Электрохимия, 2023, T. 59, № 10, стр. 547-553

Исследование свойств покрытий на основе кобальт-марганцевой шпинели, полученных с использованием метода нестационарного электролиза

А. В. Храменкова a*, А. А. Яковенко a, К. Р. Южакова a, В. И. Мишуров b, К. Г. Абдулвахидов c, О. Е. Положенцев c

a Федеральное государственное бюджетное образовательное учреждение высшего образования “Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова”
Новочеркасск, Россия

b Донской государственный технический университет
Ростов-на-Дону, Россия

c Южный федеральный университет
Ростов-на-Дону, Россия

* E-mail: anna.vl7@yandex.ru

Поступила в редакцию 29.11.2022
После доработки 10.02.2023
Принята к публикации 21.03.2023

Аннотация

Покрытия на основе кобальт-марганцевой шпинели (Mn,Co)(Mn,Co)2O4 на поверхности нержавеющей стали были получены при поляризации переменным асимметричным током. Исследование механических свойств полученных покрытий показало, что они характеризуются достаточно высокой адгезией к подложке, их толщина составляет порядка 30 мкм, а значение микротвердости 40 HV сопоставимо с аналогичными оксидными материалами. Исследование термической стабильности в атмосфере воздуха позволяет говорить об их устойчивости при температурах до 1000°С, а исследование коррозионно-защитных свойств – об устойчивости полученных покрытий в растворе 3.5 мас. % NaCl.

Ключевые слова: нестационарный электролиз, кобальт-марганцевая шпинель, защитные покрытия

Список литературы

  1. Агаркова, Е.А., Агарков, Д.А., Бурмистров, И.Н., Задорожная, О.Ю., Яловенко, Д.В., Непочатов, Ю.К., Бредихин, С.И. Трехслойные мембраны для планарных твердооксидных топливных элементов электролит-поддерживающей конструкции: характеристики и применение. Электрохимия. 2020. Т. 56. С. 141. [Agarkova, E.A., Agarkov, D.A., Burmistrov, I.N., et al., Three-Layered Membranes for Planar Solid Oxide Fuel Cells of the Electrolyte-Supported Design: Characteristics and Applications, Russ. J. Electrochem., 2020, vol. 56, p. 132.]

  2. Tan, K.H., Rahman, H.A., and Taib, H., Coating layer and influence of transition metal for ferritic stainless steel interconnector solid oxide fuel cell: A review, Intern. J. Hydrogen Energy, 2019, vol. 4, no. 58, p. 30591.

  3. Zanchi, E., Talic, B., Sabato, A.G., Molin, S., Boccaccini, A.R., and Smeacetto, F., Electrophoretic co-deposition of Fe2O3 and Mn1,5Co1,5O4: Processing and oxidation performance of Fe-doped Mn–Co coatings for solid oxide cell interconnects, J. Eur. Ceram. Soc., 2019, vol. 39, p. 3768.

  4. Деменева, Н.В., Бредихин, С.И. Формирование оксидных пленок и диффузионные процессы в приповерхностных слоях токовых коллекторов твердооксидных топливных элементов. Электрохимия. 2014. Т. 50. С. 725. [Demeneva, N.V. and Bredikhin, S.I., Oxide film formation and diffusion processes in near-surface layers of current collectors in solid oxide fuel cells, Russ. J. Electrochem., 2014, vol. 50, p. 725.]

  5. Frangini, S., Della Seta, L., and Paoletti, C., Preparation and Electrical Properties of Sr-Doped LaFeO3 Thin-Film Conversion Coatings for Solid Oxide Cell Steel Interconnect Applications, Energies, 2022, vol. 15, p. 632.

  6. Yu, Y.T., Lu, Y., Guan, C.Z., Wang, J.Q., and Zhu, J.H., Evaluation of the reactive-sintered (Mn,Co)3O4 spinel layer for SOFC cathode-side contact application, Intern. J. Hydrogen Energy, 2022, vol. 44, no. 87, p. 36971.

  7. Yiqian, J., Guozheng, H., Mengyuan, G., Wangshu, H., Jiaqi, Sh., Zhibin, Y., Xingyu, X., and Suping, P., Ce-doped (Mn,Co)3O4 coatings for solid oxide fuel cell interconnect applications, Ceram. Intern., 2022, vol. 48, no. 23, p. 34931.

  8. Wei-Ja, Sh., Chien-Kuo, L., Wei-Xin, K., Yung-Neng, Ch., and Ruey-Yi, L., High temperature (800°C) oxidation of AISI 441 stainless steel with Mn–Co contact layers for SOFC stacks, Intern. J. Hydrogen Energy, 2022, vol. 47, p. 6811.

  9. Puranen, J., Pihlatie, M., Lagerbom, J., Bolelli, G., Laakso, J., Hyvärinen, L., Kylmälahti, M., Himanen, O., Kiviaho, J., Lusvarghi, L., and Vuoristo, P., Post-mortem evaluation of oxidized atmospheric plasma sprayed Mn–Co–Fe oxide spinel coatings on SOFC interconnectors, Intern. J. Hydrogen Energy, 2014, vol. 39, p. 17284.

  10. Dogdibegovic, E., Ibanez, S., Wallace, A., Kopechek, D., Arkenberg, G., Swartz, S., Funk, J. M., Reisert, M., Rahman, M. A., Aphale, A., Singh, P., Ding, H., Tang, W., Glazoff, M. V., Ding, D., Skafte, Th. L., and Tucker, M. C., Performance of stainless steel interconnects with (Mn,Co)3O4-Based coating for solid oxide electrolysis, Intern. J. Hydrogen Energy, 2022, vol. 47, p. 24279.

