergara, C., Alvarez-Alcalde, D., Moya, S.A., Paredes-Garcia, V., Fuentes, S., and Venegas-Yazigi, D., Selective hydrogenation of aromatic nitro compounds using unsupported nickel catalysts, ChemistrySelect, 2022, vol. 7, no. 20, Article number: e202200220. https://doi.org/10.1002/slct.202200220

  5. Vaidya, M.J., Kulkarni, S.M., and Chaudhari, R.V., Synthesis of p-aminophenol by catalytic hydrogenation of p-nitrophenol, Org. Process. Res. Dev., 2003, vol. 7, no. 2, p. 202. https://doi.org/10.1021/op025589w

  6. Li, Y., Cao, Y., and Jia, D., Enhanced catalytic hydrogenation activity of Ni/reduced graphene oxide nanocomposite prepared by a solid-state method, J. Nanopart. Res., 2018, vol. 20, Article number: 8. https://doi.org/10.1007/s11051-017-4069-2

  7. Ding, J., Chen, L., Shao, R., Wu, J., and Dong, W., Catalytic hydrogenation of p-nitrophenol to produce p‑aminophenol over a nickel catalyst supported on active carbon, Reaction Kinetics, Mechanisms and Catalysis, 2012, vol. 106, no. 1, p. 225. https://doi.org/10.1007/s11144-011-0417-x

  8. Gupta, V.K., Atar, N., Yola, M.L., Ustundag, Z., and Uzun, L., A novel magnetic Fe@Au core–shell nanoparticles anchored graphene oxide recyclable nanocatalyst for the reduction of nitrophenol compounds, Water Res., 2014, vol. 48, no. 1, p. 210. https://doi.org/10.1016/j.watres.2013.09.027

  9. Kim, J.D., Choi, M.Y., and Choi, H.C., Catalyst activity of carbon nanotube supported Pd catalysts for the hydrogenation of nitroarenes, Mater. Chem. Phys., 2016, vol. 173, p. 404. https://doi.org/10.1016/j.matchemphys.2016.02.030

  10. Morales, M.V., Conesa, J.M., Rodrigues-Ramos, I., Rocha, M., Freire, C., and Guerrero-Ruiz, A., CuPd bimetallic nanoparticles supported on magnesium oxide as an active and stable catalyst for the reduction of 4-nitrophenol to 4-aminophenol, Intern. J. Green Technology, 2017, vol. 3, p. 51. https://doi.org/10.30634/2414-2077.2017.03.5

  11. Kӓstner, C. and Thünemann, A.F., Catalytic reduction of 4-nitrophenol using silver nanoparticles with adjustable activity, Langmuir, 2016, vol. 32, no. 29, p. 7383. https://doi.org/10.1021/acs.langmuir.6b01477

  12. Xiao, C., Chen, S., Zhang, L., Zhou, S., and Wu, W., One-pot synthesis of responsive catalytic Au@PVP hybrid nanogels, Chem. Comm., 2012, vol. 48, p. 11751. https://doi.org/10.1039/c2cc36002k

  13. Nemanashi, M. and Meijboom, R., Synthesis and characterization of Cu, Ag and Au dendrimer-encapsulated nanoparticles and their application in the reduction of 4-nitrophenol to 4-aminophenol, J. Colloid Interface Sci., 2013, vol. 389, no. 1, p. 260. https://doi.org/10.1016/j.jcis.2012.09.012

  14. Din, M.I., Khalid, R., Hussain, Z., Hussain, T., Mujahid, A., Najeeb, J., and Izhar, F., Nanocatalytic assemblies for catalytic reduction of nitrophenols: A critical review, Crit. Rev. Anal. Chem., 2020, vol. 50, no. 4, p. 322. https://doi.org/10.1080/10408347.2019.1637241

  15. Hammerich, O., Reduction of nitro compounds and related substrates, In: Organic Electrochemistry, 5th ed., Eds.: Hammerich O., Speiser B., Boca Raton: CRC Press (Taylor & Francis Group), 2015, p. 1149–1200. https://doi.org/10.1201/b19122-36

  16. Wirtanen, T., Rodrigo, E., and Waldvogel, S.R., Recent advances in the electrochemical reduction of substrates involving N–O bonds, Adv. Synth. Catal., 2020, vol. 362, p. 2088. https://doi.org/10.1002/adsc.202000349

