Электрохимия, 2023, T. 59, № 12, стр. 798-806

Композиционные материалы на основе терморасширенного графита для биполярных пластин топливных элементов

В. Д. Ерошенко a*, В. Е. Андреева b, Д. В. Токарев b, О. А. Меденников b, В. А. Клушин b, Л. Н. Фесенко b, Н. В. Смирнова b**

a ООО “ГрафитЭл — Московский Электродный Завод”
111123 Москва, ш. Энтузиастов, 31, стр. 2, Россия

b Южно-Российский государственный политехнический университет (НПИ) им. М.И. Платова
346428 Новочеркасск, ул. Просвещения, 132, Россия

* E-mail: viktor.eroshenko.89@mail.ru
** E-mail: smirnova_nv@mail.ru

Поступила в редакцию 20.02.2023
После доработки 07.04.2023
Принята к публикации 20.04.2023

Аннотация

Композиционные материалы на основе термореактивного связующего марки СФП и терморасширенного графита с содержанием наполнителя 50–70% получены методом горячего прессования. Исследовано влияние способа введения наполнителя в композит на его физико-механические и электрохимические характеристики. Материалы, полученные смешением воздушно-сухих компонентов, характеризуются высокими электропроводностью (до 195 Cм см–1) и прочностными свойствами (более 25 мПа), низким межфазным контактным сопротивлением (менее 10 мОм см2) и током коррозии, не превышающим 1 мкА/см2, что позволит обеспечить высокую эффективность преобразования энергии в ТПТЭ.

Ключевые слова: топливный элемент, биполярная пластина, электропроводящий композиционный материал, терморасширенный графит

Список литературы

  1. Sharma, P. and Pandey, O.P., Proton exchange membrane fuel cells: fundamentals, advanced technologies, and practical applications. In PEM Fuel Cells, Elsevier, 2022, p. 1–24. https://doi.org/10.1016/B978-0-12-823708-3.00006-7

  2. Bazhenov, S., Dobrovolsky, Y., Maximov, A., and Zhdaneev, O.V., Key challenges for the development of the hydrogen industry in the Russian Federation, Sustainable Energy Technologies and Assessments, 2022, vol. 54, p. 102867. https://doi.org/10.1016/j.seta.2022.102867

  3. Younas, T., Bipolar plates for the permeable exchange membrane: carbon nanotubes as an alternative, In PEM Fuel Cells, Elsevier, 2022, p. 71-89. https://doi.org/10.1016/B978-0-12-823708-3.00006-7

  4. Tang, A., Crisci, L., Bonville, L., and Jankovic, J., An overview of bipolar plates in proton exchange membrane fuel cells, J. Renewable and Sustainable Energy, 2021, vol. 13(2), p. 022701. https://doi.org/10.1063/5.0031447

  5. Porstmann, S., Tannemacher, T., and Drossel, W.-G., A comprehensive comparison of state-of-the-art manufacturing methods for fuel cell bipolar plates including anticipated future industry trends, J. Manufacturing Proc., 2020, vol. 60, p. 366. https://doi.org/10.1016/j.jmapro.2020.10.041

  6. Stein, T. and Ein-Eli, Y., Challenges and Perspectives of Metal-Based Proton Exchange Membrane’s Bipolar Plates: Exploring Durability and Longevity, Energy Technol., 2020, vol. 8, p. 2000007. https://doi.org/10.1002/ente.202000007

  7. Wang, H. and Turner, J.A., Reviewing Metallic PEMFC Bipolar Plates, Fuel Cells, 2010, vol. 10, p. 510. https://doi.org/10.1002/fuce.200900187

  8. Li, Y., Jia, X., Zhang, W., Fang, C., Wang, X., Qin, F., Yamaura, S., and Yokoyama, Y., Effects of Alloying Elements on the Thermal Stability and Corrosion Resistance of an Fe-based Metallic Glass with Low Glass Transition Temperature, Metall. Mater. Trans. A., 2013, vol. 45, p. 2393. https://doi.org/10.1007/s11661-013-2071-6

  9. Ji, S., Hwang, Y.S., Park, T., Lee, Y.H., Paek, J.Y., Chang, I., Lee, M.H., and Cha, S.W., Graphite foil based assembled bipolar plates for polymer electrolyte fuel cells, Int. J. Precis. Eng. Man., 2012, vol. 13, p. 2183. https://doi.org/10.1007/s12541-012-0289-7

  10. Fan, R., Peng, Y., Tian, H., Zheng, J., Ming, P., and Zhang, C., Graphite-filled composite bipolar plates for fuel cells: material, structure, and performance, Acta Physico-Chimica Sinica, 2021, vol. 37(9), p. 2009095. https://doi.org/10.3866/PKU.WHXB202009095

