Электрохимия, 2023, T. 59, № 5, стр. 249-328

Влияние структуры пористых компонентов электрохимических устройств на их характеристики (обзор)

Ю. М. Вольфкович *

Институт физической химии и электрохимии им. А.Н. Фрумкина РАН
Москва, Россия

* E-mail: yuvolf40@mail.ru

Поступила в редакцию 08.08.2022
После доработки 09.11.2022
Принята к публикации 14.11.2022

Аннотация

В обзоре сделан анализ литературы по следующим основным вопросам. Описаны основные характеристики пористой структуры и методы их измерения: кривая распределения пор по радиусам, полная пористость, площадь удельной поверхности, гидрофильно-гидрофобные свойства. Рассмотрено влияние пористой структуры на электрохимические характеристики следующих устройств: литий-ионных и литий-кислородных аккумуляторов, топливных элементов с протонообменной мембраной, суперконденсаторов, электродиализаторов и устройств для емкостной деионизации (опреснения) воды.

Ключевые слова: пористая структура, литий-ионные аккумуляторы, литий-кислородные аккумуляторы, топливные элементы, суперконденсаторы, электродиализаторы, емкостная деионизация воды

Список литературы

  1. Rouquero l, J., Baron, G., Denoyel, R., et al., Liquid intrusion and alternative methods for the characterization of macroporous materials (IUPAC Technical Report), Pure Appl. Chem., 2012, vol. 84, p. 107.

  2. Drake, C., Pore-size distribution in porous materials, Ind. Eng. Chem., 1949, vol. 41, p. 780.

  3. Dubinin, M.M. and Plavnik, G.M., Microporous structures of carbonaceous adsorbents, Carbon, 1968, vol. 6, p. 183.

  4. Miklos, S. and Pohl, A., Application of centrifugal porosimetry, Bergakademie, 1970, vol. 22, p. 97.

  5. Swata, M.J. and Jansta, I., Porosimetry, Czech. Chem. Comun., 1965, vol. 30, p. 2455.

  6. Miller, B. and Tyomkin, I., Liquid porosimetry: new methodology and applications, J. Colloid Interface Sci., 1994, vol. 162, p. 163.

  7. Gregg, S.J. and Sing, K.S., Adsorption, surface area, and porosity, Academic Press, 1991.

  8. Watkins, D.S., Fuel Cell Systems, N.Y.: Plenum Press, 1993, 292 p.

  9. Schlögl, R. and Schuring, H., Structural and wetting properties of fuel cell components, Z. Elektrochem., 1961, vol. 10, p. 863.

  10. Tersoff, J. and Hamann, D.R., Theory of the scanning tunneling microscope, Phys. Rev., 1985, vol. 31, p. 805.

  11. Bardeen, J., Tunnelling from a many-particle point of view, Phys. Rev. Lett., 1961, vol. 6, p. 57.

  12. Dietz, P., Hansma, P.K., and Inacker, Surface pore structures of micro- and ultrafiltration membranes imaged with the atomic force microscope, J. Membr. Sci., 1992, vol. 65, p. 101.

  13. Lavrenntyeva, E.K., Vassiliev, S.Y., Tsirlin, A.A., Plyakov, S.N., Leoni, M., Napolskii, K.S., Petrii, O.A., and Tsirlina, G.A., Smectite clays as the quasi-templates for platinum electrodeposition, Electrochim. Acta, 2012, vol. 61, p. 94.

  14. Zhu, Y., Murali, S., Stoller, M.D., and Ganesh, K.J., Carbon-Based Supercapacitors Produced by Activation of Graphene, Science, 2011, vol. 332, p. 1537.

  15. Zhang, L., Zhang, F., and Yang, X., Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors, Sci. Rep., 2013, vol. 3, p. 1408.

  16. Volfkovich, Yu.M., Sosenkin, V.E., Rychagov, A.Yu., Melezhik, A.V., Tkachev, A.G., Kabachkov, E.N., Korepanov, V.I., Khodos, I.I., Michtchenko, A., and Shulga, Yu.M., Carbon material with high specific surface area and high pseudocapacitance: Possible application in supercapacitors, Microporous and Mesoporous Mater., 2021, vol. 319, 111063.

  17. Вольфкович, Ю.М., Багоцкий, В.С., Сосенкин, В.Е., Школьников, Е.И. Методы эталонной порометрии и возможные области их применения в электрохимии. Электрохимия. 1980. Т. 16. С. 1620. [Volfkovich, Yu.M., Bagotzky, V.S., Sosenkin, V.E., and Shkolnikov, E.I., Methods of Standard Porosimetry and their Applications in Electrochemistry and other fields, Russ. J. Electrochem., 1980, vol.16, p. 1220.]

  18. Volfkovich, Yu.M., Bagotsky, V.S., Sosenkin, V.E., and Blinov, I.A., The standard contact porosimetry. Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 2001, vols. 187–188, p. 349.

  19. Volfkovich, Yu.M., Filippov, A.N., and Bagotsky, V.S., Structural Properties of Porous Materials and Powders Used in Different Fields of Science and Technology, London: Springer, 2014, 328 c.

  20. Volfkovich, Yu.M., Blinov, I.A., and Sakar, A., Porosimetric device, US Patent 7, 059, 175, 2006.

  21. Bograchev, D.A., Volfkovich, Yu.M., Sosenkin, V.E., Podgornova, O.A., and Kosova, N.V., The influence of porous structure on the electrochemical properties of LiFe0.5Mn0.5PO4 cathode material prepared by mechanocehmically assisted solid-state synthesis, Energies, 2020, vol. 13, p. 542.

  22. Вольфкович, Ю.М., Михалин, А.А., Рычагов, А.Ю., Сосенкин, В.Е., Бограчев, Д.А. Активированные угли как нанопористые электроно-ионообменники. Электрохимия. 2020. Т. 56. С. 963. [Volfkovich, Yu. M., Mikhalin, A.A., Rychagov, A.Yu., Sosenkin, V.E., and Bograchev, D.A., Activated Carbons as Nanoporous Electron-Ion-Exchangers, Russ. J. Electrochem., 2020, vol. 56, p. 869.]

  23. Whittingham, M.S., Electrical Energy Storage and Intercalation Chemistry, Science, 1976, vol. 192, p. 1267.

  24. Sony’s Lithium Manganese Rechargeable Battery (AA size), JEC Press, Inc., 1991.

  25. Doyle, M., Fuller, T., and Newman, J., Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell, J. Electrochem. Soc., 1993, vol. 140, p. 1526.

  26. Volfkovich, Yu. M., Petrii, O.A., Zaytzev, A.A., and Kovrigina, V., Regularities of macrokinetics of processes in porous hydrogen absorbent electrodes, Vestnik of MGU. Ser. Chem. (russ.) 2, 1988, vol. 29, p. 28.

  27. Volfkovich, Yu.M., Sergeev, A.G., Zolotova, T.K., Afanasiev, S.D., Efimov, O.N., and Krinichnaya, E.P., Macrokinetics of Polyaniline based Electrode: Effects of Porous Structure, Microkinetics, Diffusion, and Electrical Double Layer, Electrochim. Acta, 1999, vol. 44, p. 1543.

  28. Bird, R.B., Stewart, W.E., and Lightfoot, E.N., Transport Phenomena, John Wiley & Sons, 1960. 432 p.

  29. Verbrugge, M.W. and Koch, B.J., Lithium intercalation of carbon-fiber microelectrodes, J. Electrochem. Soc., 1996, vol. 143, p. 24.

  30. Бограчёв, Д.А., Вольфкович, Ю.М., Дубасова, В.С., Николенко, А.Ф., Пономарева, Т.А., Сосенкин, В.Е. Разработка и экспериментальная верификация математической модели литий-ионного аккумулятора. Электрохимия. 2013. Т. 49. С. 129. [Bograchev, D.A., Volfkovich, Yu. M., Dubasova, V.S., Nikolenko, A.F., Ponomareva, T.A., and Sosenkin, V.E., Russ. J. Electrochem., 2013, vol. 49, p. 115.]

  31. Manthiram, A., A reflection on lithium-ion battery cathode chemistry, Nature Communications, 2020, vol. 11, p. 1550.

  32. Thorat, I.V., Stephenson, D.E., and Zacharias, N.A., Quantifying tortuosity in porous Li-ion battery materials, J. Power Sources, 2009, vol. 188, p. 592.

  33. Latz, A. and Zausch, J., Thermodynamic consistent transport theory of Li-ion batteries, J. Power Sources, 2011, vol. 196, p. 3296.

  34. Yang, J., Zhou, X., Li, J., Zou, Y., and Tang. J., Study of nano-porous hard carbons as anode materials for lithium ion batteries, Mater. Chem. and Phys., 2012, vol. 135, p. 445.

  35. Vu, A., Qian, Y., and Stein, A., Porous Electrode Materials for Lithium-Ion Batteries–How to Prepare Them and What Makes Them Special, Adv. Energy Mater., 2012, vol. 2, p. 1056.

  36. Shin, H.C. and Liu, M., Three-dimensional porous copper–tin alloy electrodes for rechargeable lithium batteries, Adv. Functional Mater., 2005, vol. 15, p. 582.

  37. Liu, H., Liu, X., Li, W., Guo, X., and Wang, Y., Porous carbon composites for next generation rechargeable lithium batteries, Adv. Energy Mater., 2017, vol. 7, 1700283.

  38. Wang, S., Lu, Z., Wang, D., Li, C., and Chen, C., Porous monodisperse @V2O55 microspheres as cathode materials for lithium-ion batteries, J. Mater. Chem., 2011, vol. 21, p. 6365.

  39. Wang, Z., Li, X, Xu, H., Yang, Y., Cui, Y., and Pan, H., Porous anatase TiO2 constructed from a metal–organic framework for advanced lithium-ion battery, J. Mater. Chem. A, 2014, vol. 2, p. 12571.

  40. Li, W., Guo, X., Lu, Y., Wang, L., Fan, A., Sui, M., and Yu, H., Amorphous nanosized silicon with hierarchically porou,s structure for high-performance lithium ion batteries, Energy Storage Mater., 2017, vol. 7, p. 203.

  41. Zhang, H., Yang, J., Hou, H., Chen, S., and Yao, H., Nitrogen-doped carbon paper with 3D porous structure as a flexible free-standing anode for lithium-ion batteries, Scientific reports, 2017. vol. 7, p. 7769.

  42. Deng, B., Chen, Y., Wu, P., Han, J., Li, Y., and Zheng, H., Lithium-rich layered oxide nanowires bearing porous structures and spinel domains as cathode materials for lithium-ion batteries, J. Power Sources, 2019, vol. 418, p. 122.

  43. Zhao, Q., Zhu, Q., Miao, J., Zhang, P., Wan, P., He, L., and Xu, B., Flexible 3D porous MXene foam for high-performance lithium-ion batteries, Nano-Micro Small, 2019, vol. 15, 1904293.

  44. Li, X., Chen, Z., Li, A., Yu, Y., and Chen, X., Three-dimensional hierarchical porous 95.3structures constructed by two-stage MXene-wrapped Si nanoparticles for Li-Ion batteries, ACS Appl. Mater. Interfaces, 2020, vol. 43, p. 48718.

  45. Hu, S., Song, Y., Yuan, S., Liu, H., Xu, Q., Wang, Y., Wang, C.X., and Xia, Y.Y., A hierarchical structure of carbon-coated Li3VO4 nanoparticles embedded in expanded graphite for high performance lithium ion battery, J. Power Sources., 2016, vol. 303, p. 333.

  46. Zhao, D. and Cao, M., Highly Graphitized Carbon-Wrapped Li3VO4 Nanoparticles with Hierarchically Porous Structure as a Long Life and High Capacity Anode for Lithium-Ion Batteries, ACS Appl. Mater., 2015, vol. 7, p. 25084.

  47. Tang, J., Yin, Q., Wang, Q., Li, Q., Wang, H., Xu, Z., Yao, H., Yang, J., Zhou, X, Kim, J.K., and Zhou, L., Two-dimensional porous silicon nanosheets as anode materials for high performance lithium-ion batteries., Nanoscale, 2019, vol.11, p. 10984.

  48. Xiao, C., Du, N., Shi, X., Zhang, H., and Yang, D., Large-scale synthesis of Si@ C three-dimensional porous structures as high-performance anode materials for lithium-ion batteries, J. Mater. Chem. A., 2014, vol. 2, p. 20494.

  49. Ge, M., Lu, Y., Ercius, P., Rong, J., and Fang, X., Large-scale fabrication, 3D tomography, and lithium-ion battery application of porous silicon, Nano Lett., 2014, vol. 14, p. 261.

  50. Chen, H., He, S., Hou, X., Wang, S., Chen, F., Qin, H., and Xia, Y., Nano-Si/C microsphere with hollow double spherical interlayer and submicron porous structure to enhance performance for lithium-ion battery anode, Electrochim. Acta, 2019, vol. 312, p. 242.

  51. Hao, Q., Zhao, D., Duan, H., Zhou, Q., and Xu, C., Si/Ag composite with bimodal micro-nano porous structure as a high-performance anode for Li-ion batteries, Nanoscale, 2015, vol.7, p.5320.

  52. Han, Z.J., Yabuuchi, N., and Shimomura, K., High-capacity Si–graphite composite electrodes with a self-formed porous structure by a partially neutralized polyacrylate for Li-ion batteries, Energy Environ. Sci., 2012, vol. 5, p. 9014.

  53. Zhao, T., Ji, R., and Meng, Y., Foamed porous structure Fe–Mn oxides/C composites as novel anode materials of lithium-ion batteries, J. Alloys and Compounds, 2021, vol. 882, 160643.

  54. Deng, X., Li, W., Zhu, M., Xiong, D., and He, M., Synthesis of Cu-doped Li4Ti5O12 anode materials with a porous structure for advanced electrochemical energy storage: Lithium-ion batteries, Solid State Ionics, 2021, vol. 364, 115614.

  55. Lu, J., Zhou, C., Liu, Z., Lee, K.S., and Lu, L., LiMn2O4 cathode materials with large porous structure and radial interior channels for lithium ion batteries, Electrochim. Acta, 2016, vol. 212, p. 553.

  56. Zhou, K., Hu, M., He,Y., Yang, L., Han, C., Lv, R., Kang, F., and Li, B., Transition metal assisted synthesis of tunable pore structure carbon with high performance as sodium/lithium ion battery anode, Carbon, 2018, vol. 129, p. 667.

  57. Zhao, D., Qin, J., Zheng, L., and Cao, M., Amorphous vanadium oxide/molybdenum oxide hybrid with three-dimensional ordered hierarchically porous structure as a high-performance Li-ion battery anode, Chem. Mater., 2016, vol. 28, p. 4180.

