Электрохимия, 2023, T. 59, № 7, стр. 378-390

Электрокристаллизация металлов в каналах пористых пленок анодного оксида алюминия: реальная структура темплата и количественная модель электроосаждения

А. А. Ноян ab*, И. В. Колесник bc, А. П. Леонтьев b, К. С. Напольский bc**

a Московский физико-технический институт
Долгопрудный, Россия

b Московский государственный университет им. М.В. Ломоносова, Химический факультет
Москва, Россия

c Московский государственный университет им. М.В. Ломоносова, Факультет наук о материалах
Москва, Россия

* E-mail: alekseynoyan@gmail.com
** E-mail: kirill@inorg.chem.msu.ru

Поступила в редакцию 09.08.2022
После доработки 28.11.2022
Принята к публикации 05.12.2022

Аннотация

Предложена методика аналитического описания транзиентов тока при темплатном электроосаждении металла в пористые пленки анодного оксида алюминия (АОА). Проведено темплатное электроосаждение меди и золота. На примере электроосаждения меди показано, что экспериментальные данные количественно согласуются с расчетными значениями тока без использования подгоночных параметров. Измерены характеристики структуры пленок АОА, включая конусность пор и количество тупиковых каналов, исследовано влияние этих особенностей на процесс темплатного электроосаждения.

Ключевые слова: темплатное электроосаждение, анодный оксид алюминия, электроосаждение металла, нанонити, моделирование

Список литературы

  1. Stepniowski, W.J. and Salerno, M., Fabrication of nanowires and nanotubes by anodic alumina template-assisted electrodeposition, Book chapter in Manufacturing Nanostructures, One Central Press, 2014, p. 321.

  2. Sulka, G.D., Highly Ordered Anodic Porous Alumina Formation by Self-Organized Anodizing, in: Nanostructured Materials in Electrochemistry, Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2008, p. 1. https://doi.org/10.1002/9783527621507.ch1

  3. Napolskii, K.S., Eliseev, A.A., Yesin, N.V., Lukashin, A.V., Tretyakov, Y.D., Grigorieva, N.A., Grigoriev, S.V., and Eckerlebe, H., Ordered arrays of Ni magnetic nanowires: Synthesis and investigation, Physica E., 2007, vol. 37, nos. 1–2, p. 178. https://doi.org/10.1016/j.physe.2006.08.018

  4. Lee, J.S., Gu, G.H., Kim, H., Jeong, K.S., Bae, J., and Suh, J.S., Growth of carbon nanotubes on anodic aluminum oxide templates: fabrication of a tube-in-tube and linearly joined tube, Chem. Mater., 2001, vol. 13, no. 7, p. 2387. https://doi.org/10.1021/cm0014076

  5. Liu, L., Yoo, S.H., Lee, S.A., and Park, S., Wet-Chemical Synthesis of Palladium Nanosprings, Nano Lett., 2011, vol. 11, no. 9, p. 3979. https://doi.org/10.1021/nl202332x

  6. Feng, H., Elam, J.W., Libera, J.A., Pellin, M.J., and Stair, P.C., Oxidative dehydrogenation of cyclohexane over alumina-supported vanadium oxide nanoliths, J. Catal., 2010, vol. 269, no. 2, p. 421. https://doi.org/10.1016/j.jcat.2009.11.026

  7. Li, S.J., Li, J., Wang, K., Wang, C., Xu, J.J., Chen, H.Y., Xia, X.H., and Huo, Q., A nanochannel array-based electrochemical device for quantitative label-free DNA analysis, ACS Nano, 2010, vol. 4, no. 11, p. 6417. https://doi.org/10.1021/nn101050r

  8. Xu, C.L., Li, H., Zhao, G.Y., and Li, H.L., Electrodeposition and magnetic properties of Ni nanowire arrays on anodic aluminum oxide/Ti/Si substrate, Appl. Surf. Sci., 2006, vol. 253, no. 3, p. 1399. https://doi.org/10.1016/j.apsusc.2006.02.056

  9. Davydov, D.N., Sattari, P.A., AlMawlawi, D., Osika, A., Haslett, T.L., and Moskovits, M., Field emitters based on porous aluminum oxide templates, J. Appl. Phys., 1999, vol. 86, p. 3983. https://doi.org/10.1063/1.371317

  10. Колмычек, И.А., Малышева, И.В, Новикова, В.Б., Майдыковский, А.И., Леонтьев, А.П., Напольский, К.С., Мурзина, Т.В. Оптические свойства гиперболических метаматериалов (миниобзор). ЖЭТФ. 2021. № 11–12. С. 727. https://doi.org/10.31857/S1234567821230026