  17. Serra, A., Artal, R., Pozo, M., Garcia-Amoros, J., and Gomez, E., Simple environmentally-friendly reduction of 4-nitrophenol, Catalysts, 2020, vol. 10, Article number: 458 (12 pp.). https://doi.org/10.3390/catal10040458

  18. Song, J., Huang, Z.-F., Pan, L., Li, K., Zhang, X., Wang, L., and Zou, J.-J., Review on selective hydrogenation of nitroarene by catalytic, photocatalytic and electrocatalytic reactions, Appl. Catal. B, 2018, vol. 227, p. 386. https://doi.org/10.1016/j.apcatb.2018.01.052

  19. Иванова, Н.М., Соболева, Е.А., Кулакова, Е.В., Малышев, В.П., Кирилюс, И.В. Восстановление нитрофенолов в электрокаталитической системе. Журн. прикл. химии. 2009. Т. 82. № 3. С. 428. [Ivanova, N.M., Soboleva, E.A., Kulakova, E.V., Malyshev, V.P., and Kirilyus, I.V., Reduction of nitrophenols in an electrocatalytic system, Russ. J. Appl. Chem., 2009, vol. 82, p. 421.] https://doi.org/10.1134/s1070427209030148

  20. Sridharan, K., Endo, T., Cho, S.-G., Kim, J., Park, T.J., and Philip, R., Single step synthesis and optical limiting properties of Ni-Ag and Fe-Ag bimetallic nanoparticles, Opt. Mater., 2013, vol. 35, p. 860. https://doi.org/10.1016/j.optmat.2012.10.053

  21. Gayen, R.N. and Laha, P., Single-step synthesis and optical properties of bimetallic Fe-Ag nanoparticles, J. Nanosci. Nanotech., 2017, vol. 17, p. 666. https://doi.org/10.1166/jnn.2017.12389

  22. Nabiyouni, G. and Ghanbari, D., Fe–Ag nanocomposite: Hydrothermal preparation of Iron nanoparticles and silver dendrite like nanostructures, J. Nanostruct., 2017, vol. 7, no. 2, p. 111. https://doi.org/10.22052/JNS.2017.02.004

  23. Sharma, G. and Jeevanandam, P., A facile synthesis of multifunctional Iron oxide@Ag core-shell nanoparticles and their catalytic applications, Eur. J. Inorg. Chem., 2013, no. 36, p. 6126. https://doi.org/10.1002/ejic.201301193

  24. Иванова, Н.М., Соболева, Е.А., Висурханова, Я.А., Мулдахметов, З. Электрохимическое получение Fe–Cu-композитов на основе феррита меди(II) и их электрокаталитические свойства. Электрохимия. 2020. Т. 56. С. 579. [Ivanova, N.M., Soboleva, E.A., Visurkhanova, Ya.A., and Muldakhmetov, Z., Electrochemical synthesis of Fe-Cu composites based on copper(II) ferrite and their electrocatalytic properties, Russ. J. Electrochem., 2020, vol. 56, p. 433.] https://doi.org/10.1134/s1023193520070034

  25. Farley, K.E., Marschilok, A.C., Takeuchi, E.S., and Takeuchi, K.J., Synthesis and electrochemistry of silver ferrite, Electrochem. Solid-State Lett., 2011, vol. 15, no. 2, p. A23. https://doi.org/10.1149/2.010202esl

  26. Murthy, Y.L.N., Rao, T.K., Kasiviswanath, I.V., and Singh, R., Synthesis and characterization of nano silver ferrite composite, J. Magn. Magn. Mater., 2010, vol. 322, p. 2071. https://doi.org/10.1016/j.jmmm.2010.01.036

  27. Ivanova, N.M., Visurkhanova, Ya.A., Soboleva, E.A., and Kenzhetaeva, S.O., Two-step fabrication of iron-containing polyaniline composites for electrocatalytic hydrogenation of nitroarenes, Electrochem. Comm., 2018, vol. 96, p. 66. https://doi.org/10.1016/j.elecom.2018.09.016

  28. Nasretdinova, G.R., Fazieeva, R.R., Osin, Y.N., Evtju-gin, G., Gubaidullin, A.T., Ziganshina, A.Y., and Yanikin, V.V., Methylviologen mediated electrochemical synthesis of catalytically active ultrasmall bimetallic PdAg nanoparticles stabilized by CTAC, Electrochem. Acta, 2018, vol. 285, p. 149. https://doi.org/10.1016/j.electacta.2018.07.109

Дополнительные материалы отсутствуют.