  58. Yuan, Y.F., Xia, X.H., Wu, J.B., Yang, J.L., and Chen, Y.B., Hierarchically ordered porous nickel oxide array film with enhanced electrochemical properties for lithium ion batteries, Electrochem. Commun., 2010, vol. 12, p. 890.

  59. Wang, N., Ma, X., Xu, H., Chen, L., Yue, J., Niu, F., and Yang, J., Porous ZnMn2O4 microspheres as a promising anode material for advanced lithium-ion batteries, Nano Energy, 2014, vol. 6, p. 193.

  60. Zuo, X., Song, Y., and Zhen, M., Carbon-coated NiCo2S4 multi-shelled hollow microspheres with porous structures for high rate lithium ion battery applications, Appl. Surface Sci., 2020, vol. 500, 144000.

  61. Wu, F., Bai, J., Feng, J., and Xiong, S., Porous mixed metal oxides: design, formation mechanism, and application in lithium-ion batteries, Nanoscale, 2015, vol. 7, p. 17211.

  62. Joho, F., Rykart, B., Blome, A., Novák, P., and Wilhelm, H., Relation between surface properties, pore structure and first-cycle charge loss of graphite as negative electrode in lithium-ion batteries, J. Power Sources, 2001, vol. 97–98, p. 78.

  63. Кулова, Т.Л., Никольская, Н.Ф., Скундин, А.М. Необратимые процессы при интеркаляции лития в графит: образование пассивной пленки. Электрохимия. 2008. Т. 44. С. 602. [Kulova, T.L., Nikol’skaya, N.F., and Skundin, A.M., Irreversible Processes during the Lithium Intercalation into Graphite: The Passive Film Formation, Russ. J. Electrochem., 2008, vol. 44, p. 558.]

  64. Saikia, D., Wang, T.H., Chou, C.J., Fang, J., and Tsai, L.D., A comparative study of ordered mesoporous carbons with different pore structures as anode materials for lithium-ion batteries, RSC Adv., 2015, vol. 5, p. 42922.

  65. La, F., Mantia, J., Vetter, P., and Novák, P., Impedance spectroscopy on porous materials: A general model and application to graphite electrodes of lithium-ion batteries, Electrochim. Acta, 2008, vol. 53, p. 4109.

  66. Nakashima, K., Shimizu, T., and Kamakura, Y., A new design strategy for redox-active molecular assemblies with crystalline porous structures for lithium-ion batteries, Chem. Sci., 2020, vol. 11, p. 37.

  67. Qian, G., Liao, X., Zhu, Y., Pan, F., and Chen, X., Designing flexible lithium-ion batteries by structural engineering, ACS Energy Lett., 2019, vol. 4, p. 690.

  68. Sousa, R.E., Nunes-Pereira, J., Costa, C.M., Silva, M.M., Lanceros-Méndez, S., and Hassoun, J., Influence of the porosity degree of poly (vinylidene fluoride-co-hexafluoropropylene) separators in the performance of Li-ion batteries, J. Power Sources, 2014, vol. 263, p. 29.

  69. Tsao, C.H. and Kuo, P.L., Poly (dimethylsiloxane) hybrid gel polymer electrolytes of a porous structure for lithium ion battery, J. Membrane Sci., 2015, vol. 489, p. 36.

  70. Read, J., Mutolo, K., Ervin, M., Behl, W., Wolfenstine, J., Driedger, A., and Foster, D., Oxygen Transport Properties of Organic Electrolytes and Performance of Lithium-Oxygen Battery, J. Electrochem. Soc., 2003, vol. 150, p. A1351.

  71. Read, J., Ether-Based Electrolytes for the Lithium/Oxygen Organic Electrolyte Battery, J. Electrochem. Soc., 2006, vol. 153, p. A96.

  72. Sandhu, S.S., Fellner, J.P., and Brutchen, G.W., Diffusion-limited model for a lithium/air battery with an organic electrolyte, J. Power Sources, 2007, vol. 164, p. 365.

  73. Sandhu, S.S., Brutchen, G.W., and Fellner, J.P., Lithium/air cell: Preliminary mathematical formulation and analysis, J. Power Sources, 2007, vol. 170, p. 196.

  74. Williford, R.E. and Zhang, J.G., Air electrode design for sustained high power operation of Li/air batteries, J. Power Sources, 2009, vol.194, p. 1164.

  75. Andrei, P., Zheng, J.P., Hendrickson, M., and Plichta, E.J., Some Possible Approaches for Improving the Energy Density of Li-Air Batteries, J. Electrochem. Soc., 2010, vol. 157, p. A1287.

  76. Mirzaeian, M. and Hall, P.J., Characterizing capacity loss of lithium oxygen batteries by impedance spectroscopy, J. Power Sources, 2010, vol. 195, p. 6817.

  77. James, H.J. and Broman, R.F., Modified winklei determination of oxygen in dimethylfojiriamide: oxygen solubility as a function of partial bressure, Anal. Chem. Acla, 1969, vol. 48, p. 411.

  78. Albertus, P., Girishkumar, G., McCloskey, B., Sánchez-Carrera, R.S., Kozinsky, B., Christensen, J., and Luntz, A.C., Identifying capacity limitations in the Li/oxygen battery, J. Electrochem. Soc., 2011, vol .158, p. A343.

  79. Visco, S.J., Nimon, E., and De Jonghe, L.C., Lithium–Air. 2009. Secondary Batteries – Metal-Air Systems Lithium–Air, PolyPlus Battery Company Publ., 2010, p. 375.

  80. Tran, C., Yang, X., and Qu, D., Investigation of the gas-diffusion-electrode used as lithium/air cathode in non-aqueous electrolyte and the importance of carbon material porosity, J. Power Sources, 2010, vol. 195, p. 2057.

  81. Yang, X., He, P., and Xia, Y., Preparation of mesocellular carbon foam and its application for lithium/oxygen battery, Electrochem. Commun., 2009, vol. 11, p. 1127.

  82. Xu, D., Wang, Z., Xu, J., and Zhang, X., Novel DMSO-based electrolyte for high performance rechargeable Li–O2 batteries, Chem. Commun., 2012, vol. 48, p. 6948.

  83. Yang, K., Ying, T.Y, Yiacoumi, S., Tsouris, C., and Vittoratos, E.S., Electrosorption of Ions from Aqueous Solutions by Carbon Aerogel: An Electrical Double-Layer Model, Langmuir, 2001, vol. 17, p. 1961.

  84. Kraytsberg, A. and Ein-Eli, Y., Review on Li–air batteries–Opportunities, limitations and perspective, J. Power Sources, 2011, vol. 196, p. 886.

  85. Christensen, J., Albertus, P., Sanchez-Carrera, R.S., Lohmann, T., Kozinsky, B., Liedtke, R., Ahmed, J., and Kojic, A., A critical review of Li/air batteries, J. Electrochem. Soc., 2012, vol. 159, p. R1.

  86. Girishkumar, G., McCloskey, B., Luntz, A.C., Swanson, S., and Wilcke, W., Lithium–air battery: promise and challenges, J. Phys. Chem. Lett., 2019, vol. 1, p. 2193.

  87. Capsoni, D., Bini, M., Ferrari, S., Quartarone, E., and Mustarelli, P., Recent advances in the development of Li–air batteries, J. Power Sources, 2012, vol. 220, p. 253.

  88. Xiao, J., Mei, D., Li, X., Xu, W., Wang, D., Graff, G.L., Bennett, W.D., Nie, Z., Saraf, L.V., Aksay, I.A., and Liu, J., Hierarchically Porous Graphene as a Lithium–Air Battery Electrode, Nano Lett., 2011, vol.11, p. 5071.

  89. Andrei, P., Zheng, J.P., Hendrickson, M., and Plichta, E.J., The impact of nano-scaled materials on advanced metal–air battery systems, J. Electrochem. Soc., 2012, vol. 159, p. A770.

  90. Nimon, V.Y., Visco, S.J., De Jonghe, L.C., Volfkovich, Yu. M., and Bograchev, D.A., Modeling and Experimental Study of Porous Carbon Cathodes in Li–O2 Cells with Non-Aqueous Electrolyte, ECS Electrochem. Lett., 2013, vol. 2, p. A33.

  91. Chizmadzhev, Y. and all, Makrokinetika processov v poristyh sredah: (Toplivnye elementy), “Nauka”, Institut elektrohimii (Akademija nauk SSSR), Moscow, 1971. (in Rus)

  92. Bagotzky, V.S., Kazarinov, V.E., Volfkovich, Yu.M., Kanevsky, L.S., and Beketaeva, L.A., Macrokinetic study of thionyl chloride reduction on porous carbon electrodes, J. Power Sources, 1989, vol. 26, p. 427.

  93. Vielstich, W., Lamm, A., and Gasteiger, H.A. (Eds.) Hanbook of Fuel Cells. Fundamentals Technology and Applications, Jhon Wiley and Sons, LLtd. Chichester, England, 2003.

  94. Bagotsky, V.S., Fuel Cells: Problems and Solutions, Wiley, Hoboken, N.J., 2009. 320 p.

  95. Gottesfeld, S. and Zawodzinski, T.A. In: Advances in Electrochemical Science and Engineering, R.C. Alkire, H. Gerischer, D.M. Kolb, C.W.Tobias (Eds), 1997, vol. 5, Wiley-VCH, Weinheim, Germany, 1997, p. 195.

  96. Вольфкович, Ю.М., Сосенкин, В.Е. Пористая структура и смачиваемость компонентов топливных элементов как факторы, определяющие электрохимические характеристики. Успехи химии. 2012. Т. 81. С. 936. [Volfkovich, Yu.M. and Sosenkin, V.E., Porous structure and wetting of fuel cell components as the factors determining their electrochemical characteristics, Russ. Chem. Rev., 2012, vol. 81, p. 936.]

  97. Divisek, J., Eikerling, M., Mazin, V.M., Schmitz, H., Stimming, U., and Volfkovich, Yu.M., A study of capillary porous structure and sorption properties of Nafion proton-exchange membranes swollen in water, J. Electrochem. Soc., 1998, vol. 145, p. 2677.

  98. Volfkovich, Yu.M., Dreiman, N.A., Belyaeva, O.N., and Blinov, I.A., Standard-porosimetry study of perfluorinated cation-exchange membranes, Sov. Electrochem., 1988, vol. 24, p. 324.

  99. Березина, Н.П., Вольфкович, Ю.М., Кононенко, Н.А., Блинов, И.А. Изучение распределения воды в гетерогенных ионообменных мембранах методом эталонной порометрии. Электрохимия. 1987. Т. 23. С. 912. [Berezina, N.P., Volfkovich, Yu.M., Kononenko, N.A., and Blinov, I.A., Study of water distribution in heterogenous ion-exchange membranes by the method of standard porometry, Sov. Electrochem., 1987, vol. 23, p. 858.]

  100. Вольфкович, Ю.М., Кононенко, Н.А., Черняева, М.А., Кардаш, М.М., Шкабара, А.И., Павлов, А.В. Исследование пористой структуры, гидрофильно-гидрофобных и сорбционных свойств волокнистых ионообменных мембран “Поликон” и их влияния на ионную селективность. Критические технологии. Мембраны. 2008. Т. 39. С. 8. [Volfkovich, Yu.M., Kononenko, N.A., Cherniaeva, M.A., Kardash, М.М., Shkabara, А.I., and Pavlov, А.V., Investigation of the porous structure, hydrophilic-hydrophobic and sorption properties of Polycon fibrous ion-exchange membranes and their effect on ion selectivity Membranes [in Russian], Critical technologies. Membranes, 2008, vol. 39, p. 7.]

  101. Dobrevsky, I. and Zvezdov, A., Investigation of pore structure of ion exchange membranes, Desalination, 1979, vol. 28, p. 283.

  102. Tatárová, I., Fáber, R., Denoyel, R., and Polakovič, M., Characterization of pore structure of a strong anion-exchange membrane adsorbent under different buffer and salt concentration conditions, J. Chromatography A, 2009, vol. 1216, p. 941.

  103. Gnusin, N.P., Berezina, N.P., Kononenko, N.A., and Dyomina, O.A., Transport structural parameters to characterize ion exchange membranes, J. Membrane Sci., 2004, vol. 243, p. 301.

  104. Berezina, N.P., Kononenko, N.A., Dyomina, O.A., and Gnusin, N.P., Characterization of ion-exchange membrane materials: Properties vs structure. Adv. in Colloid and Interface, Sci., 2008, vol. 139, p. 3.

  105. Klaysom, C., Marschall, R., and Moon, S.H., Preparation of porous composite ion-exchange membranes for desalination application, J. Membrane Sci., 2011, vol. 371, p. 37.

  106. Ariono, D. and Wenten, I.G., Heterogeneous structure and its effect on properties and electrochemical behavior of ion-exchange membrane, Mater. Research Express, 2017, vol. 4, 024006.

  107. Kononenko, N., Nikonenko, V., Grande, D., Larchet, C., Dammak, L., Fomenko, M., and Volfkovich, Yu., Porous structure of ion exchange membranes investigated by various techniques. Adv. in Colloid and Interface Sci., 2017, vol. 246, p. 196.

  108. Stenina, I., Golubenko, D., Nikonenko, V., and Yaroslavtsev, A., Selectivity of transport processes in ion-exchange membranes: Relationship with the structure and methods for its improvement, Int. J. Mol. Sci., 2020, vol. 21, p. 5517.

  109. Jiang, S. and Ladewig, B.P., High ion-exchange capacity semihomogeneous cation exchange membranes prepared via a novel polymerization and sulfonation approach in porous polypropylene, ACS Appl. Mater. Interfaces, 2017, vol. 9, p. 38612.

  110. Zhao, Y., Xiang, P., Wang, Y., Sun, X., and Cao, D., A high ion-conductive and stable porous membrane for neutral aqueous Zn-based flow batteries, J. Membrane Sci., 2021, vol. 640, 119804.

  111. Li, Z., Ma, Z., Xu, Y., Wang, X., Sun, Y., and Wang, R., Homogeneous ion exchange membranes derived from sulfonated polyethersulfone/N-phthaloyl-chitosan for improved hydrophilic and controllable porosity, Korean J. Chem. Engineering, 2018, vol. 35, p. 1716.

  112. Novikova, K.S., Abdrashitov, E.F., Kritskaya, D.A., Ponomarev, A.N., Sanginov, E.A., and Dobrovol’skii, Yu.A., Synthesis and Properties of Ion-Exchange Membranes Based on Porous Polytetrafluoroethylene and Sulphonated Polystyrene, Russ. J. Electrochem., 2021, vol. 57, p. 1047.

  113. Kim, J., Lee, Y., Jeon, J.D., and Kwak, S.Y., Ion-exchange composite membranes pore-filled with sulfonated poly (ether ether ketone) and Engelhard titanosilicate-10 for improved performance of vanadium, J. Power Sources, 2018, vol. 383, p. 1.