  11. Tomas, M., Asokan, V., Puranen, J., Svensson, J.-E., and Froitzheim, J., Efficiencies of cobalt- and copper-based coatings applied by different deposition processes for applications in intermediate-temperature solid oxide fuel cells, Intern. J. Hydrogen Energy, 2022, vol. 47, p. 32628.

  12. Reddy, M.J., Chausson, T.E., Svensson, J.E., and Froitzheim, J., 11–23% Cr steels for solid oxide fuel cell interconnect applications at 800°C—How the coating determines oxidation kinetics, Intern. J. Hydrogen Energy, 2023.

  13. Zhikuan, Zh., Chibuzor, D.-U., Uday, P., Srikanth, G., Mohammed, H. A., Nilesh, D., Yosuke, F., Yohei, M., Yutaro, M., and Soumendra, B., Comparison of Cu–Mn and Mn–Co spinel coatings for solid oxide fuel cell interconnects, Intern. J. Hydrogen Energy, 2022, vol. 47, p. 36953.

  14. Brylewski, T., Kucza, W., Adamczyk, A., Kruk, A., Stygar, M., Bobruk, M., and Dąbrowa, J., Microstructure and electrical properties of Mn1 +xCo2 –xO4 (0 ≤ ≤ x ≤ 1.5) spinels synthesized using EDTA-gel processes, Ceram. Intern., 2014, vol. 40, p. 13873.

  15. Jia, C., Wang, Y., Molin, S., Zhang, Y., Chen, M., and Han, M., High temperature oxidation behavior of SUS430 SOFC interconnects with Mn–Co spinel coating in air, J. Alloys Compd., 2019, vol. 787, p. 1327.

  16. Li, J., Xiong, C., Li, J., Yan, D., Pu, J., Chi, B., and Jian, L., Investigation of MnCu0.5Co1.5O4 spinel coated SUS430 interconnect alloy for preventing chromium vaporization in intermediate temperature solid oxide fuel cell, Intern. J. Hydrogen Energy, 2017, vol. 42, p. 16752.

  17. Aznam, I., Mah, J.C.W., Muchtar, A., Somalu, M.R., and Ghazali, M.J., Electrophoretic deposition of (Cu,Mn,Co)3O4 spinel coating on SUS430 ferritic stainless steel: Process and performance evaluation for solid oxide fuel cell interconnect applications, J. Eur. Ceram. Soc., 2020, vol. 41, p. 1360.

  18. Киреев, С.Ю., Янгуразова, А.З., Киреева, С.Н. Влияние различных режимов нестационарного электролиза на скорость формирования гальванических покрытий металлами и сплавами, их состав и свойства. Изв. вузов. Поволжский регион, 2017. Т. 4. С. 86.

  19. Шульгин, Л.П. Электрохимические процессы на переменном токе. Ленинград: Наука, 1974. С. 1–70.

  20. Khramenkova, A.V., Ariskina, D.N., and Yuzhakova, K.R., Production of Hybrid Polymer-Oxide Materials Based on Molybdenum Oxide Compounds Using Transient Electrolysis Method, Solid State Phenom., 2020, vol. 299, p. 316.

  21. Mingyu, L., Jin, X., Wei, G., Zhaolin, Zh., and Zulai, L., Effect of yttrium on the oxidation resistance and areaspecific resistance of MnCo2O4 coating, Surf. Coat. Technol., 2022, vol. 444, p. 128655.

  22. Bespalova, J.I., Khramenkova, A.V., Abdala, R.M., and Dmitriev, V.P., Study of the phase composition and structure of composite coatings based on transition-metal oxide compounds via X-ray diffraction and X-ray absorption fine structure spectroscopy, J. Surf. Investig. X-ray, Synchrotron and Neutron Techniques, 2014, vol. 8, p. 60.

  23. Yan, Y., Bateni, R., Harris, J., and Kesler, O., Fabrication of reactive element oxide coatings on porous ferritic stainless steel for use in metal-supported solid oxide fuel cells, Surf. Coat. Technol., 2015, vol. 272, p. 415.

  24. Zhu, W.Z. and Deevi, S.C., Development of interconnect materials for solid oxide fuel cells, Mater. Sci. Eng., 2003, vol. 348, p. 227.

  25. Бойков, Е.В., Вишнецкая, М.В., Емельянов, А.Н., Руфов, Ю.Н., Щербаков, Н.В. Парциальное окисление бензола на оксидах переходных металлов, нанесенных на силикагель. Хим. физика. 2007. Т. 26. С. 38.

  26. Ананьев, М.В., Солодянкин, А.А., Еремин, В.А., Фарленков, А.С., Ходимчук, А.В., Фетисов, А.В., Черник, А.А., Яскельчик, В.В., Останина, Т.Н., Зайков, Ю.П. Защитные покрытия La–Mn–Cu–O на стали-интерконнекторе 08Х17Т для твердооксидных топливных элементов, полученные методом электрокристаллизации из неводных растворов электролитов. Изв. вузов. Цветная металлургия. 2017. Т. 6. С. 70.

  27. Zhu, J. H., Chesson, D. A., and Yu, Y. T., Review—(Mn,Co)3O4-Based Spinels for SOFC Interconnect Coating Application, J. Electrochem. Soc., 2021, vol. 168, p. 114519.

  28. Feng, Q., Yanagisawa, K., and Yamasaki, N., Hydrothermal Soft Chemical Process for Synthesis of Manganese Oxides with Tunnel Structures, J. Porous Mater., 1998, vol. 5, p. 153.

Дополнительные материалы отсутствуют.