Электрохимия, 2023, T. 59, № 12, стр. 814-823

Влияние термообработки на структуру и функциональные характеристики PtCo/C-катализатора

А. К. Невельская ab*, С. В. Беленов a**, Н. В. Топорков a, А. Ю. Никулин ab

a Южный федеральный университет
Ростов-на-Дону, Россия

b Федеральный исследовательский центр, Южный научный центр Российской академии наук (ЮНЦ РАН)
Ростов-на-Дону, Россия

* E-mail: alina_nevelskaya@mail.ru
** E-mail: serg1986chem@mail.ru

Поступила в редакцию 09.06.2022
После доработки 27.03.2023
Принята к публикации 10.04.2023

Аннотация

PtCo/C-электрокатализатор, полученный методом одновременного восстановления прекурсоров металлов с использованием боргидрида натрия, был обработан при температуре 350°C в атмосфере аргона в течение 1 ч. Результаты рентгенофазового анализа и просвечивающей электронной микроскопии указывают на увеличение среднего размера кристаллитов и образование агломератов наночастиц после термической обработки. Сдвиг максимумов отражений Pt после обработки говорит о возможной сегрегации металлических компонентов в ходе нагревания образца. Показано увеличение активности катализатора после термической обработки – как массовой (в расчете на массу платины), так и удельной (в расчете на площадь поверхности платины). Остаточная активность образца после термообработки, по результатам стресс-теста, в диапазоне потенциалов 0.6–1.4 В показала более высокое значение, чем материала в состоянии “как получено”.

Ключевые слова: электрокатализатор, биметаллические наночастицы, термическая обработка, реакция электровосстановления кислорода, стабильность

Список литературы

  1. Zhang, X., Li, H., Yang J., Lei, Y., Wang, C., Wang, J., Tang, Y., and Mao, Z., Recent advances in Pt-based electrocatalysts for PEMFCs, RSC Advances, 2021, vol. 11, no. 22, p. 13316.

  2. Mølmen, L., Eiler, K., Fast, L., Leisner, P., and Pellicer, E., Recent advances in catalyst materials for proton exchange membrane fuel cells, APL Materials, 2021, vol. 9, no. 4, p. 040702.

  3. Wang, X.X., Swihart, M.T., and Wu, G., Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation, Nature Catal., 2019, vol. 2, no. 7, p. 578.

  4. Xiao, F., Wang, Y., Wu, Z., Chen, G., Yang, F., Zhu, S., Siddharth, K., Kong, Z., Lu, A., Li, J., et al, Recent Advances in Electrocatalysts for Proton Exchange Membrane Fuel Cells and Alkaline Membrane Fuel Cells, Advanced Mater., 2021, vol. 33, no. 50, p. 2006292.

  5. Yan, W., Zhang, D., Zhang, Q., Sun, Y., Zhang, S., Du, F., and Jin, X., Synthesis of PtCu–based nanocatalysts: Fundamentals and emerging challenges in energy conversion, J. Energy Chem., 2022, vol. 64, p. 583.

  6. Wu, D., Shen, X., Pan, Y., Yao, L., and Peng, Z., Platinum Alloy Catalysts for Oxygen Reduction Reaction: Advances, Challenges and Perspectives, ChemNanoMat, 2020, vol. 6, no. 1, p. 32.

  7. Jiang, R., Tung, S. on, Tang, Z., Li, L., Ding, L., Xi, X., Liu, Y., Zhang, L., and Zhang, J., A review of core-shell nanostructured electrocatalysts for oxygen reduction reaction, Energy Storage Mater., 2018, vol. 12, p. 260.

  8. Liu, Z., Yu, C., Rusakova, I.A., Huang, D., and Strasser, P., Synthesis of Pt3Co Alloy Nanocatalyst via Reverse Micelle for Oxygen Reduction Reaction in PEMFCs, Topics in Catalysis, 2008, vol. 49, no. 3–4, p. 241.

  9. Lin, R., Cao, C., Zhao, T., Huang, Z., Li, B., Wieckowski, A., and Ma, J., Synthesis and application of core–shell Co@Pt/C electrocatalysts for proton exchange membrane fuel cells, J. Power Sources, 2013, vol. 223, p. 190.