  114. Huang, X. and Dasgupta, P.K., Controlled porosity monolithic material as permselective ion exchange membranes, Analyt. Chim. Acta, 2011, vol. 689, p. 155.

  115. Chisca, S., Torsello, M., Avanzato, M., Xie, Y., and Boi, C., Highly porous polytriazole ion exchange membranes cast from solutions in non-toxic cosolvents, Polymer, 2017, vol. 126, p. 446.

  116. Kaçar, Y. and Arica, M.Y., Procion Green H-E4BD-immobilized porous poly (hydroxyethylmethacrylate) ion-exchange membrane: preparation and application to lysozyme adsorption, Colloids and Surfaces B: Biointerfaces, 2001, vol. 1, p. 227.

  117. Khan, M.I., Shanableh, A., Khraisheh, M., and AlMomani, F., Synthesis of Porous BPPO-Based Anion Exchange Membranes for Acid Recovery via Diffusion Dialysis, Membranes, 2022, vol. 12, p. 95.

  118. Lee, M.S., Kim, H.K., Kim, C.S., Suh, H.Y., and Nahm, K.S., Thin Pore-Filled Ion Exchange Membranes for High Power Density in Reverse Electrodialysis: Effects of Structure on Resistance, Stability, and Ion Selectivity, Chem. Select, 2017, vol. 2, p. 1974.

  119. Bakangura, E., Cheng, C., Wu, J., Ge, X., and Ran, J., Hierarchically structured porous anion exchange membranes containing zwetterionic pores for ion separation, J. Membrane Sci., 2017, vol. 537, p. 32.

  120. Lin, J., Huang, J., Wang, J., Yu, J., You, X., and Lin, X., High-performance porous anion exchange membranes for efficient acid recovery from acidic wastewater by diffusion dialysis, J. Membrane Sci., 2021, vol. 624, 119116.

  121. Lin, X., Shamsaei, E., Kong, B., Liu, J.Z., Zhao, D., and Xu, T., Asymmetrically porous anion exchange membranes with an ultrathin selective layer for rapid acid recovery, J. Membrane Sci., 2016, vol. 510, p. 437.

  122. Kim, H., Choi, J., Jeong, N., Jung, Y.G., Kim, H., and Kim, D., Correlations between properties of pore-filling ion exchange membranes and performance of a reverse electrodialysis stack for high power density, Membranes, 2021, vol. 11, p. 609.

  123. Chen, N., Long, C., Li, Y., Wang, D., and Zhu, H., layered double hydroxide/poly (2,6-dimethyl-1,4-phenylene membrane oxide) with porous sandwich structure for anion exchange membrane fuel cell applications, J. Membrane Sci., 2018, vol. 552, p. 51.

  124. Baturina, O., Volfkovich, Yu.M., Sakars, A.V., Wynne, K.J., and Wnek, G.E., 207th Meeting of the Electrochemical Society, Quebec, Canada. May 15–20, 2005. Meeting Abstracts.

  125. Вольфкович, Ю.М., Сосенкин, В.Е., Никольская, Н.Ф. Постадийное исследование пористой структуры каталитического слоя топливного элемента с протонопроводящей мембраной. Электрохимия. 2010. Т. 46, С. 352. [Volfkovich, Yu.M., Sosenkin, V.E., and Nikolskaya, N.F., Step-by-step study of the porous structure of the catalytic layer of a fuel cell with a proton-conducting membrane, Russ. J. Electrochem., 2010, vol. 46, p. 410.]

  126. Napolskii, K.S., Barczuk, P.J., Vassiliev, S.Yu., Veresov, A.G., Tsirlina, G.A., and Kulesza, P.J., Templating of electrodeposited platinum group metals as a tool to control catalytic activity, Electrochim. Acta, 2007, vol. 52, p. 7910.

  127. Kyotani, T., Xu, W.H., and Yokoyama, Y., Chemical modification of carbon-coated anodic alumina films and their application to membrane filter, J. Membrane Sci., 2002, vol. 196, p. 231.

  128. Гладышева, Т.Д., Школьников, Е.И., Вольфкович, Ю.М., Подловченко, Б.И. Пористая структура дисперсной платины. Электрохимия. 1982. Т. 18. С. 435. [Gladysheva, T.D., Shkolnikov, E.I., Volfkovich, Yu.M., and Podlovchenko, B.I., The porous structure of dispersed platinum, Sov. Electrochem., 1982, vol. 18, p. 337.]

  129. Podlovchenko, B.I., Gladysheva, T.D., Vyaznikovtseva, O.V., and Volfkovich, Yu.M., Effects of the porous structure of platinum on the adsorption of sulfate and chloride anions, Sov. Electrochem., 1983, vol. 19, p. 381.

  130. Volfkovich, Yu.M. and Shkolnikov, E.I., Analysis of the macrokinetic operating-conditions of porous gas-diffusion electrodes, Sov. Electrochem., 1983, vol. 19, p.586.

  131. Volfkovich, Yu.M. and Shkolnikov, E.I., Influence of the porous structure on the characteristics of hydrophobic gas-diffusion electrodes, Sov. Electrochem., 1983, vol. 19, p. 1177.

  132. Volfkovich, Yu.M., Shkolnikov, E.I., Dubasova, V.S., and Ponomarev, V.A., Development of methods for the investigation of porous structures and establishment of the nature of their influence on the macrokinetics of processes in gas-diffusion electrodes, Sov. Electrochem., 1983, vol. 19, p. 681.

  133. Wu, G., Chen, Y.-Sh., and Xu, B.-Q., Remarkable support effect of SWNTs in Pt catalyst for methanol electrooxidation, Electrochem. Comm., 2005, vol. 7, p. 1237.

  134. Frackowiak, B.-Q., Lot, B.-Q., Cacciaguerra, T., and Beguin, F., Carbon nanotubes with Pt–Ru catalyst for methanol fuel cell, Electrochem. Comm., 2006, vol. 8, p. 129.

  135. Guo, D.-J. and Li, H.-L., Electrocatalytic oxidation of methanol on Pt modified single-walled carbon nanotubes, J. Power Sources, 2006, vol. 160, p. 44.

  136. Wang, C.-H., Shih, H.-C., Tsai., Y.-T., Du, H.-Y., Chen, L.-C., and Chen, K.-H., High methanol oxidation activity of electrocatalysts supported by directly grown nitrogen-containing carbon nanotubes on carbon, Electrochim. Acta, 2006, vol. 52, p. 1612.

  137. Prabhuram, J., Zhao, T.S. Liang, Z.X., and Chen, R., A simple method for the synthesis of PtRu nanoparticles on the multi-walled carbon nanotube for the anode of a DMFC, Electrochim. Acta, 2007, vol. 52, p. 2649.

  138. Chen, C.-C., Chen, C.-F., Chen, C.-M., and Chuang, F.-T., Modification of multi-walled carbon nanotubes by microwave digestion method as electrocatalyst supports for direct methanol fuel cell applications, Electrochem. Comm., 2007, vol. 9, p. 159.

  139. Tsai, M.-C., Yeh, T.-K., and Tsai, C.-H., An improved electrodeposition technique for preparing platinum and platinum–ruthenium nanoparticles on carbon nanotubes directly grown on carbon cloth for methanol oxidation, Electrochem. Comm., 2006, vol. 8, p. 1445.

  140. Wang, H.J., Yu, H., Peng, F., and Lv, P., Methanol electrocatalytic oxidation on highly dispersed Pt/sulfonated-carbon nanotubes catalysts, Electrochem. Comm., 2006, vol. 8, p. 499.

  141. Tusseeva, E.K., Mayorova, N.A., Sosenkin, V.E., Nikol’skaya, N.F., Volfkovich, Yu. M., Krestinin, A.V, Zvereva, G.I., Grinberg, V.A., and Khazova, O.A., Carbon nanotubes as a support for Pt-and Pt-Ru-catalysts of reactions proceeding in fuel cells, Russ. J. Electrochem., 2008, vol. 44, p. 884.

  142. Mayorova, N.A., Tusseeva, E.K., Sosenkin, V.E., Rychagov, A.Yu., Volfkovich, Yu.M., Krestinin, A.V., Zvereva, G.I., Zhigalina, O.M., and Khazova, O.A., Effect of the functionalizing of carbon nanotubes on the electrodeposited catalysts' structure and catalytic properties, Russ. J. Electrochem., 2009, vol. 45, p. 1089.

  143. He, D., Mu, S., and Pan, M., Perfluorosulfonic acid-functionalized Pt/carbon nanotube catalysts with enhanced stability and performance for use in proton exchange membrane fuel cells, Carbon, 2011, vol. 49, p. 82.

  144. Matsumori, H., Takenaka, S., and Matsune, H., Preparation of carbon nanotube-supported Pt catalysts covered with silica layers; application to cathode catalysts for PEFC, Appl. Catal. A, 2010, vol. 373, p. 176.

  145. Mirzaei, F., Parnian, M.J., and Rowshanzamir, S., Durability investigation and performance study of hydrothermal synthesized platinum-multi walled carbon nanotube nanocomposite catalyst for proton exchange membrane fuel cell, Energy, 2017, vol. 138, p. 696.

  146. Cha, B.C., Jun, S., Jeong, B., Ezazi, M., Kwon, G., and Kim, D., Carbon nanotubes as durable catalyst supports for oxygen reduction electrode of proton exchange membrane fuel cells, J. Power Sources, 2018, vol. 401, p. 296.

  147. Xu, J.B. and Zhao, T.S., Synthesis of well-dispersed Pt/carbon nanotubes catalyst using dimethylformamide as a cross-link, J. Power Sources, 2010, vol.195, p. 1071.

  148. Tong, X., Zhang, J., Zhang, G., Wei, Q., and Chenitz, R., Ultrathin carbon-coated Pt/carbon nanotubes: a highly durable electrocatalyst for oxygen reduction, Chem. Mater., 2017, vol. 29, p. 9579.

  149. Zhang, W., Minett, A.I., Gao, M., and Zhao, J., Integrated High-Efficiency Pt/Carbon Nanotube Arrays for PEM Fuel Cells, Adv. Energy Mater., 2011, vol. 1, p. 671.

  150. Kim, H. and Moon, S.H., Chemical vapor deposition of highly dispersed Pt nanoparticles on multi-walled carbon nanotubes for use as fuel-cell electrodes, Carbon, 2011, vol. 49, p. 1491.

  151. Kanninen, P, Eriksson, B., Davodi, F., and Buan, M.E., Carbon corrosion properties and performance of multi-walled carbon nanotube support with and without nitrogen-functionalization in fuel cell electrodes, Electrochim. Acta, 2020, vol. 332, 135384.

  152. Zhang, X., Zhang, J., Huang, H., Jiang, Q., and Wu, Y., Platinum nanoparticles anchored on graphene oxide-dispersed pristine carbon nanotube supports: High-performance electrocatalysts toward methanol electrooxidation, Electrochim. Acta, 2017, vol. 258, p. 919.

  153. Lee, J.W., Chung, S., and Kim, S., Preparation and electroactivity of Pt catalysts on unzipped multi-walled carbon nanotube and graphene oxide, J. Nanosci. and Nanotechnol., 2020, vol. 20, p. 4998.

  154. Cha, B.C., Jun, S., Jeong, B., Ezazi, M., Kwon, G., and Kim, D., Carbon nanotubes as durable catalyst supports for oxygen reduction electrode of proton exchange membrane fuel cells, J. Power Sources, 2018, vol. 401, p. 296.

  155. Wang, Q., Dai, N., and Zheng, J.P., Preparation and catalytic performance of Pt supported on Nafion® functionalized carbon nanotubes, J. Electroanal. Chem., 2020, vol. 854, 113508.

  156. Bharti, A. and Cheruvally, G., Influence of various carbon nano-forms as supports for Pt catalyst on proton exchange membrane fuel cell performance, J. Power Sources, 2017, vol. 360, p. 196.

  157. Cai, Z., Liu, C., Wu, G., Chen, X., and Chen, X., Palladium nanoparticles deposit on multi-walled carbon nanotubes and their catalytic applications for electrooxidation of ethanol and glucose, Electrochim. Acta, 2013, vol. 112, p. 756.

  158. Yan, M., Jiang, Q., Zhang, T., Wang, J., and Yang, L., Three-dimensional low-defect carbon nanotube/nitrogen-doped graphene hybrid aerogel-supported Pt nanoparticles as efficient electrocatalysts toward the methanol electrooxidation, J. Mater. Chem. A, 2018, vol.6, p. 18165.

  159. Wang, C.C., Hung, K.Y., Ko, T.E., Hosseini, S., and Li, Y.Y., Carbon-nanotube-grafted and nano-Co3O4-doped porous carbon derived from metal-organic framework as an excellent bifunctional catalyst for zinc–air battery, J. Power Sources, 2020, vol. 452, 227841.

  160. Ghasemi, M, Ismail, M., Kamarudin, S.K., and Saeedfar, K., Carbon nanotube as an alternative cathode support and catalyst for microbial fuel cells, Appl. Energy, 2013, vol. 102, p. 1050.

  161. Korchagin, O.V., Zagudaeva, N.M., Radina, M.V., Bogdanovskaya, V.A., and Tarasevich, M.R., Electrooxidation of hydrogen at Pt/carbon nanotube catalysts for hydrogen–air fuel cell, Russ. J. Electrochem., 2017, vol. 53, p. 615.

  162. Li, F., Liang, J., Zhu, W., Song, H., Wang, K., and Li, C., In-Situ Liquid Hydrogenation of m-Chloronitrobenzene over Fe-Modified Pt/Carbon Nanotubes Catalysts, Catalysts, 2018, vol. 8, p. 62.

  163. Gurau,V., Bluemle, M.J., De Castro, E.S., Tsou, J., and Zawodzinski, T.A., Characterization of transport properties in gas diffusion layers for proton exchange membrane fuel cells: 1. Wettability (internal contact angle to water and surface energy of GDL fibers), J. Power Sources, 2006, vol. 160, p. 1156.

  164. Вольфкович, Ю.М., Сосенкин, В.Е., Никольская, Н.Ф., Кулова, Т.Л. Исследование пористой структуры и гидрофильно-гидрофобых свойств газодиффузионных слоев электродов топливных элементов с протонопроводящей мембраной. Электрохимия. 2008. Т. 44. С. 300. [Volfkovich, Yu.M., Sosenkin, V.E., Nikolskaya, N.F., and Kulova, T.L., Investigation of the porous structure and hydrophilic-hydrophobic properties of gas diffusion layers of fuel cell electrodes with a proton-conducting membrane, Russ. J. Electrochem., 2008, vol. 44, p. 278.]