  11. Badrul, F., Halim, K.A., Salleh, M.M., Omar, M.F., Osman, A.F., and Zakaria, M.S., Modeling electrical conductivity and tensile properties of conductive polymer composites (CPCs) based on percolation threshold theory-A short review, In AIP Conf. Proc., 2021, July, vol. 2347, no. 1, p. 020240. AIP Publishing LLC. https://doi.org/10.1063/5.0052346

  12. Chen, H., Liu, H.B., Xia, X.H., Yang, L., and He, Y.D., Preparation and properties of graphite/phenolic resin composite bipolar plate, Acta Mater. Compos. Sin., 2015, vol. 32, p. 744. https://doi.org/10.13801/j.cnki.fhclxb.201503.008

  13. Suherman, H., Sulong, A. B., and Sahari, J., Effect of the compression molding parameters on the in-plane and through-plane conductivity of carbon nanotubes/graphite/epoxy nanocomposites as bipolar plate material for a polymer electrolyte membrane fuel cell, Ceram. Intern., 2013, vol. 39, p. 1277. https://doi.org/10.1016/j.ceramint.2012.07.059

  14. Kim, M., Lim, J.W., and Lee, D.G., Electrical contact resistance between anode and cathode bipolar plates with respect to surface conditions, Compos. Struct., 2018, vol. 189, p. 79. https://doi.org/10.1016/j.compstruct.2018.01.067

  15. Yao, K., Adams, D. L., Hao, A., Zheng, J.P., and Liang, R., Highly Conductive, Strong, Thin and Lightweight Graphite-Phenolic Resin Composite for Bipolar Plates in Proton Exchange Membrane Fuel Cells, ECS Trans., 2017, vol. 77, p. 1303. https://doi.org/10.1149/07711.1303ecst

  16. Stübler, N., Meiners, D., Ziegmann, G., and Hickmann, T., Investigation of the properties of polymer composite bipolar plates in fuel cells, J. Plastics Technology, 2014, vol. 10(3), p. 68.

  17. Diaz, J., Rigail-Cedeño, A., Barzola-Monteses, J., and Espinoza-Andaluz, M., A pre-feasibility experimental study of using surface-enhanced flake graphite to build up PEFC bipolar plates, Energy Procedia, 2019, vol. 158, p. 1502. https://doi.org/10.1016/j.egypro.2019.01.358

  18. Antunes, R.A., Oliveira, M.C.L.D., Ett, G., and Ett, V., Carbon materials in composite bipolar plates for polymer electrolyte membrane fuel cells: A review of the main challenges to improve electrical performance, J. Power Sources, 2011, vol. 196, p. 2945. https://doi.org/10.1016/j.jpowsour.2010.12.041

  19. Фиалков, А.С. Углерод, межслоевые соединения и композиты на его основе, М.: Аспект Пресс, 1997. 718 с. [Fialkov, A.S. Carbon, interlayer compounds and composites based on it (in Russian), Moscow: Aspect Press, 1997. 718 p.]

  20. ГОСТ Р 56810–2015. Композиты полимерные. Метод испытания на изгиб плоских образцов, М.: Стандартинформ, 2016, 20 с. [GOST R 56810–2015. Polymer composites. Bending test method for flat specimens (in Russian), Moscow: Standartinform, 2016, 20 p.]

  21. ГОСТ Р 56785–2015 Композиты полимерные. Метод испытания на растяжение плоских образцов, М.: Стандартинформ, 2016, 16 с. [GOST R 56785–2015 Polymer composites. Tensile testing method for flat specimens (in Russian), Moscow: Standartinform, 2016, 16 p.]

  22. ГОСТ Р 56652–2015. Композиты полимерные. Методы определения водопоглощения материалов внутреннего слоя “сэндвич”-конструкций, М.: Стандартинформ, 2016, 15 с. [GOST R 56652-2015. Polymer composites. Methods for determining the water absorption of the materials of the inner layer of “sandwich” structures (in Russian), Moscow: Standartinform, 2016, 15 p.]

  23. Davies, D. P., et al., Bipolar plate materials for solid polymer fuel cells, J. Appl. Electrochem., 2000, vol. 30, no. 1, p. 101. https://doi.org/10.1023/A:1003831406406

  24. Fuel Cell Technical Team Roadmap, https://www.energy.gov/sites/default/files/2017/11/f46/FCTT_Roadmap_Nov_2017_FINAL.pdf.

  25. Chen, Z., Chen, Y., and Liu, H., Pyrolysis of phenolic resin by TG-MS and FTIR analysis, Adv. Mater. Res., 2013, vol. 631–632, p. 104. https://doi.org/10.4028/www.scientific.net/AMR.631-632.104

  26. Wlodarczyk, R., Carbon-based materials for bipolar plates for low-temperatures PEM fuel cells – A review, Functional Mater. Lett., 2019, vol. 12, no. 02, p. 1930001. https://doi.org/10.1142/S1793604719300019

Дополнительные материалы отсутствуют.