  10. Yang, W., Zou, L., Huang, Q., Zou, Z., Hu, Y., and Yang, H., Lattice Contracted Ordered Intermetallic Core-Shell PtCo@Pt Nanoparticles: Synthesis, Structure and Origin for Enhanced Oxygen Reduction Reaction, J. Electrochem. Soc., 2017, vol. 164, no. 6, p. H331.

  11. Jung, W.S. and Popov, B.N., Effect of Pretreatment on Durability of fct-Structured Pt-Based Alloy Catalyst for the Oxygen Reduction Reaction under Operating Conditions in Polymer Electrolyte Membrane Fuel Cells, ACS Sustainable Chemistry & Engineering, 2017, vol. 5, no. 11, p. 9809.

  12. Mai, Y., Xie, X., Wang, Z., Yan, C., and Liu, G., Effect of heat treatment temperature on the Pt3Co binary metal catalysts for oxygen reduced reaction and DFT calculations, J. Fuel Chem. and Technol., 2022, vol. 50, no. 1, p. 114.

  13. Wen, Y.-H., Zhang, L.-H., Wang, J.-B., and Huang, R., Atomic-scale insights into thermal stability of Pt3Co nanoparticles: A comparison between disordered alloy and ordered intermetallics, J. Alloys and Compounds, 2019, vol. 776, p. 629.

  14. Kim, J.W., Heo, J.H., Hwang, S.J., Yoo, S.J., Jang, J.H., Ha, J.S., Jang, S., Lim, T.-H., Nam, S.W., and Kim S.-K., Effects of stabilizers on the synthesis of Pt3Cox/C electrocatalysts for oxygen reduction, Intern. J. Hydrogen Energy, 2011, vol. 36, no. 19, p. 12088.

  15. Wang, Y.-J., Zhao, N., Fang, B., Li, H., Bi, X.T., and Wang, H., A highly efficient PtCo/C electrocatalyst for the oxygen reduction reaction, RSC Adv., 2016, vol. 6, no. 41, p. 34484.

  16. Konno, N., Mizuno, S., Nakaji, H., and Ishikawa, Y., Development of Compact and High-Performance Fuel Cell Stack, SAE Intern. J. Alternative Powertrains, 2015, vol. 4, no. 1.

  17. Jalan, V. and Taylor, E.J., Importance of Interatomic Spacing in Catalytic Reduction of Oxygen in Phosphoric Acid, J. Chem. Soc., 1983, vol. 130, p. 2299.

  18. Toda, T., Igarashi, H., Uchida, H., and Watanabe, M., Enhancement of the Electroreduction of Oxygen on Pt Alloys with Fe, Ni, and Co, J. Electrochem. Soc., 1999, vol. 146, no. 10, p. 3750.

  19. Wang, C. and Spendelow, J.S., Recent developments in Pt–Co catalysts for proton-exchange membrane fuel cells, Current Opinion in Electrochem., 2021, vol. 28, p. 100715.

  20. Kitchin, J.R., Nørskov, J.K., Barteau, M.A., and Chen, J.G., Role of Strain and Ligand Effects in the Modification of the Electronic and Chemical Properties of Bimetallic Surfaces, Phys. Rev. Lett., 2004, vol. 93, no. 15, p. 156801.

  21. Jung, W.S. and Lee, J., Induced changes of Pt/C in activity and durability through heat-treatment for oxygen reduction reaction in acidic medium, Intern. J. Hydrogen Energy, 2017, vol. 42, no. 36, p. 22830.

  22. Su, Y., Feng, M., Zhang, C., Yan, Z., Liu, H., Tang, J., and Du, H., Platinum Nanowires: Structural and catalytic evolution upon annealing temperature, Electrochim. Acta, 2015, vol. 164, p. 182.

  23. Han, K., Moon, Y., Han, O., Hwang, K., Kim, I., and Kim, H., Heat treatment and potential cycling effects on surface morphology, particle size, and catalytic activity of Pt/C catalysts studied by 13C NMR, TEM, XRD and CV, Electrochem. Commun., 2007, vol. 9, no. 2, p. 317.

  24. Bezerra, C.W.B., Zhang, L., Liu, H., Lee, K., Marques, A.L.B., Marques, E.P., Wang, H., and Zhang, J., A review of heat-treatment effects on activity and stability of PEM fuel cell catalysts for oxygen reduction reaction, J. Power Sources, 2007, vol. 173, no. 2, p. 891.