  165. Gostik, J.T., Fowler, M.W., Ioannidis, M.A., Pritzker, M.D., Volfkovich, Yu. M., and Sakars, A.V., Capillary pressure and hydrophilic porosity in gas diffusion layers for polymer electrolyte fuel cells, J. Power Sources, 2006, vol. 156, p. 375.

  166. Гуревич, И.Г., Вольфкович, Ю.М., Багоцкий, В.С. Жидкостные пористые электроды. Минск: Наука и техника. 1974. 248 с. [Gurevich, I.G., Volfkovich, Yu.M., and Bagotskii, V.S., Liquid Porous Electrodes, Minsk: Nauka i Tekhnika, Publ., 1974, 248 р. (in Rus).]

  167. Volfkovich, Yu.M. and Shkolnikov, E.I., Structural and wetting properties of fuel cell components I, II, II, Sov. Electrochem., 1983, vol. 19, p. 586, 673, 1177.

  168. Fuller, T.F. and Newman, J., Water and thermal management in solid-polymer-electrolyte fuel cells, J. Electrochem. Soc. 1993, vol.140, p. 1218.

  169. Чизмаджев, Ю.А., Маркин, В.С., Тарасевич, М.Р., Чирков, Ю.Г. Макрокинетика процессов в пористых средах. Москва: Наука, 1971. 328 с. [Chizmadzhev, Yu.A., Markin, V.S., Tarasevich, M.R., and Chirkov, Yu.G., Macrokinetics of processes in porous media, Moskow: Nauka publ., 1971. 328 р. (in Rus.).]

  170. Eikerling, M., Kharkats, Yu.I., Kornyshev, A.A., and Volfkovich, Yu.M., Phenomenological theory of electro-osmotic effect and water management in polymer electrolyte proton-conducting membranes, J. Electrochem. Soc., 1998, vol. 145, p. 2684.

  171. Zawodzinski, T.A., Davey, Jr. J., Valerio, J., and Gottesfeld, S., The water content dependence of electro-osmotic drag in proton-conducting polymer electrolytes, Electrochim. Acta, 1995, vol. 40, p. 297.

  172. Сосенкин, В.Е., Вольфкович, Ю.М., Багоцкий, В.С. Электрохимические кривые затопления. Электрохимия. 1973. Т. 9. С. 514. [Sosenkin, V.E., Volfkovich, Yu.M., and Bagotzkii, V.S., Electrochemical flooding curves, Sov. Electrochem., 1973, vol. 9, p. 394.]

  173. Вольфкович, Ю.М. Соотношение между электрохимическими и капиллярными свойствами топливного элемента с капиллярной мембраной. I. Электрохимия. 1978. Т. 14. с. 546. [Volfkovich, Yu.M., Relationship between Electrochemical and Capillary Properties of Capillary-Membrane Cell Elements, Sov. Electrochem., 1978, vol.14, p. 425.]

  174. Вольфкович, Ю.М. Соотношение между электрохимическими и капиллярными свойствами топливного элемента с капиллярной мембраной. II. Электрохимия. 1978. Т. 14. с. 831. [Volfkovich, Yu.M., Relationship between Electrochemical and Capillary Properties of Capillary-Membrane Cell Elements. II, Sov. Electrochem., 1978, vol.14, p.717.]

  175. Вольфкович, Ю.М. Соотношение между электрохимическими и капиллярными свойствами топливного элемента с капиллярной мембраной. III. Электрохимия. 1978. Т. 14. С. 1477. [Volfkovich, Yu.M., Relationship between Electrochemical and Capillary Properties of Capillary-Membrane Cell Elements. III, Sov. Electrochem., 1978, vol. 14, p. 1282.]

  176. Khrizolitova, M.A., Volfkovich, Yu. M., Mikhaleva, G.M., and Tabakman, L.S., Influence of capillary phenomena on electrochemical characteristics of phosphoric-acid-electrolyte matrix, Sov. Electrochem., 1988, vol. 24, p. 709.

  177. Conway, B., Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Berlin, Germany. Springer Science & Business Media, 2013, 636 p.

  178. Bagotsky, V.S., Skundin, A.M., and Volfkovich, Yu.M., Electrochemical Power Sources. Batteries, Fuel Cells, Supercapacitors. N.J.: Jhon Wiely & Sons Inc. Publisher, 2015, 372 p.

  179. Langendahl, P.-A., Roby, H., Potter, S., and Cook, M., Smoothing peaks and troughs: Intermediary practices to promote demand side response in smart grids, Energy Res. Soc. Sci., 2019, vol. 58, 101277.

  180. Chapaloglou, S., Nesiadis, A., Iliadis, P., Atsonios, K., Nikolopoulos, N., Grammelis, P., Yiakopoulos, C., Antoniadis, I., and Kakaras, E., Smart energy management algorithm for load smoothing and peak shaving based on load forecasting of an island’s power system, Appl. Energy, 2019, vol. 238, p. 627.

  181. Reihani, E., Motalleb, M., Ghorbani, R., and Saad Saoud, L., Load peak shaving and power smoothing of a distribution grid with high renewable energy penetration, Renew. Energy. 2016, vol. 86, p. 1372.

  182. Shabshab, S.C., Lindahl, P.A., Nowocin, J.K., Donnal, J., Blum, D., Norford, L., and Leeb, S.B., Demand Smoothing in Military Microgrids through Coordinated Direct Load Control, IEEE Trans. Smart Grid, 2020, vol. 11, p. 1917.

  183. Вольфкович, Ю.М. Суперконденсаторы: проблемы и перспективы развития. Успехи химии. 2022. Т. 91. RCR5044. [Volfkovich, Yu.M., Supercapacitors: problems and development prospects, Russ. Chem. Rev., 2022, vol. 91, RCR5044.]

  184. Vorotyntsev, M., Modern Aspects of Electrochemistry, N.Y.: Plenum Press, 1986, vol. 17, p. 131.

  185. Ермакова, А.С., Попова, А.В., Чайка, М.Ю., Кравченко, Т.А. Окислительно-восстановительная функционализация углеродных электродов электрохимических конденсаторов. Электрохимия. 2017. Т. 53. С. 687. [Ermakova, A.S., Popova, A.V., Chayka, M.Y., and Kravchenko, T.A., Redox functionalization of carbon electrodes of electrochemical capacitors, Russ. J. Electrochem., 2017, vol. 53, p. 608.]

  186. Yan, D., Bazant, M.Z., Biesheuvel, P.M., Pugh, M.C., and Dawson, F.P., Theory of linear sweep voltammetry with diffuse charge: Unsupported electrolytes, thin films, and leaky membranes, Phys. Rev. E, 2017, vol. 95, 033303.

  187. Вольфкович, Ю.М., Мазин, В.М., Уриссон, Н.А. Исследование работы двойнослойных конденсаторов на основе углеродных материалов. Электрохимия. 1998. Т. 34. С. 825. [Volfkovich, Yu. M, Mazin, V.M, and Urisson, N.A., The influence of the porous structure, microkinetics and diffusion properties on the charge-discharge behaviour of conducting polymers, Russ. J. Electrochem., 1998, vol. 34, p. 740.]

  188. de Levie, R., On porous electrodes in electrolyte solutions. I. Capacitance effects, Electrochim. Acta, 1963, vol. 8, p. 751.

  189. de Levie, R., On porous electrodes in electrolyte solutions–IV, Electrochim. Acta, 1964, vol. 9, p. 1231.

  190. Pell, W.G. and Conway, B.E., Voltammetry at a de Levie brush electrode as a model for electrochemical supercapacitor behaviour, J. Electroanal. Chem., 2001, vol. 500, p. 121.

  191. Kroupa, M., Offer, G.J., and Kosek, J., Modelling of supercapacitors: Factors influencing performance, J. Electrochem. Soc., 2016, vol. 163, p. A2475.

  192. Вольфкович, Ю.М. Электрохимические суперконденсаторы (Обзор). Электрохимия. 2021. Т. 57. С. 197. [Volfkovich, Yu.M., Electrochemical Supercapacitors (a Review), Russ. J. Electrochem., 2021, vol. 57, p. 311.]

  193. Pandolfo, A.G. and Hollenkamp, A.F., Carbon properties and their role in supercapacitors, J. Power Sources, 2006, vol. 157, p. 11.

  194. Simon, P. and Gogotsi, Y., Perspectives for electrochemical capacitors and related devices, Nature materials, 2020, vol. 19, p. 1151.

  195. Inagaki, M., Konno, H., and Tanaike, O., Carbon materials for electrochemical capacitors. J. Power Sources, 2010, vol. 195, p. 7880.

  196. Miller, J.R., Engineering electrochemical capacitor applications, J. Power Sources, 2016, vol. 326, p. 726.

  197. Wang, L., Inagaki, M., and Toyoda, M., Carbon materials for electrochemical capacitors, J. Power Sources, 2010, vol.195, p. 7880.

  198. Largeot, C., Portet, C., Chmiola, J., Taberna, P.L., Gogotsi, Y., and Simon, P., Relation etween the Ion Size and Pore Size for an Electric Double-Layer. Capacitor, J. Amer. Chem. Soc., 2008, vol. 130, p. 2730.

  199. Gryglewicz, G., Machnikowski, J., Lorenc–Grabowska, E., Lota, G., and Frackowiak, E., Effect of pore size distribution of coal-based activated carbons on double layer capacitance, Electrochim. Acta, 2005, vol. 50, p.1197.

  200. Wang, L., Fujita, M., and Inagaki, M., Effect of pore size distribution of coal-based activated carbons on double layer capacitance, Electrochim. Acta, 2007, vol. 52, p. 1296.

  201. Тарасевич, М.Р. Электрохимия углеродных материалов. 1984, Москва: Наука, 254 с. [Tarasevich, M.R., Electrochemistry of carbon materials, 1984, Moscow: Nauka Publ., 254 р.]

  202. Тарковская, И.А. Окисленный уголь. Киев: Наукова думка, 1981. 238 с. [Tarkovskaya, I.A., Oxidized carbon, Kiev: Naukova dumka, 1981, 238 р.]

  203. Соляникова, А.С. (Ермакова, А.С.), Чайка, М.Ю., Парфенов, В.А., Кирик, С.Д., Кравченко, Т.А. Активация мезоструктурированных электродных материалов электрохимических конденсаторов. Электрохимия. 2015. Т. 51. С. 863. [Solyanikova, A.S., Chayka, M.Yu., Parfenov, V.A., Kirik, S.D., and Kravchenko, T.A., Activation of Mesostructured Electrode Materials for Electrochemical Capacitors, Russ. J. Electrochem., 2015, vol. 51, p.764.]

  204. Вольфкович, Ю.М., Горончаровская, И.В., Евсеев, А.К., Сосенкин, В.Е., Гольдин, М.М. Влияние электрохимического модифицирования активированных углей полипирролом на их структурные характеристики, состав поверхностных соединений и адсорбционные свойства. Электрохимия. 2017. Т. 53. С. 1616. [Volfkovich, Yu.M., Goroncharovskaya, I.V., Evseev, A.K., Sosenkin, V.E., and Gol’din M.M., The Effect of Electrochemical Modification of Activated Carbons by Polypyrrole on Their Structure Characteristics, Composition of Surface Compounds, and Adsorption Properties, Russ. J. Electrochem., 2017, vol. 53, p. 1363.]

  205. Kodama, M., Yamashita, J., Soneda,Y., Hatori, H., and Kamegawa, H., Preparation and electrochemical characteristics of N-enriched carbon foam, Carbon, 2007, vol. 45, p. 1105.

  206. Oda, H.H., Yamashita, A.S., Minoura, M. Okamoto, and Morimoto, T., Modification of the oxygen-containing functional group on activated carbon fiber in electrodes of an electric double-layer capacitor, J. Power Sources, 2006, vol. 158, p. 1510.

  207. Hulicova, D., Kodama, M., and Hatori, H., Electrochemical performance of nitrogen-enriched carbons in aqueous and non-aqueous supercapacitors, Chem. Mater., 2006, vol. 18, p. 2318.

  208. Guo, B., Ma, R., Li, Z., Guo, S., Luo, J., Yang, M., Liu, Q., Thomas, T., and Wang, J., Hierarchical N-Doped Porous Carbons for Zn–Air Batteries and Supercapacitors, Nano-Micro Letters, 2020, vol. 12, p. 2.

  209. Ghosh, S., Jeong, S.M., and Polaki, S.R., A review on metal nitrides/oxynitrides as an emerging supercapacitor electrode beyond oxide, Korean J. Chem. Eng., 2018, vol. 35, p. 1389.

  210. Kodama, M., Yamashita, J., Soneda, Y., Hatori, H., Kamegawa, K., and Moriguchi, I., Structure and electrochemical capacitance of nitrogen-enriched mesoporous carbon, Chem. Lett., 2006, vol. 35, p. 680.

  211. Li, W., Chen, D., Li, Z., Shi, Y., Wang, Y., Huang, J., Zhao, D., and Jiang, Z., Nitrogen enriched mesoporous carbon spheres obtained by a facile method and its application for electrochemical capacitor, Electrochim. Commun, 2007, vol. 9, p. 569.

  212. Konno, H., Onishi, H., Yoshizawa, N., and Azumi, K., MgO-templated nitrogen-containing carbons derived from different organic compounds for capacitor electrodes, J. Power Sources, 2010, vol. 195, p. 667.

  213. Frackowiak, E., Lota, G., Machnikowski, J., Vix-Gutrl, C., and Beguin, F., Optimisation of supercapacitors using carbons with controlled nanotexture and nitrogen content, Electrochim. Acta, 2006, vol. 51, p. 2209.

  214. Guo, H. and Gao, Q., Boron and nitrogen co-doped porous carbon and its enhanced properties as supercapacitor, J. Power Sources, 2009, vol. 186, p. 551.

  215. Konno, H., Ito, T., Ushiro, M., Fushimi, K., and Azumi, K., High capacitance B/C/N composites for capacitor electrodes synthesized by a simple method, J. Power Sources, 2010, vol. 195, p. 1739.

  216. Sepehri, S., Garcia, B.B., Zhang, Q., and Cao, G., Enhanced electrochemical and structural properties of carbon cryogels by surface chemistry alteration with boron and nitrogen, Carbon, 2009, vol. 47, p. 1436.

  217. Volfkovich, Yu.M., Bograchev, D.A., Rychagov, A.Yu, Sosenkin, V.E., and Chaika, M.Yu., Supercapacitors with carbon electrodes. Energy efficiency: modeling and experimental verification, J. Solid State Electrochem., 2015, vol. 19, p. 1.

  218. Bograchev, D.A., Gryzlov, D.Yu., Sosenkin, V.E., and Volfkovich, Yu. M., Modeling and experimental verification of operation of supercapacitors with carbon electrodes in non-aqueous electrolytes. The energy efficiency, Electrochim. Acta, 2019, vol. 319, p. 552.