  11. Kolmychek, I.A., Malysheva, I.V., Novikov, V.B., Leontiev, A.P., Napolskii, K.S., and Murzina, T.V., Phase-matched optical second harmonic generation in a hyperbolic metamaterial based on silver nanorods, Phys. Rev. B, 2020, vol. 102, no. 24. https://doi.org/10.1103/PhysRevB.102.241405

  12. Valizadeh, S., George, J.M., Leisnera, P., and Hultman, L., Electrochemical deposition of Co nanowire arrays; quantitative consideration of concentration profiles, Electrochim. Acta, 2001, vol. 47, no.6, p. 865. https://doi.org/10.1016/S0013-4686(01)00797-6

  13. Ghahremaninezhad, A. and Dolati, A., Diffusion-Controlled Growth Model for Electrodeposited Cobalt Nanowires in Highly Ordered Aluminum Oxide Membrane, ECS Transactions, 2010, vol. 28, no. 17, p. 13. https://doi.org/10.1149/1.3503348

  14. Blanco, S., Vargas, R., Mostany, J., Borrás, C., and Scharifker, B.R., Modeling the Growth of Nanowire Arrays in Porous Membrane Templates, J. Electrochem. Soc., 2014, vol. 161, no. 8, E3341. https://doi.org/10.1149/2.039408jes

  15. Fang, A. and Haataja, M., Modeling and Analysis of Electrodeposition in Porous Templates, J. Electrochem. Soc., 2017, vol. 164, no. 13, D875. https://doi.org/10.1149/2.1331713jes

  16. Chen, L., Zhang, H.W., Liang, L.Y., Liu, Z., Qi, Y., Lu, P., Chen, J., and Chen, L.Q., Modulation of dendritic patterns during electrodeposition: A nonlinear phase-field model, J. Power Sources, 2015, vol. 300, p. 376. https://doi.org/10.1016/j.jpowsour.2015.09.055

  17. Bograchev, D.A., Volgin, V.M., and Davydov, A.D., Simple model of mass transfer in template synthesis of metal ordered nanowire arrays, Electrochim. Acta, 2013, vol. 96, p. 1. https://doi.org/10.1016/j.electacta.2013.02.079

  18. Bograchev, D.A., Volgin, V.M., and Davydov, A.D., Simulation of inhomogeneous pores filling in template electrodeposition of ordered metal nanowire arrays, Electrochim. Acta, 2013, vol. 112, p. 279. https://doi.org/10.1016/j.electacta.2013.08.171

  19. Bograchev, D.A., Volgin, V.M., and Davydov, A.D., Modeling of metal electrodeposition in the pores of anodic aluminum oxide, Russ. J. Electrochem., 2015, vol. 51, p. 799. https://doi.org/10.1134/S1023193515090049

  20. Bograchev, D.A., Volgin, V.M., and Davydov, A.D., Mass transfer during metal electrodeposition into the pores of anodic aluminum oxide from a binary electrolyte under the potentiostatic and galvanostatic conditions, Electrochim. Acta, 2016, vol. 207, p. 247. https://doi.org/10.1016/j.electacta.2016.04.119

  21. Левич, В.Г. Физико-химическая гидродинамика. М.: Физматгиз, 1959.

  22. Shin, S., Al-Housseiny, T.T., Kim, B.S., Cho, H.H., and Stone, H.A., The Race of Nanowires: Morphological Instabilities and a Control Strategy, Nano Lett., 2014, vol. 14, no. 8, p. 4395. https://doi.org/10.1021/nl501324t

  23. Li, F., Zhang, L., and Metzger, R.M., On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide, Chem. Mater., 1998, vol. 10, no. 9, p. 2470. https://doi.org/10.1021/cm980163a

  24. Lee, W., Ji, R., Gösele, U., and Nielsch, K., Fast fabrication of long-range ordered porous alumina membranes by hard anodization, Nature Mater., 2006, vol. 5, p. 741. https://doi.org/10.1038/nmat1717

  25. Napolskii, K.S., Roslyakov, I.V., Eliseev, A.A., Byelov, D.V., Petukhov, A.V., Grigoryeva, N.A., Bouwman, W.G., Lukashin, A.V., Chumakov, A.P., and Grigoriev, S.V., The Kinetics and Mechanism of Long-Range Pore Ordering in Anodic Films on Aluminum, J. Phys. Chem. C, 2011, vol. 115, no. 48, p. 23726. https://doi.org/10.1021/jp207753v