  25. Прядченко, В.В., Беленов, С.В., Шемет, Д.Б., Волочаев, В.А., Срабионян, В.В., Авакян, Л.А., Табачкова, Н.Ю., Гутерман, В.Е., Бугаев, Л.А. Влияние термообработки на атомную структуру core-shell наночастиц PtCu в составе электрокатализаторов PtCu/C. Физика твердого тела. 2017. Т. 59. № 8. С. 1642. [Pryadchenko, V.V., et al., The effect of thermal treatment on the atomic structure of core–shell PtCu nanoparticles in PtCu/C electrocatalysts, Physics of the Solid State, 2017, vol. 59, no. 8, p. 1666.]

  26. Cai, X., Lin, R., Liu, X., and Zhao, Y., Effect of heat treatment on the surface structure of Pd@Pt–Ni core-shell catalysts for the oxygen reduction reaction, J. Alloys and Compounds, 2021, vol. 884, p. 161059.

  27. Sahin, N.E., Napporn, T.W., Dubau, L., Kadirgan, F., Léger, J.-M., and Kokoh, K.B., Temperature-dependence of oxygen reduction activity on Pt/C and PtCr/C electrocatalysts synthesized from microwave-heated diethylene glycol method, Appl. Catal. B: Environmental, 2017, vol. 203, p. 72.

  28. Xiao, F., Qin, X., Xu, M., Zhu, S., Zhang, L., Hong, Y., Choi, S.-I., Chang, Q., Xu, Y., Pan, X., and Shao, M., Impact of Heat Treatment on the Electrochemical Properties of Carbon-Supported Octahedral Pt–Ni Nanoparticles, ACS Catalysis, 2019, vol. 9, no. 12, p. 11189.

  29. Oezaslan, M. and Strasser, P., Activity of dealloyed PtCo3 and PtCu3 nanoparticle electrocatalyst for oxygen reduction reaction in polymer electrolyte membrane fuel cell, J. Power Sources, 2011, vol. 196, no.12, p. 5240.

  30. Беленов, С.В., Меньщиков, В.С., Невельская, А.К., Резван, Д.В. Влияние структуры ptcuau-наночастиц на активность в реакции окисления метанола. Рос. нанотехнологии. 2019. Т. 14. № 11–12. С. 49–57. [Belenov, S.V. et al., Influence of PtCuAu’s Nanoparticle Structure on Its Activity in Methanol Oxidation Reaction, Nanotechnol Russ., 2019, vol. 14, no. 11–12, p. 557.]

  31. Chaisubanan, N., Maniwan, W., and Hunsom, M., Effect of heat-treatment on the performance of PtM/C (M = Cr, Pd, Co) catalysts towards the oxygen reduction reaction in PEM fuel cell, Energy, 2017, vol. 127, p. 454.

  32. Wang, Z., Yao, X., Kang, Y., Miao, L., Xia, D., and Gan, L., Structurally Ordered Low-Pt Intermetallic Electrocatalysts toward Durably High Oxygen Reduction Reaction Activity, Advanced Functional Mater., 2019, vol. 29, no. 35, p. 1902987.

  33. Wang, D., Xin, H.L., Hovden, R., Wang, H., Yu, Y., Muller, D.A., DiSalvo, F.J., and Abruña, H.D., Structurally ordered intermetallic platinum–cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts, Nature Mater., 2013, vol. 12, no. 1, p. 81.

  34. Jung, C., Lee, C., Bang, K., Lim, J., Lee, H., Ryu, H.J., Cho, E., and Lee, H.M., Synthesis of Chemically Ordered Pt3Fe/C Intermetallic Electrocatalysts for Oxygen Reduction Reaction with Enhanced Activity and Durability via a Removable Carbon Coating, ACS Appl. Materials & Interfaces, 2017, vol. 9, no. 37, p. 31806.

  35. Wang, D., Yu, Y., Xin, H.L., Hovden, R., Ercius, P., Mundy, J.A., Chen, H., Richard, J.H., Muller, D.A., DiSalvo, F.J., and Abruña, H.D., Tuning Oxygen Reduction Reaction Activity via Controllable Dealloying: A Model Study of Ordered Cu3Pt/C Intermetallic Nanocatalysts, Nano Letters, 2012, vol. 12, no. 10, p. 5230.