  219. Рычагов, А.Ю., Измайлова, М.Ю., Сосёнкин, В.Е., Вольфкович, Ю.М., Деньщиков, К. К. Электрохимическое поведение дисперсного углерода в электролитах на основе ионной жидкости 1-метил-3-бутилимидозолий тетрафторборат. Электрохим. энергетика. 2015. Т.15. С. 3. [Rychagov, A.Yu., Izmaylova, M.Y., Sosenkin, V.E., Volfkovich, Yu. M., and Denshchikov, K.K., Electrochemical behavior of dispersed carbon in electrolytes based on ionic liquid 1-methyl-3-butylimidozolium tetrafluoroborate, Electrochem. energetics, 2015, vol.15, p. 3 (in Rus.).]

  220. Lu, Y., Zhang, S., Yin, J., Bai, C., Zhang, J., Li, Y., Yang, Y., Ge, Z., Zhang, M., Wei, L., Ma, M., Ma,Y., and Chen, Y., Mesoporous activated carbon materials with ultrahigh mesopore volume and effective specific surface area for high performance supercapacitors, Carbon, 2017, vol. 124, p. 64.

  221. Efimov, M.N., Sosenkin, V.E., Volfkovich, Yu.M., Vasilev, A.A., Muratov, D.G., Baskakov, S.A., Efimov, O.N., and Karpacheva, G.P., Electrochemical performance of polyacrylonitrile-derived activated carbon prepared via IR pyrolysis, Electrochem. Commun., 2018, vol. 96, p. 98.

  222. Borenstein, A., Hanna, O., Attias, R., and Luski, S., Thierry Brousse and Doron Aurbach. Carbon-based composite materials for supercapacitor electrodes: a review, J. Mater. Chem. A, 2017, vol. 5, 12653.

  223. Wang, H., Zhong, Y., Li, Q., Yang, J., and Dai, Q., Cationic starch as a precursor to prepare porous activated carbon for application in supercapacitor electrodes, J. Phys. and Chem. Solids, 2008, vol. 69, p. 2420.

  224. Volfkovich, Y.M., Mikhailin, A.A., Bograchev, D.A., Sosenkin, V.E., and Bagotsky, V.S., Studies of supercapacitor carbon electrodes with high pseudocapacitance, Recent Trend in Electrochem. Sci. and Technol., 2012, p. 159.

  225. Volfkovich, Yu.M., Bograchev, D.A., Mikhalin, A.A., and Bagotsky, V.S., Supercapacitor carbon electrodes with high capacitance, J. Solid State Electrochem., 2014. vol. 18, p. 135.

  226. Zhao, J. and Burke, A.F., Electrochemical capacitors: Materials, technologies and performance, Energy Storage Mater., 2021, vol. 36, p. 31.

  227. Nishihara, H., Itoi, H., Kogure, T., Hou, P., Touhara, H., Okino, F., and Kyotani, T., Chem., Investigation of the ion storage/transfer behavior in an electrical double layer capacitor by using ordered microporous carbons as model materials, Cemistry Eu. J., 2009, vol. 15, p. 5355.

  228. Рычагов, А.Ю., Вольфкович, Ю.М., Воротынцев, М.А., Квачева, Л.Д., Конев, Д.В., Крестинин, А.В., Кряжев, Ю.Г., Кузнецов, В.Л., Кукушкина, Ю.А., Мухин, В.М., Соколов, В.В., Червонобродов, С.П. Перспективные электродные материалы для суперконденсаторов. Электрохим. энергетика. 2012. Т. 12. С. 167. [Rychagov, A.Yu., Volfkovich, Yu.M., Vorotyntsev, M.A., Kvacheva, M.A., Konev, D.V., Krestinin, A.V., Kryazhev, Yu.G., Kuznetsov, V.L., Kukushkina, Y.A., Mukhin, V.M., Sokolov, V.V., and Chervonobrodov, S.P., Promising electrode materials for supercapacitors, Electrochem. Energetics, 2012, vol. 12, p. 167 (in Rus).]

  229. Ariyanto, T., Glaesel, J., Kern, A., Zhang, G., and Etzold, B.J., Improving control of carbide-derived carbon microstructure by immobilization of a transition-metal catalyst within the shell of carbide/carbon core–shell structures, Beilstein J. Nanotechnol., 2019, vol. 10, p. 419.

  230. Krüner, B., Odenwald, C., Tolosa, A., Schreiber, A., Aslan, M., Kickelbick, G., and Presser, V., Carbide-derived carbon beads with tunable nanopores from continuously produced polysilsesquioxanes for supercapacitor electrodes, Sustainable Energy Fuels, 2017, vol. 1. p. 1588.

  231. Dhaka, T.P. Chapter 8 – Simple Parallel-Plate Capacitors to High–Energy Density Future Supercapacitors: A Materials Review (Carbide-Derived Carbon – an overview), Emerging Materials for Energy Conversion and Storage, 2018, p. 247.

  232. Yang, X., Fei, B., Ma, J., Liu, X., Yang, S., Tian, G., and Jiang, Z., Porous nanoplatelets wrapped carbon aerogel by pyrolysis of regenerated bamboo cellulose aerogels as supercapacitor electrodes, Carbohydrate Polymers, 2018, vol. 180, p. 385.

  233. Baskakov, S.A., Baskakova, Y.V., Kabachkov, E.N., Dremova, N.N., Michtchenko, A., and Shulga, Yu.M., Novel Superhydrophobic Aerogel on the Base of Polytetrafluoroethylene, ACS Appl. Mater. & Interfaces, 2019, vol. 35, p. 32517.

  234. Boinovich, Yu.M. and Emelyanenko, A.M., Hydrophobic materials and coatings: principles of design, properties and applications, Russ. Chem. Rev., 2008, vol. 77, p. 583.

  235. http://www.ras.ru/news/shownews.aspx?id=b53dad2c-d02c-44b3-8955-305136cb8a30.

  236. Volfkovich, Yu. M., Sosenkin, V.E., Mayorova, N.A., Rychagov, A.Yu., Baskakov, S.A., Kabachkov, E.N., Korepanov, V.I., Dremova, N.N., Baskakova, Y.V., and Shulga, Yu. M., PTFE/rGO Aerogels with Both Superhydrophobic and Superhydrophilic Properties for Electroreduction of Molecular Oxygen, Energy & fuels, 2020, vol. 34, p. 7573.

  237. Volfkovich, Yu.M., Sosenkin, V.E., Maiorova, N.A., Rychagov, A.Yu., Baskakov, S.A., Kabachkov, E.N., Korepanov, V.I., Dremova, N.N., Baskakova, Yu.V., and Shulga, Yu.M., Graphene-Based Aerogels Possessing Superhydrophilic and Superhydrophobic Properties and Their Application for Electroreduction of Molecular Oxygen, Colloid J., 2021, vol. 83, p. 284.

  238. Volfkovich, Yu.M., Lobach, A.S., Spitsyna, N.G., Baskakov, S.A., Sosenkin, V.E., Rychagov, A.Yu., Kabachkov, E.N., Sakars, A., Michtchenko, A., and Shulga, Yu.M., Hydrophilic and hydrophobic pores in reduced graphene oxide aerogel, J. Porous Mater., 2019, vol. 26, p. 1111.

  239. Вольфкович, Ю.М., Рычагов, А.Ю., Сосенкин, В.Е., Крестинин, А.В. Силовой электрохимический суперконденсатор на основе углеродных нанотрубок. Электрохим. энергетика. 2008. Т. 8. С.106. [Volfkovich, Yu.M., Rychagov, A.Yu., Sosenkin, V.E., and Krestinin, A.V., A power electrochemical supercapacitor based on carbon nanotubes, Electrochem. energetic, 2008, vol. 8, p.106 (in Russian).]

  240. Yang, Z., Tian, J., Yin, Z., Cui, C., Qian, W., and Wei, F., Carbon nanotube- and graphene-based nanomaterials and applications in high-voltage supercapacitor: A review, Carbon, 2019, vol. 141, p. 467.

  241. Вольфкович, Ю.М., Рычагов, А.Ю., Сосенкин, В.Е., Ефимов, О.Н., Осьмаков, М.И., Селиверстов, А.Ф. Измерение разными методами удельной поверхности углеродных наноматериалов. Электрохимия. 2014. Т. 50. С. 1222. [Volfkovich, Yu. M., Rychagov, A.Yu., Sosenkin, V.E., Efimov, O.N., Os’makov, M.I., and Seliverstov, A.F., Measuring the Specific Surface Area of Carbon Nanomaterials by Different Methods, Russ. J. Electrochem., 2014, vol. 50, p. 1099.]

  242. Dong, B., He, B.L., Xu, C.L., and Li, H.L., Preparation and electrochemical characterization of polyaniline/multi-walled carbon nanotubes composites for supercapacitor, Materials Science and Engineering B., 2007, vol. 143, p. 7.

  243. Wang, J., Xu, Y., Chen, X., and Sun, X., Capacitance properties of single wall carbon nanotube/polypyrrole composite films, Composites Science and Technology, 2007, vol. 67, p. 2981.

  244. Dong, B., He, B.L., Xu, C.L., and Li, H.L., Preparation and electrochemical characterization of polyaniline/multi-walled carbon nanotubes composites for supercapacitor, Mater. Sci. and Engineering B, 2007, vol. 143, p. 7.

  245. Honda, Y., Takeshige, M., Shiozaki, H., Kitamura, T., Yoshikawa, K., Chakarabarti, S., Suekane, O., Pan, L., Nakayama, Y., Yamagata, M., and Ishikawa, M., Vertically aligned double-walled carbon nanotube electrode prepared by transfer methodology for electric double layer capacitor, J. Power Sources, 2008, vol. 185, p. 1580.

  246. Chee, W.K., Lim, W.K., Zainal, H.N., Huang, Z., Harrison, N.M., and Andou, Y., Flexible Graphene-Based Supercapacitors: A Review, J. Phys. Chem. C, 2016, vol. 120, p. 4153.

  247. Eftekhari, A., Shulga, Y.M., Baskakov, S.A., and Gutsev, G.L., Graphene oxide membranes for electrochemical energy storage and conversion, Intern. J. Hydrogen energy, 2018, vol. 43, p. 2307.

  248. Shulga, Yu.M., Baskakova, S.A., Baskakova, Yu.V., Lobach, A.S., Kabachkov, E.N., Volfkovich, Yu.M., Sosenkin, V.E., Shulga, N.Yu., Nefedkin, S.I., Kumar, Y., and Michtchenko, A., Preparation of graphene oxide-humic acid composite-based ink for printing thin film electrodes for micro-supercapacitors, J. Alloys and Compounds, 2018, vol. 730, p. 88.

  249. Shulga, Yu.M., Baskakov, S.A., Baskakova, Y.V., Lobach, A.S., Volfkovich, Yu. M., Sosenkin, V.E., Shulga, N.Yu., Parkhomenko, Y.N., Michtchenko, A., and Kumar., Y., Hybrid porous carbon materials derived from composite of humic acid, Microporous and Mesoporous Mater., 2017, vol. 245, p. 24.

  250. Кряжев, Ю.Г., Вольфкович, Ю.М., Мельников, И.П., Рычагов, А.Ю., Тренихин, М.В., Солодовниченко, В.С., Лихолобов, В.А. Синтез и исследование электрохимических свойств нанокомпозита с графеноподобными частицами, встроенными в высокопористую углеродную матрицу. Физикохимия поверхности и защита материалов. 2017. Т. 53. С. 422. [Kryazhev, Yu.G., Volfkovich, Yu.M., Mel’nikov, V.P., Rychagov, A.Yu., Trenikhin, M.V., Solodovnichenko, V.S., and Likholobov, V.A., Synthesis and study of electrochemical properties of nanocomposites with graphene-like particles integrated into a high-porosity carbon matrix, Protection Metals and Phys. Chem. Surfaces, 2017, vol. 53, p. 422.]

  251. Shulga, Yu.M., Baskakov, S.A., Baskakova, Yu.V., Volfkovich, Yu.M., Shulga, N.Yu., Skryleva, E.A., Parkhomenko, Y.N., Belay, K.G., Gutsev, G.L., Rychagov, A.Y., Sosenkin, V.E., and Kovalev, I.D., Supercapacitors with graphene oxide separators and reduced graphite oxide electrodes, J. Power Sources, 2015, vol. 279, p. 722.

  252. Ke, Q. and Wang, J., Graphene-based materials for supercapacitor electrodes e A review, J. Materiomics, 2016, vol. 2, p. 37.

  253. Lee, H. and Lee, K.S., Interlayer distance controlled graphene, supercapacitor and method of producing the same, US Patent 10, 214, 422 B2, 2019.

  254. Yang, X., Cheng, C., Wang, Y., Qiu, L., and Li, D., Liquid-Mediated Dense Integration of Graphene Materials for Compact Capacitive Energy Storage, Science, 2013, vol. 341, p. 534.

  255. Liu, H., Wang, Y., Gou, X., Qi, T., Yang, J., and Ding, Y., Three-dimensional graphene/polyaniline composite material forhigh-performance supercapacitor applications, Mater. Sci. and Engineering B, 2013, vol. 178, p. 293.

  256. Aboutalebi, H., Chidembo, A.T., Salari, M., Konstantinov, K., Wexler, D., Liu, H.K., and Dou, S.X., Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors, Energy Environ. Sci., 2011, vol. 4, p. 1855.

  257. Zhong, M., Song, Y., Li, Y., Ma, C., Zhai, X., Shi, J., Guo, Q., and Liu, L., Effect of reduced graphene oxide on the properties of an activated carbon cloth/polyaniline flexible electrode for supercapacitor application, J. Power Sources, 2012, vol. 217, p. 6.

  258. Sun, D., Yan, X., Lang, J., and Xue, Q., High performance supercapacitor electrode based on graphene paper via flame-induced reduction of graphene oxide paper, J. Power Sources, 2013, vol. 222, p. 52.

  259. Zhou, Z. and Wu, X.F., Graphene-beaded carbon nanofibers for use in supercapacitor electrodes: Synthesis and electrochemical characterization, J. Power Sources, 2013, vol. 222, p. 410.

  260. Mohammadi, A., Arsalani, N., Tabrizi, A.G., Moosavifard, S.E., Naqshbandi, Z., and Ghadimi, L.S., Engineering rGO-CNT wrapped Co3S4 nanocomposites for high-performance asymmetric supercapacitors, Chem. Engineering J., 2018, vol. 334, p. 66.

  261. Smirnov, V.A., Denisov, N.N., Dremova, N.N., Volfkovich, Yu.M., Rychagov, A.Yu., Sosenkin, V.E., Belay, K.G., Gutsev, G.L., Shulga, N.Yu., and Shulga, Yu.M., A comparative analysis of graphene oxide films as proton conductors, Appl. Phys. A, 2014, vol. 117, p. 1859.