  26. Napolskii, K.S., Roslyakov, I.V., Romanchuk, A.Y., Kapitanova, O.O., Mankevich, A.S., Lebedev, V.A., and Eliseev, A.A., Origin of long-range orientational pore ordering in anodic films on aluminium, J. Mater. Chem., 2012, vol. 22, no. 24, p. 11922. https://doi.org/10.1039/C2JM31710A

  27. Roslyakov, I.V., Eliseev, A.A., Yakovenko, E.V., Zabelin, A.V., and Napolskii, K.S., Longitudinal pore alignment in anodic alumina films grown on polycrystalline metal substrates, J. Appl. Cryst., 2013, vol. 46, p. 1705. https://doi.org/10.1107/S002188981302579X

  28. Petukhov, D.I., Napolskii, K.S., and Eliseev, A.A., Permeability of anodic alumina membranes with branched channels, Nanotechnology, 2012, vol. 23, p. 335601. https://doi.org/10.1088/0957-4484/23/33/335601

  29. Lim, J.H. and Wiley, J.B., Controlling Pore Geometries and Interpore Distances of Anodic Aluminum Oxide Templates via Three-Step Anodization, J. Nanosci. Nanotechnol., 2015, vol. 15, no. 1, p. 633. https://doi.org/10.1166/jnn.2015.9245

  30. Kasi, A.K. and Kasi, J.K., Bending and branching of anodic aluminum oxide nanochannels and their applications, J. Vac. Sci. Technol. B, 2012, vol. 30, no. 3, p. 2166. https://doi.org/10.1116/1.4711246

  31. Petukhov, D.I., Napolskii, K.S., Berekchiyan, M.V., Lebedev, A.G., and Eliseev, A.A., Comparative Study of Structure and Permeability of Porous Oxide Films on Aluminum Obtained by Single- and Two-Step Anodization, Appl. Mater. Interfaces, 2013, vol. 5, no. 16, p. 7819. https://doi.org/10.1021/am401585q

  32. Choi, Y.C. and Bu, S.D., Nanopore Domain Growth Behavior by Nanopore Changes Near Domain Boundaries in Porous Anodic Alumina, J. Nanosci. Nanotechnol., 2011, vol. 11, no. 2, p. 1346. https://doi.org/10.1166/jnn.2011.3393

  33. Shim, S.J., Jo, K.G., and Kim, Y.Y., Fabrication and Growth of Ni Nanowires by using Anodic Aluminum Oxide (AAO) Template via Electrochemical Deposition, J. Korean Powder Metallurgy Institute, 2011, vol. 18, no. 1, p. 49. https://doi.org/10.4150/KPMI.2011.18.1.049

  34. Liu, Y., Chang, Y., Ling, Z., Hu, X., and Li, Y., Structural coloring of aluminum, Electrochem. Comm., 2011, vol. 13, no. 12, p. 1336. https://doi.org/10.1016/j.elecom.2011.08.008

  35. Kushnir, S.E. and Napolskii, K.S., Thickness-dependent iridescence of one-dimensional photonic crystals based on anodic alumina, Materials & Design, 2018, vol. 144, p. 140. https://doi.org/10.1016/j.matdes.2018.02.012

  36. Noyan, A.A., Leontiev, A.P., Yakovlev, M.V., Roslyakov, I.V., Tsirlina, G.A., and Napolskii, K.S., Electrochemical growth of nanowires in anodic alumina templates: the role of pore branching, Electrochim. Acta, 2017, vol. 226, p. 60. https://doi.org/10.1016/j.electacta.2016.12.142

  37. Liu, P., Singh, V.P., and Rajaputra, S., Barrier layer non-uniformity effects in anodized aluminum oxide nanopores on ITO substrates, J. Membrane Sci., 2009, vol. 21, no. 11, p. 115303. https://doi.org/10.1088/0957-4484/21/11/115303

  38. Noyan, A.A. and Napolskii, K.S., Birefringence in anodic aluminum oxide: an optical method for measuring porosity, Materials Advances, 2022, vol. 3, p. 3642. https://doi.org/10.1039/D2MA00111J

  39. Lide, R.L., CRC Handbook of Chemistry and Physics, CRC Press, 2004.

Дополнительные материалы

скачать ESM.zip
Приложение 1.
 
Приложение 2.
 
Приложение 3.