  36. Antolini, E., Alloy vs. intermetallic compounds: Effect of the ordering on the electrocatalytic activity for oxygen reduction and the stability of low temperature fuel cell catalysts, Appl. Catal. B: Environmental, 2017, vol. 217, p. 201.

  37. Невельская, А.К., Беленов, С.В., Гутерман, В.Е., Никулин, А.Ю., Топорков, Н.В. Влияние термообработки на микроструктуру и функциональные характеристики PtCu/C-катализаторов. Рос. нанотехнологии. 2022. Т. 17. № 1. С. 46. [Nevelskaya, A.K., Belenov, S.V., Guterman, V.E., Nikulin, A.Yu., and Toporkov, N.V., Influence of Heat Treatment on the Microstructure and Functional Characteristics of PtCu/C Catalysts, Nanobiotechnol. Reports, 2022, vol. 17, no. 1, p. 83.]

  38. Mani, P., Srivastava, R., Yu, C., and Strasser, P., In-Situ, In-Layer De-Alloying of Pt-M Intermetallics for High Performance PEMFC Electrode Layers: MEA Activity and Durability Studies, ECS Transactions, 2007, vol. 11, no. 1, p. 933.

  39. Amaya Suárez, J., Plata, J.J., Márquez, A.M., and Fdez. Sanz, J., Catalytic activity of PtCu intermetallic compound for CO oxidation: A theoretical insight, Catalysis Today, 2022, vol. 383, p. 339.

  40. Xing, Z., Li, J., Wang, S., Su, C., and Jin, H., Structure engineering of PtCu3/C catalyst from disordered to ordered intermetallic compound with heat-treatment for the methanol electrooxidation reaction, Nano Research, 2022, vol. 15, no. 5, p. 3866.

  41. Guterman, V.E., Belenov, S.V., Pakharev, A.Yu., Min, M., Tabachkova, N.Yu., Mikheykina, E.B., Vysochina, L.L., and Lastovina, T.A., Pt-M/C (M = Cu, Ag) electrocatalysts with an inhomogeneous distribution of metals in the nanoparticles, Intern. J. Hydrogen Energy, 2016, vol. 41, no. 3, p. 1609.

  42. Langford, J.I., A rapid method for analysing the breadths of diffraction and spectral lines using the Voigt function, J. Appl. Crystallography, 1978, vol. 11, no. 1, p. 10.

  43. Menshchikov, V., Alekseenko, A., Guterman, V., Nechitailov, A., Glebova, N., Tomasov, A., Spiridonova, O., Belenov, S., Zelenina, N., and Safronenko, O., Effective Platinum-Copper Catalysts for Methanol Oxidation and Oxygen Reduction in Proton-Exchange Membrane Fuel Cell, Nanomaterials, 2020, vol. 10, no. 4, p. 742.

  44. Shinozaki, K., Zack, J.W., Pylypenko, S., Pivovar, B.S., and Kocha, S.S., Oxygen Reduction Reaction Measurements on Platinum Electrocatalysts Utilizing Rotating Disk Electrode Technique, J. Electrochem. Soc., 2015, vol. 162, no. 12, p. F1384.

  45. Beermann, V., Gocyla, M., Kühl, S., Padgett, E., Schmies, H., Goerlin, M., Erini, N., Shviro, M., Heggen, M., Dunin-Borkowski, R.E., et al., Tuning the Electrocatalytic Oxygen Reduction Reaction Activity and Stability of Shape-Controlled Pt–Ni Nanoparticles by Thermal Annealing − Elucidating the Surface Atomic Structural and Compositional Changes, J. Amer. Chem. Soc., 2017, vol. 139, no. 46, p. 16536.

  46. Alekseenko, A., Belenov, S., Guterman, V., Lin, R., Tabachkova, N., Volochaev, V., Moguchikh, E., Pavlets, A., Paperj, K., and Menschikov, V., Activity and Stability of Pt/C and PtM/C Electrocatalysts: In Search of a Compromise, Advanced Mater. Springer Proceedings in Physics, 2019, vol. 224, p. 17.

Дополнительные материалы отсутствуют.