  262. Volfkovich, Yu.M, Lobach, A.S., Spitsyna, N.G., Baskakov, S.A., Sosenkin, V.E., Rychagov, A.Yu., Kabachkov, E.N., Sakars, A., Michtchenko, A., and Shulga, Yu.M., Hydrophilic and Hydrophobic Pores in Reduced Graphene Oxide Aerogel, J. Porous Mater. 2019, vol. 26, p. 1111.

  263. Guo, S., Li, H., Zhang, H., Hawaz, H., Chen, S., Zhang, X., and Xu, F., Lignin carbon aerogel/nickel binary network for cubic supercapacitor electrodes with ultra-high areal capacitance, Carbon, 2021, vol. 174, p. 500.

  264. Yang, Z., Tian, J., Yin, Z., Cui, C., Qian, W., and Wei, F., Carbon nanotube-and graphene-based nanomaterials and applications in high-voltage supercapacitor: A review, Carbon, 2019, vol. 141, p. 467.

  265. Shulga, Yu.M., Baskakov, S.A., Baskakova, Yu.V., Volfkovich, Yu. M., Shulga, N.Yu., Skryleva, E.A., Parkhomenko, Y.N., Belay, K.G., Gutsev, G.L., Rychagov, A.Yu. Sosenkin, V.E., and Kovalev, I.D., Supercapacitors with graphene oxide separators and reduced graphite oxide electrodes, J. Power Sources, 2015, vol. 279, p. 722.

  266. Liu, T., Zhang, F., Song, Y., and Li, Y., Revitalizing carbon supercapacitor electrodes with hierarchical porous structures, J. Mater. Chem. A, 2017, vol. 5, p. 17705.

  267. Yang, X., Li, Y., Zhang, P., Sun, L., Ren, X., and Mi, H., Hierarchical hollow carbon spheres: Novel synthesis strategy, pore structure engineering and application for micro-supercapacitor, Carbon, 2020, vol. 157, p. 70.

  268. Xia, K., Gao, Q., Jiang, J., and Hu, J., Hierarchical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials, Carbon, 2008, vol. 46, p. 1718.

  269. Xu, H., Wang, L., Zhang, Y., Chen, Y., and Gao, S., Pore-structure regulation of biomass-derived carbon materials for an enhanced supercapacitor performance, Nanoscale, 2021, vol. 13, p. 10051.

  270. Tang, Z., Li, X., Sun, T., Shen, S., Huixin, X., and Yang, J., Porous crumpled graphene with hierarchical pore structure and high surface utilization efficiency for supercapacitor, Microporous and Mesoporous Mater., 2018, vol. 272, p. 40.

  271. Zhou, Y., Ren, X., Du, Y., Jiang, Y., Wan, J., and Ma, F., In-situ template cooperated with urea to construct pectin-derived hierarchical porous carbon with optimized pore structure for supercapacitor, Electrochim. Acta, 2020, vol. 355, 136801.

  272. Xing, W., Huang, C.C., Zhuo, S.P., Yuan, X., and Wang, G.Q., Hierarchical porous carbons with high performance for supercapacitor electrodes, Carbon, 2009, vol. 47, p. 1715.

  273. Yang, X., Zhao, S., Zhang, Z., Chi, Y., and Yang, C., Pore structure regulation of hierarchical porous carbon derived from coal tar pitch via pre-oxidation strategy for high-performance supercapacitor, J. Colloid Interface Sci., 2022, vol. 614, p. 298.

  274. Li, Z., Cheng, A., Zhong, W., Ma, H., Si, M., Ye, X., and Li, Z., Facile fabrication of carbon nanosheets with hierarchically porous structure for high-performance supercapacitor, Microporous and Mesoporous Mater., 2020, vol. 306, 110440.

  275. Kim, J., Eum, J.H., Kang, J., Kwon, O., Kim, H., and Kim, D.W., Tuning the hierarchical pore structure of graphene oxide through dual thermal activation for high-performance supercapacitor, Scientific reports, 2021, vol. 11, p. 2063.

  276. Zhang, X., Zhang, H., Li, C., Wang, K., Sun, X., and Ma, Y., Recent advances in porous graphene materials for supercapacitor applications, Rsc Advances, 2014, vol. 4, p. 45862.

  277. Chen, H., Liu, D., Shen, Z., Bao, B., Zhao, S., and Wu, L., Functional biomass carbons with hierarchical porous structure for supercapacitor electrode materials, Electrochim. Acta, 2015, vol. 180, p. 241.

  278. Volfkovich, Yu. M., Rychagov, A.Yu., and Sosenkin, V.E., Effect of the Porous Structure on the Electrochemical Characteristics of Supercapacitor with Nanocomposite Electrodes Based on Carbon Nanotubes and Resorcinol–Formaldehyde Xerogel, Russ. J. Electrochem., 2022, vol. 58, p. 730.

  279. Chang, B., Yin, H., Zhang, X., Zhang, S., and Yang, B., Chemical blowing strategy synthesis of nitrogen-rich porous graphitized carbon nanosheets: morphology, pore structure and supercapacitor application, Chem. Engineering J., 2017, vol. 312, p. 191.

  280. Lee, E.J., Lee, L., Abbas, M.A., and Bang, J.H., The influence of surface area, porous structure, and surface state on the supercapacitor performance of titanium oxynitride: implications for a nanostructuring strategy, Phys. Chem., 2017, vol. 19, p. 21140.

  281. Luo, X., Chen, X., and Mo, Y., A review of charge storage in porous carbon-based supercapacitors, New Carbon Materials, 2021, vol. 36, p. 49.

  282. Zhang, X., Li, H., Zhang, K., Wang, Q., and Qin, B., Strategy for preparing porous graphitic carbon for supercapacitor: balance on porous structure and graphitization degree, J. Electrochem. Soc., 2018, vol. 165, p. A2084.

  283. Xie, L., Su, F., Xie, L., Guo, X., Wang, Z., and Kong, Q., Effect of pore structure and doping species on charge storage mechanisms in porous carbon-based supercapacitors, Mater. Chem. Front, 2020, vol. 4, p. 2610.

  284. Heo, Y.J., Lee, H.I., Lee, J.W., Park, M., and Rhee, K.Y., Optimization of the pore structure of PAN-based carbon fibers for enhanced supercapacitor performances via electrospinning, Composites Part B: Engineering, 2019, vol. 161, p. 10.

  285. Lin, Z., Xiang, X., Peng, S., Jiang, X., and Hou, L., Facile synthesis of chitosan-based carbon with rich porous structure for supercapacitor with enhanced electrochemical performance, J. Electroanal. Chem., 2018, vol. 823, p. 563.

  286. Long, C., Jiang, L., Wu, X., Jiang, Y., Yang, D., and Wang, C., Facile synthesis of functionalized porous carbon with three-dimensional interconnected pore structure for high volumetric performance, Carbon, 2015, vol. 93, p. 412.

  287. Kim, T.Y., Jung, G., Yoo, S., Suh, K.S., and Ruoff, R.S., Activated graphene-based carbons as supercapacitor electrodes with macro-and mesopores, ACS Nano, 2013, vol. 7, p. 6899.

  288. Hao, P., Zhao, Z., Tian, J., Li, H., Sang, Y., Yu, G., Cai, H., and Liu, H., Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode, Nanoscale, 2014, vol. 6, p. 12120.

  289. Shimizu, T., Kobashi, K., and Nakajima, H., Supercapacitor Electrodes of Blended Carbon Nanotubes with Diverse Conductive Porous Structures Enabling High Charge/Discharge Rates, ACS Appl. Energy Mater., 2021, vol. 4, p. 9712.

  290. Fisher, R.A., Watt, M.R., and Ready, W.J., Functionalized Carbon Nanotube Supercapacitor Electrodes: A Review on Pseudocapacitive Materials, J. Solid State Sci. Technol., 2013, vol. 2, p. 2 M3170.

  291. Zhang, Y., Chen, H., Wang, S., Zhao, X., and Kong, F., Regulatory pore structure of biomass-based carbon for supercapacitor applications, Microporous and Mesoporous Mater., 2020, vol. 297, 110032.

  292. Liu, X., Li, S., Mi, R., Mei, J., Liu, L.M., Cao, L., Lau, W.M., and Liu, H., Porous structure design of carbon xerogels for advanced supercapacitor, Appl. Energy, 2015, vol. 153, p. 32.

  293. Zhi, M., Yang, F., Meng, F., and Li, M., Effects of pore structure on performance of an activated-carbon supercapacitor electrode recycled from scrap waste tires, ACS Sustainable Chem. Eng., 2014, vol. 2, p. 1592.

  294. Zhao, J., Lai, C., Dai, Y., and Xie, J., Pore structure control of mesoporous carbon as supercapacitor material, Mater. Lett., 2007, vol. 61, p. 4639.

  295. Jung, S.M., Mafra, D.L., Lin, C.T., Jung, H.Y., and Kong, J., Controlled porous structures of graphene aerogels and their effect on supercapacitor performance, Nanoscale, 2015, vol. 7, p. 4386.

  296. Xiong, C., Li, B., Lin, X., Liu, H., Xu, Y., Mao, J., and Duan, C., The recent progress on three-dimensional porous graphene-based hybrid structure for supercapacitor, Composites Part B: Engineering, 2019, vol. 165, p. 10.

  297. Celzard, A., Collas, F., Mareche, J.F., and Furdin, G., Porous electrodes-based double-layer supercapacitors: pore structure versus series resistance, J. Power Sources, 2002, vol. 108, p. 153.

  298. Song, M., Zhou, Y., Ren, X., Wan, J., Du, Y., and Wu, G., Biowaste-based porous carbon for supercapacitor: The influence of preparation processes on structure and performance, J. Colloid Interface Sci., 2019, vol. 535, p. 276.

  299. Gang, B., Zhang, F., Li, X., Zhai, B., Wang, X., and Song, Y., A lactuca-derived porous carbon for high-performance electrode materials in supercapacitor: Synergistic effect of porous structure and graphitization degree, J. Energy Storage, 2021, vol. 33, 102132.

  300. Borchardt, L., Oschatz, M., and Kaskel, S., Materials Horizons, Tailoring porosity in carbon materials for supercapacitor applications, Mater. Horiz., 2014, vol. 1, p. 157.

  301. Snook, G.A., Kao, P., and Best, A.S., Conducting-polymer-based supercapacitor devices and electrodes, J. Power Sources, 2011, vol. 196, p. 1.

  302. Peng, C., Zhang, S., Jewell, D., and Chen, G.Z., Carbon nanotube and conducting polymer composites for supercapacitors, Progress in Natural Sci., 2008, vol. 8, p. 777.

  303. Huang, Z., Li, L., Wang, Y., Zhang, C., and Liu, T., Polyaniline/graphene nanocomposites towards high-performance supercapacitors: A review., Composites Commun., 2018, vol. 8, p. 83.

  304. Wang, J., Xu, Y., Chen, X., and Sun, X., Capacitance properties of single wall carbon nanotube/polypyrrole composite films, Composit. Sci. and Technol., 2007, vol. 67, p. 2981.

  305. Kim, B.C., Kwon, J.S., Ko, J.M., Park, J.H., Too, C.O., and Wallace, G.G., Preparation and enhanced stability of flexible supercapacitor prepared from Nafion/polyaniline nanofiber, Synthetic Metals, 2010, vol. 160, p. 94.

  306. Cong, H.P., Ren, X.C., Wang, P., and Yu, S.H., Flexible graphene–polyaniline composite paper for high-performance supercapacitor, Energy Environ. Sci., 2013, vol. 6, p. 1185.

  307. Qin, W., Jian-ling, L., Fei, G., Wen-sheng, L., Ke-zhong, W., and Xin-dong, W. Poly(ethylenedioxythiophene) (PEDOT) as polymer electrode in redox supercapacitor, New Carbon Materials, 2008, vol. 1, p. 275.

  308. Cai, J.J., Kong, L.B., Zhang, J., Luo, Y.C., and Kang, L., A novel polyaniline/mesoporous carbon nano-composite electrode for asymmetric supercapacitor, Chinese Chem. Lett., 2010, vol. 21, p. 1509.

  309. Yang, M., Cheng, B., Song, H., and Chen, X., Preparation and electrochemical performance of polyaniline-based carbon nanotubes as electrode material for supercapacitor, Electrochim. Acta, 2010, vol. 55, p. 7021.

  310. Fang, Y., Liu, J., Yu, D.J., Wicksted, J.P., Kalkan, K., Topal, C.Q., Flanders, B.N., Wu, J., and Li, J., Self-supported supercapacitor membranes: Polypyrrole-coated carbon nanotube networks enabled by pulsed electrodeposition, J. Power Sources, 2010, vol. 195, p. 674.

  311. Vorotyntsev, M.A., Konev, D.V., Devillers, Ch.H., Bezverkhyy, I., and Heintz, O., Electroactive polymeric material with condensed structure on the basis of magnesium(II) polyporphine, Electrochim. Acta, 2011, vol. 56, p. 3436.

  312. Вольфкович, Ю.М., Золотова, Т.К., Бобе, С.Л., Шлепаков, А.В., Багоцкий, В.С. Влияние пористой структуры, межфазной емкости, кинетических и диффузионных характеристик на разрядные и зарядные кривые полианилиновых электродов. Электрохимия. 1993. Т. 29. С. 647. [Volfkovich, Yu. M., Zolotova, T.K., Bobe, S.L., Shlepakov, A.V., and Bagotsky, V.S., Influence of porous structure, interfacial capacitance, kinetic and diffusion characteristics on discharge and charging curves of polyaniline electrodes, Russ. J. Electrochem., 1993, vol. 29, p. 1094.]

  313. Volfkovich, Yu.M., Bagotzky, V.S., Zolotova, T.K., and Pisarevskaya, E.Yu., The influence of the porous structure, microkinetics and diffusion properties on the charge-discharge behaviour of conducting polymers, Electrocim. Acta, 1996, vol. 41, p.1905.

  314. Volfkovich, Yu. M., Levi, M.D., Zolotova, T.K., and Pisarevskaya, E.Yu., Porous structure of electrosynthesized poly(p-phenylene) films characterized by the standard porosimetry technique, Polymer Commun., 1993, vol. 34, p. 2443.

  315. Korosy, F., Physics of ionits, Nature, 1963, vol. 198, p. 4883.

  316. Гнусин, Н.П., Гребенюк, В.Д., Певницкая, М.В. Электрохимия ионитов. Новосибирск: Наука, 1972. 236 c. [Gnusin, N.P., Grebenyk, V.D., and Pevnitskaya, M.V., Ionits Electrochemistry, Novosibirsk: Nauka Publ., 1972, 236 c. (in Rus.).]

  317. Рианде, Е. Физика электролитов. Москва: Мир, 1978. 358 с. [Electrolyte Physics, Mir Publ., 358 р. (in Rus.).]

  318. Гельферих, Р. Иониты. Москва: Иностр. лит., 1962, 387 с. [Gel’ferikh, Ionits. Moscow: Internetional literature Publ., 1962, 387 р. (in Rus.).]

  319. Вольфкович, Ю.М., Лужин, В.К., Ванюлин, А.Н., Школьников, Е.И., Блинов, И.А. Применение метода эталонной порометрии для исследования пористой структуры ионообменных мембран. Электрохимия. 1984. Т. 20. С. 656. [Volfkovich, Yu.M., Luzhin, V.K., Vanyulin, A.N., Shkolnikov, E.I., and Blinov, I.A., Application of the standard porosimetry method for investigation of ion-exchange membranes porous structure, Sov. Electrochem., 1984, vol. 20, p. 613.]

  320. Вольфкович, Ю.М. Влияние двойного электрического слоя у внутренней межфазной поверхности ионита на его электрохимические и сорбционные свойства. Электрохимия. 1984. Т. 20. С. 665. [Volfkovich, Yu.M., The influence of electric double layer at inner interphase surface of ion-exchange membrane on its electrochemical and sorption properties, Sov. Electrochem., 1984, vol. 20, p. 664.]

  321. Дамаскин, Б.Б., Петрий, О.А., Цирлина, Г.А. Электрохимия. Изд. Химия, 2001. 624 с. Damaskin, B.B., Petry, O.A., and Tzirlina, G.A., Electrochemistry, Chem. Publ., 2001. 624 р. (in Russian)

  322. Духин, С.С. Электропроводность и электрокинетические свойства дисперсных систем. Киев: Наукова думка, 1975. 388 с. [Dukhin, S.S., Electrical conductivity and electrokinetic properties of dispersed systems, Kiev: Naukova dumka Publ., 1975. 388 р. (in Rus.).]

  323. Карнаухов, А.П. В кн.: Моделирование пористых материалов. Новосибирск: Изд. Института катализа СО АН СССР, 1976. 428 с. [Karnaukhov, A.P., in book: Modeling of porous materials. Novosibirsk: Institute of Catalysis. Publ., 1976. 428 р. (in Rus.).]

  324. Заболоцкий, В.И., Никоненко, В.В. Перенос ионов в мембранах. Москва: Наука, 1996. 392 с. [Zabolotskii, V.I. and Nikonenko, V.V., Ion transfer in membranes, Moscow: Nauka Publ., 1996, 392 р. (in Rus.).]

  325. Кардаш, М.М., Шкабара, А.И., Павлов, А.В. Получение листовых волокнистых хемосорбционных фильтров “Поликон”. Хим. волокна. 2007. № 1. С. 30. [Kardash, M.M., Shkabara, A.I., and Pavlov, A.V., Production of sheet fibrous chemisorption filters “Polikon”. Chem. Fibers, 2007, № 1, p. 30. (in Rus.).]

  326. Кононенко, Н.А., Березина, Н.П., Вольфкович, Ю.М., Школьников, Е.И., Блинов, И.А. Исследование структуры ионообменных материалов методом эталонной порометрии. Журн. прикл. химии. 1985. Т. 58. С. 2199. [Kononenko, N.A., Berezina, N.P., Volfkovich, Yu. M., Shkol’nikov, E.I., and Blinov, I.A., Investigation of ion-exchange materials structure by standard porosimetry method, J. Appl. Chem. USSR, 1985, vol. 58, p. 2029.]

  327. Березина, Н.П., Кононенко, Н.А., Вольфкович, Ю.М., Фрейдлин, Ю.Г., Черноскутова, Л.Г. Физико-химические свойства анионо-катионообменных мембран мозаичной структуры. Электрохимия. 1989. Т. 25. С. 1009. [Berezina, N.P., Kononenko, N.A., Volfkovich, Yu.M., Freidlin, Yu.G., and Chernoskutova, L.G., Physicochemical Properties of Mosaic Membranes Exchanging Anions and Cations, Russ. J. Electrochem., 1989, vol. 25, p. 912.]

  328. Гнусин, Н.П., Березина, Н.П., Демина, О.А., Кононенко, Н.А. Физико-химические принципы тестирования ионообменных мембран. Электрохимия. 1996. Т. 32. С. 173. [Gnusin, N.P., Berezina, N.P., Demina, O.A., and Kononenko, N.A., Physicochemical Principles of Testing Ion-Exchange Membranes, Russ. J. Electrochem., 1996, vol. 32, p. 154.]

  329. Волков, В.В., Мчедлишвили, Б.В., Ролдугин, В.И., Иванчев, С.С., Ярославцев, А.Б. Мембраны и нанотехнологии. Обзор. Рос. нанотехнологии. 2008. Т. 3. С. 67. [Volkov, V.V., Mchedlishvili, B.V., Roldugin, V.I., Ivanchev, S.S., and Yaroslavtsev, A.B., Review, Nanotechnologies in Russia, 2008, vol. 3, p. 656.]

  330. Rica, R.A., Ziano, R., Salerno, D., Mantegazza, F., and Brogioli, D., Thermodynamic Relation between Voltage-Concentration Dependence and Salt Adsorption in Electrochemical Cells, Phys. Rev. Lett, 2012, vol. 109, 156103.

  331. Farmer, J.C., Fix, D.V., Mack, G.V., Pekala, R.W., and Poco, J.F., The Use of Capacitive Deionization with Carbon Aerogel Electrodes to Remove Inorganic Contaminants from Water, Low Level Waste Conference, Orlando, USA (1995).

  332. Oren, Y., Desalination. Capacitive deionization (CDI) for desalination and water treatment – past, present and future (a review), Desalination, 2008, vol. 228, p. 1.

  333. Strathmann, H., Ion-Exchange Membrane Processes in Water Treatment Sustainability Scienceand Engineering, Elsevier Pabl., 2010. 498 p.

  334. Avraham, E., Noked, M., Bouhadana, Y., Soffer, A., and Aurbach, D., Limitations of charge efficiency in capacitive deionization II. On the behavior of cdi cells comprising two activated carbon electrodes, J. Electrochem. Soc., 2009, vol. 156, p.157.

  335. Suss, M.E., Baumann, T.F., Bourcier, W.L., Spadaccini, C.M., Rose, K.A., Santiago, J.G., and Stadermann, M., Capacitive desalination with flow-through electrodes, Energy Environ. Sci., 2012, vol. 5, p. 9511.

  336. Rica, R.A., Ziano, R., Salerno, D., Mantegazza, F., and Brogioli, D., Thermodynamic Relation between Voltage-Concentration Dependence and Salt Adsorption in Electrochemical Cells, Phys. Rev. Lett, 2012, vol. 109, 156103.

  337. Porada, S., Zhao R., Van Der Wal, A., Presser, V., and Biesheuvel, P.M., Review on the science and technology of water desalination by capacitive deionization, Prog. Mater. Sci., 2013, vol. 58, p. 1388.

  338. Jande, Y.A.C. and Kim, W.S., Desalination using capacitive deionization at constant current, Desalination, 2013, vol. 329, p. 29.

  339. Soffer, A. and Folman, M., The electrical double layer of high surface porous on carbon electrode, J. Electroanal. Chem., 1972, vol. 38, p. 25.

  340. Li, H., Pan, L., Lu, T., Zhan, Y., Nie, C., and Sun, Z., A comparative study on electrosorptive behavior of carbon nanotubes and graphene for capacitive deionization, J. Electroanal. Chem., 2011, vol. 653, p. 40.

  341. Вольфкович, Ю.М. Емкостная деионизация воды. Обзор. Электрохимия. 2020. Т. 56. С. 1. [Volfkovich, Yu.M., Capacitive Deionization of Water (A Review), Russ. J. Electrochem., 2020, vol. 56, p. 18.]

  342. Ma, X., Wang, H., Wu, Q., Zhang, J., Liang, D., Lu, S., and Xiang, Y., Bamboo like Carbon Microfibers Derived from Typha Orientalis Fibers for Supercapacitors and Capacitive Deionization, J. Electrochem. Soc., 2019, vol. 166(2), p. A236.

  343. Zhao, R., Porada, S., Biesheuvel, P.M., and van der Wal, A., Energy consumption in membrane capacitive deionization for different water recoveries and flow rates, and comparison with reverse osmosis, Desalination, 2013, vol. 330, p. 35.

  344. Kang, J., Kim,T, Jo, K, and Yoon, J., Comparison of salt adsorption capacity and energy consumption between constant current and constant voltage operation in capacitive deionization, Desalination, 2014, vol. 352, p. 52.

  345. Kim, T., Dykstra, J.E., Porada, S., Yoon, J., and Biesheuvel, P.M., Enhanced charge efficiency and reduced energy use in capacitive deionization by increasing the discharge voltage, J. Colloid Interface Sci., 2015, vol. 446, p. 317.

  346. Yang, Li., She, J., Jiansheng, Li., Sun, X., Shen, J., Han, W., and Wang, L., A protic salt-derived porous carbon for efficient capacitive deionization: Balance between porous structure and chemical composition, Carbon, 2017, vol. 116, p. 21.

  347. Krüner, B., Srimuk, P., Fleischmann, S., Zeiger, M., Schreiber, A., Aslan, M., Quade, A., and Volker, P., Hydrogen-treated, sub-micrometer carbon beads for fast capacitive deionization with high performance stability, Carbon, 2017, vol. 117, p. 46.

  348. Choi, S., Chang, B., Kang, J.H., Diallo, M.S., and Choi, J.W., Energy-efficient hybrid FCDI-NF desalination process with tunable salt rejection and high water recovery, J. Membrane Sci., 2017, vol. 541, p. 580.

  349. Andelman, M., Flow Through Capacitor basics, Separation and Purification Technol., 2011, vol. 80, p. 262.

  350. Anderson, M.A., Cudero, A.L., and Palma, J., Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete? Electrochim. Acta, 2010, vol. 55, p. 3845.

  351. Liu, S., Kyle, C., and Smith, K.C., Quantifying the Trade between Energy Consumption and Salt Removal in Membrane-free Cation Intercalation Desalination, Electrochim. Acta, 2017, vol. 230, p. 333.

  352. Yang, S.C., Choi, J., Yeo, J., Jeon, S., Park, H., and Kim, D.K., Flow-Electrode Capacitive Deionization Using an Aqueous Electrolyte with a High Salt Concentration, Environ. Sci. Technol., 2016, vol. 50, p. 5892.

  353. Biesheuvel, P.M., Bazant, M.Z., Cusick, R.D., Hatton, T.A., Hatzell, K.B., Hatzell, M.C., Liang, P., Lin, S., Porada, S., Santiago, J.G., Smith, K.C., Stadermann, M., Su, X., Sun, X., Waite, T.D., van der Wal, A., Yoon, J., Zhao, R., Zou, L., and Suss, M.E., Capacitive Deionization–defining a class of desalination technologies, Appl. Phys., 2017, vol. 16, p. 19.

  354. Tang, W., He, D., Zhang, C.T., and Waite, D., Optimization of sulfate removal from brackish water by membrane capacitive deionization, Water Res., 2017, vol. 121, p. 302.

  355. Hassanvand, A., Chen, G.Q, Webley, P.A., and Kentish, S.E., Improvement of MCDI operation and design through experiment and modelling: Regeneration with brine and optimum residence time, Desalination, 2017, vol. 417, p. 36.

  356. Kim, J.-S. and Choi, J.-H., Fabrication and characterization of a carbon electrode coated with cation-exchange polymer for the membrane capacitive deionization applications J. Membr. Sci., 2010, vol. 355, p. 85.

  357. Lee, J.-H. and Choi, J.-H., The production of ultrapure water by membrane capacitive deionization (MCDI) technology, J. Membr. Sci., 2012, vols. 409–410, p. 251.

  358. Li, H. and Zou, L., Ion-exchange membrane capacitive deionization: a new strategy for brackish water desalination, Desalination, 2011, vol. 275, p. 62.

  359. Biesheuvel, P.M., Zhao, R., Porada, S., and van der Wal, A., Theory of membrane capacitive deionization including the effect of the electrode pore space, J. Colloid Interface Sci., 2011, vol. 360, p. 239.

  360. Zhao, R., Satpradit, O., Rijnaarts, H.M., Biesheuvel, P.M., and van der Wal, A., Optimization of salt adsorption rate in membrane capacitive deionization, Water Res., 2013, vol. 147, p. 1941.

  361. Biesheuvel, P.M. and van der Wal, A., Membrane capacitive deionization J. Membr. Sci., 2010, vol. 346, p. 256.

  362. Gao, X., Omosebi, A., Holubowitch, N., Liua, A, Ruha, K., Landon, J., and Liu, K., Polymer-coated composite anodes for efficient and stable capacitive deionization, Desalination, 2016, vol. 399, p. 16.

  363. Wang, Z., Gong, H., Zhang, Y., Liang, P., and Wang, K., Nitrogen recovery from low-strength wastewater by combined membrane capacitive deionization (MCDI) and ion exchange (IE) process, Chem. Engineering J., 2017, vol. 316, p. 1.

  364. Singha, K., Poradab, S., de Gierb, H.D., Biesheuvel, P.M., and de Smeta, L.C.P.M., Timeline on the application of intercalation materials in Capacitive Deionization, Desalination, 2019, vol. 455, p. 115.

  365. Kang, J., Kima, T., Shin, T., Lee, J., Ha, J.-I., and Yoon, J., Direct energy recovery system for membrane capacitive deionization, Desalination, 2016, vol. 398, p. 144.

  366. Dykstra, J.E., Zhao, R., Biesheuvel, P.M., and van der Wal, A., Resistance identification and rational process design in Capacitive Deionization, Water Res., 2016, vol. 88, p. 358.

  367. Bian, Y., Liang, P., Yang, X., Jiang, X., Zhang, C., and Huang, X., Using activated carbon fiber separators to enhance the desalination rate of membrane capacitive deionization, Desalination, 2016, vol. 381, p. 95.

  368. Dykstra, J.E., Keesman, K.J., Biesheuvel, P.M., and van der Wal, A., Theory of pH changes in water desalination by capacitive deionization, Water Res., 2017, vol. 119, p. 178.

  369. Tang, W., He, D., Zhang, C., Kovalsky, P., and Waite, T.D., Comparison of Faradaic reactions in capacitive deionization (CDI) and membrane capacitive deionization (MCDI) water treatment processes, Water Res., 2017, vol. 120, p. 229.

  370. Tang, W., He, D., Zhang, C., and Waite, T.D., Optimization of sulfate removal from brackish water by membrane capacitive deionization, Water Res., 2017, vol. 121, p. 302.

  371. Hassanvand, A., Chen, G.Q., Webley, P.A., and Ken-tish, S.E., Improvement of MCDI operation and design through experiment and modelling: Regeneration with brine and optimum residence time, Desalination, 2017, vol. 417, p. 36.

  372. Rommerskirchena, A., Ohsb, B., Hepp, K.A., Femmer, R., and Wessling, M., Modeling continuous flow-electrode capacitive deionization processes with ion-exchange membranes, J. Membrane Sci., 2018, vol. 546, p. 188.

  373. Starthman, H., Ion-exchange membrane processes: their principle and practical applications, Balaban Desalination Publ., Stuttgart, Germany. 2016. 488 p.

  374. Bian, Y., Yang, X., Liang, P., Jiang, Y., Zhang, C., and Huang, X., Enhanced desalination performance of membrane capacitive deionization cells by packing the flow chamber with granular activated carbon, Water Res., 2015, vol. 85, p. 371.

  375. Zhao, Y., Wang, Y., Wang, R., Wu, Y., Xu, S., and Wang, J., Performance comparison and energy consumption analysis of capacitive deionization and membrane capacitive deionization processes. Review, Desalination, 2013, vol. 324, p. 127.

  376. Zhao, Y., Wang, Y., Wang, R., Wu, Y., Xu, S., and Wang J., Energy consumption in membrane capacitive deionization for different water recoveries and flow rates, and comparison with reverse osmosis, Desalination, 2013, vol. 330, p. 35.

  377. He, F., Biesheuvel, P.M., Bazant, M.Z., and Hatton, T.A., Theory of water treatment by capacitive deionization with redox active porous electrodes, Water Res., 2018, vol. 132, p. 282.

  378. Achilleos, D.S. and Hatton, T.A., Selective molecularly mediated pseudocapacitive separation of ionic species in solution, ACS Appl. Mater. Interfaces, 2016, vol. 8, p. 32743.

  379. Su, X. and Hatton, T.A., Electrosorption at functional interfaces: from molecularlevel interactions to electrochemical cell design, Phys. Chem. Chem. Phys., 2017, vol. 19, p. 23570.

  380. Su, X. and Hatton, T.A., Redox-electrodes for selective electrochemical separations, Adv. Colloid Interface Sci., 2017, vol. 244, p. 6.

  381. Su, X., Hübner, J., Kauke, M.J., Dalbosco, L., Tho-mas, J., Gonzalez, C.C., Zhu, E., Franzreb, M., Jamison, T.F., and Hatton, T.A., Redox interfaces for electrochemically controlled protein-surface interactions: bioseparations and heterogeneous enzyme catalysis, Chem. Mater., 2017, vol. 29, p. 5702.

  382. Su, X., Kulik, H.J., Jamison, T.F., and Hatton, T.A., Anion-selective redox electrodes: electrochemically mediated separation with heterogeneous organometallic interfaces, Adv. Funct. Mater., 2016, vol. 26, p. 3394.

  383. Su, X., Tan, K.-J., Elbert, J., Rüttiger, C., Gallei, M., Jamison, T.F., and Hatton, T.A., Asymmetric Faradaic systems for selective electrochemical separations, Energy Environ. Sci., 2017, vol. 10, p. 1272.

  384. Smith, K.C., Theoretical evaluation of electrochemical cell architectures using cation intercalation electrodes for desalination, Electrochim. Acta, 2017, vol. 230, p. 333.

  385. Liu, S. and Smith, K.S., Quantifying the trade-offs between energy consumption and salt removal rate in membrane-free cation intercalation desalination, Electrochim. Acta, 2018, vol. 271, p. 652.

  386. Porada, S., Shrivastava, A., Bukowska, P., Biesheuvel, P.M., and Smith, K.S., Nickel Hexacyanoferrate Electrodes for Continuous Cation Intercalation Desalination of Brackish Water, Electrochim. Acta, 2017, vol. 255, p. 369.

  387. Yang, S.C., Choi, J., Yeo, J., Jeon, S., Park, H., and Kim, D.K., Flow-electrode capacitive deionization using an aqueous electrolyte with a high salt concentration, Environ. Sci. Technol., 2016, vol. 50, p. 5892.

  388. Guyes, E.N., Shocron, A.N., Simanovski, A., Biesheuvel, P.M., and Suss, M.E., A one-dimensional model for water desalination by flow-through electrode capacitive deionization, Desalination, 2017, vol. 415, p. 8.

  389. Gendel, G., Klara, A., Rommerskirchen, E., David, O., and Wessling, M., Batch mode and continuous desalination of water using flowing carbon deionization (FCDI) technology Electrochem. Commun., 2014, vol. 46, p. 152.

  390. Wang, M., Hou, S., Liu, Y., Ting, X., Zhao, L.R., and Pan, L., Capacitive neutralization deionization with flow electrodes, Electrochim. Acta, 2016, vol. 2016, p. 211.

  391. Nativ, P., Badash, Y., and Gendel, Y., New insights into the mechanism of flow-electrode capacitive deionization, Electrochem. Commun., 2017, vol. 76, p. 24.

  392. Choo, K.Y., Yoo, C.Y., Han, M.H., and Kim, D.K., Electrochemical analysis of slurry electrodes for flow-electrode capacitive deionization, J. Electroanal. Chem., 2017, vol. 806, p. 50.

  393. Yang, S.C., Choi, J., Yeo, J., Jeon, S., Park, H., and Kim, D. K., Flow-Electrode Capacitive Deionization Using an Aqueous Electrolyte with a High Salt Concentration, Environ. Sci. Technol., 2016, vol. 50, p. 5892.

  394. Kim, T., Dykstra, J.E., Porada, S., van der Wal, A., Yoon, J., and Biesheuvel, P.M., Enhanced charge efficiency and reduced energy use in capacitive deionization by increasing the discharge voltage, J. Colloid Interface Sci., 2015, vol. 446, p. 317.

  395. Hatzel, K.B., Iwama, E., Ferris, A., Daffos, B., Uritab, K., Tzedakisc, T., Chauvet, F., Taberna, P-L, Gogotsi, Y., and Simon, P., Capacitive deionization concept based on suspension electrodes without ion exchange membranes, Electrochem. Commun., 2014, vol. 43, p. 18.

  396. Gendel, G., Klara, A., Rommerskirchen, E., David, O., and Wessling, M., Batch mode and continuous desalination of water using flowing carbon deionization (FCDI) technology, Electrochem. Commun., 2014, vol. 46, p. 152.

  397. Lu, D., Cai, W., and Wang, Y., Optimization of the voltage window for long-term capacitive deionization stability, Desalination, 2017, vol. 424, p. 53.

  398. Volfkovich, Yu. M., Bograchev, D.A., Mikhalin, A.A., Rychagov, A.Yu., Sosenkin,V.E., and Park, D.C., Capacitive deionization of aqueous solutions. modeling and experiments, Desalination and water treatment, 2017, vol. 69, p. 130.

  399. Вольфкович, Ю.М., Михалин, А.А., Рычагов, А.Ю. Измерение поверхностной проводимости пористых углеродных электродов. Электрохимия. 2013. Т. 49. С. 667. [Volfkovich, Yu. M., Mikhalin, A.A., and Rychagov, A.Yu., Surface Conductivity Measurements for Porous Carbon Electrodes, Russ. J. Electrochem., 2013, vol. 49, p. 594.]

  400. Volfkovich, Yu.M., Rychagov, A.Yu., Mikhalin, A.A., Kardash, M.M., Kononenko, N.A., Ainetdinov, D.V., Shkirskaya, S.A., and Sosenkin, V.E., Capacitive deionization of water using mosaic membrane, Desalination, 2018, vol. 426, p. 1.

  401. Volfkovich, Yu.M., Kononenko, N.A., Mikhalin, A.A., Kardash, M.M., Rychagov, A.Yu., Tsipliaev, S.V., Shkirskaya, S.A., and Sosenkin, V.E., Capacitive deionization of water involving mosaic membranes based on fibrous polymer matrices, Desalination and water treatment, 2020, vol. 182, p. 77.

  402. Вольфкович, Ю.М., Михалин, А.А., Рычагов, А.Ю., Кардаш, М.М. Емкостная деионизация воды с электродами из нанопористого активированного угля и катионо-анионообменной мембраной мозаичной структуры. Физикохимия поверхности и защита металлов. 2021. Т. 57. С. 1. [Volfkovich, Yu.M., Mikhalin, A.A., Rychagov, A.Yu., and Kardash, M.M., Capacitive Deionization of Water with Electrodes Based on Nanoporous Activated Carbon and a Mosaic Cation-Anion Exchange Membrane, Protection of Metals and Physical Chemistry of Surfaces, 2021, vol. 57, p. 68.]

  403. Kohli, D.K., Bhartiya, S., Singh, A., Singh, R., Singh, M.K., and Gupta, P.K., Capacitive deionization of ground water using carbon aerogel based electrodes, Desalination and water treatment, 2016, vol. 57, p. 1.

  404. Xu, X., Liu, Y., Wang, M., Zhu, C., Lu, T., Zhao, R., and Pan, L., Hierarchical hybrids with microporous carbon spheres decorated three-dimensional graphene frameworks for capacitive applications in supercapacitor and deionization, Electrochim. Acta, 2016, vol. 193, p. 88.

  405. Zhao, S., Yan, T., Wang, H., Chen, G., Huang, L., Zhang, J., Shi, L., and Zhang, D., High capacity and high rate capability of nitrogen-doped porous hollow carbon spheres for capacitive deionization, Appl. Surface Sci., 2016, vol. 369, p. 460.

  406. Li, J., Ji, B., Jiang, R., Zhang, P., Chen, N., Zhang, G., and Qu, L., Hierarchical hole-enhanced 3D graphene assembly for highly efficient capacitive deionization, Carbon, 2018, vol. 129, p. 95.

  407. Feng, J., Yang, Z., Hou, S., Li, M., Lv, R., Kanga, F., and Huang, Z.-H., GO/auricularia-derived hierarchical porous carbon used for capacitive deionization with high performance, Colloids and Surfaces A: Physicochem. and Engineering Aspects, 2018, vol. 547, p. 134.

  408. Cao, J., Wang, Y., Chen, C., Yu, F., and Ma, J., A Comparison of graphene hydrogels modified with single-walled/multi-walled carbon nanotubes as electrode materials for capacitive deionization, J. Colloid Interface Sci., 2018, vol. 518, p. 69.

  409. Kim, C., Srimuk, P., Lee, J., Fleischmann, S., Aslan, M., and Presser, V., Influence of pore structure and cell voltage of activated carbon cloth as a versatile electrode material for capacitive deionization, Carbon, 2017, vol. 122, p. 329.

  410. Chena, Z., Zhang, H., Wu, C., Luo, L., Wang, C., Huang, S., and Xu, H., A study of the effect of carbon characteristics on capacitive deionization (CDI) performance, Desalination, 2018, vol. 433, p. 68.

  411. Li, G.X., Hou, P.X., Zhao, S.Y., Chang, Liu, and Cheng, H.M., A flexible cotton-derived carbon sponge for high-performance capacitive deionization, Carbon, 2016, vol. 101, p. 1.

  412. Xu, P., Jorg, E., Drewes, J.E., Heil, D., and Wang, G., Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology, Water Res., 2008, vol. 42, p. 2605.

  413. Zornitta, R.L., Lado, J.J., Anderson, M.A., Luís, and Ruotolo, A.M., Effect of electrode properties and operational parameters on capacitive deionization using low-cost commercial carbons, Separation and Purification Technol., 2016, vol. 158, p. 39.

  414. Li, H., Zou, L., Pan, L., and Sun, Z., Using graphene nano-flakes as electrodes to remove ferric ions by capacitive deionization, Separation and Purification Technol., 2010, vol. 75, p. 8.

  415. Nadakatti, S., Tendulkar, M., and Kadam, M., Use of mesoporous conductive carbon black to enhance performance of activated carbon electrodes in capacitive deionization technology, Desalination, 2011, vol. 268, p. 182.

  416. Wang, L., Wang, M., Huang, Z.-H., Cui, T., Gui, X., Kang, F., Wang, K., and Wu, D., Capacitive deionization of NaCl solutions using carbon nanotube sponge electrodes, J. Mater. Chem., 2011, vol. 21, p. 18295.

  417. Zhang, D., Wen, X., Shi, L., Yan, Tingting, and Zhang, J., Enhanced capacitive deionization of graphene/mesoporous carbon composites, Nanoscale, 2012, vol. 4, p. 5440.

  418. Wang, G., Dong, Q., Ling, Z., Pan, C., Yu, C., and Qiu, J., Hierarchical activated carbon nanofiber webs with tuned structure fabricated by electrospinning for capacitive deionization, J. Mater. Chem., 2012, vol. 22, p. 21819.

  419. Wen, X., Zhang, D., Shi, L., Yan, T., Wang, H., and Zhang, H., Three-dimensional hierarchical porous carbon with a bimodal pore arrangement for capacitive deionization, J. Mater. Chem., 2012, vol. 22, p. 23835.

  420. Volfkovich, Yu. M., Bograchev, D.A., Mikhalin, A.A., Rychagov, A.Yu., Sosenkin, V.E., Milyutin, V.V., and Park, D., Electrodes Based on Carbon Nanomaterials: Structure, Properties and Application to Capacitive Deionization in Static Cells. Cahapter 9. Nano-Optics, Nanophotonics, Nanomaterials, and Their Applications, Eds, Olena Fesenko and Leonid Fesenko, Springer publ., 2018. p. 127.

  421. Volfkovich, Yu.M., Capacitive deionization of water (review). In book: Membrane and Sorption Materials and Technologies: Present and Future, Yu.S. Dzyazko, Y.V. Plisko, M.O. Chabam (Eds). 2018. p. 79.

  422. Zornitta, R.L., García-Mateos, F.J., Lado, J.J., Rodríguez-Mirasol, J., Cordero, T., Hammer, P., and Ruotolo, L.A.M., Study of sugar cane bagasse fly ash as electrode material for capacitive deionization, J. Analyt. and Appl. Pyrolysis, 2016, vol. 120, p. 389.

  423. Zornitta, R.L., García-Mateos, F.J., Lado, J.J., Rodríguez-Mirasol, J., Cordero, T., Hammer, P., and Ruotolo, L.A.M., High-performance activated carbon from polyaniline for capacitive deionization, Carbon, 2017, vol. 123, p. 318.

  424. Lu, G., Wang, G., Wang, P.-H., Yang, Z., Yana, Ni W., Zhang, L., and Yan, W.M., Enhanced capacitive deionization performance with carbon electrodes prepared with a modified evaporation casting method, Desalination, 2016, vol. 386, p. 32.

  425. Ahn, H.J., Lee, J.-H., Jeong, Y., Lee, J.-H., Chi, C.-S., and Oh, H.-J., Nanostructured carbon cloth electrode for desalination from aqueous solutions, Mater. Sci. and Engineering A, 2007, vol. 449, p. 841.

Дополнительные материалы отсутствуют.