Журнал эволюционной биохимии и физиологии, 2023, T. 59, № 5, стр. 345-360

Роль цАМФ в топографической организации обонятельной системы

Е. В. Бигдай 1, А. А. Разинова 1*

1 Санкт-Петербургский государственный педиатрический медицинский университет Министерства здравоохранения Российской Федерации
Санкт-Петербург, Россия

* E-mail: annichok@mail.ru

Поступила в редакцию 25.04.2023
После доработки 05.07.2023
Принята к публикации 21.07.2023

Аннотация

В статье анализируются данные литературы, посвященные роли молекулярных обонятельных рецепторов и цАМФ в формировании топографической организации обонятельной сенсорной системы. Сенсорная информация до передачи ее в мозг организована уже в периферическом отделе по принципу “один нейрон–один рецептор”, распространяющийся и на гломерулы в обонятельной луковице (ОЛ), которые подчиняются закону “одна гломерула–один рецептор”. В настоящее время важную роль в формировании сенсорной карты стали приписывать обонятельным рецепторам, играющим двойную роль в организации обонятельной системы, поскольку локализуются как в обонятельных жгутиках, так и в мембране конуса роста аксона одного и того же обонятельного сенсорного нейрона (ОСН), и определяют мишени для аксонов ОСН в ОЛ. Вместе с тем существуют убедительные доказательства центральной роли внутриклеточной сигнальной системы цАМФ в развитии сенсорной карты. Методом генетической мутации с отменой синтеза цАМФ выявили, что аксоны, несущие эту мутацию, никогда не проникают в гломерулярный слой, а остаются в слое обонятельного нерва. При этом аксоны ОСН нацеливаются на ОЛ, но не могут сформировать отчетливые и четко определенные гломерулы, многие из которых становятся гетерогенными, поскольку содержат волокна, принадлежащие ОСН, экспрессирующим обонятельные рецепторы к разным одорантам. Таким образом, цАМФ, синтезируемый в кончике аксона ОСН, под действием сигналов из ОЛ регулирует экспрессию молекул его навигации к своей мишени в ОЛ, а также образует интрабульбарные химические и электрические синапсы, формируя нейронные цепи. Многочисленные клинические и экспериментальные данные позволили заключить, что патогенетические механизмы развития некоторых психических заболеваний связаны с нарушением регуляции цАМФ.

Ключевые слова: обонятельные рецепторы, обонятельные сенсорные нейроны, обонятельная луковица, ринотопическая карта, циклонуклеотид-зависимые каналы, цАМФ

Список литературы

  1. Murthy, Venkatesh N (2011) Olfactory maps in the brain. Annu Rev Neurosci 34: 233–258. https://doi.org/10.1146/annurev-neuro-061010-113738

  2. Francia S, Lodovichi C (2021) The role of the odorant receptors in the formation of the sensory map. BMC Biol 19 (1): 174. https://doi.org/10.1186/s12915-021-01116-y

  3. Carr WES (1988) The Molecular Nature of Chemical Stimuli in the Aquatic Environment. In: Atema, J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. Springer. New York. https://doi.org/10.1007/978-1-4612-3714-3_1

  4. Бронштейн АА (1977) Обонятельные рецепторы позвоночных. Л. Наука. [Bronshtein AA (1977) Olfactory receptors in vertebrates. L. Nauka. (In Russ)].

  5. Cunningham AM, Manis PB, Reed RR, Ronnet GV (1999) Olfactory receptor neurons exist as distinct subclasses of immature and mature cells in primary culture. Neurosci 93: 1301–1312.

  6. Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65: 175–187.

  7. Zhang R, Wang P, Yu S, Hansbro P, Wang H (2020) Computerized screening of G-protein coupled receptors to identify and characterize olfactory receptors. J Toxicol Environment Health Part A 83: 1–11. https://doi.org/10.1080/15287394.2019.1709305

  8. Yu Y, Ma Z, PJ, Xu L, Li W, Belloir C, Topin J, Briand L, Golebiowski J, Cong X (2022) Extracellular loop 2 of G protein–coupled olfactory receptors is critical for odorant recognition. J Biol Chem 298: 1–10. https://doi.org/10.1016/j.jbc.2022.102331

  9. Kurian SM, Naressi RG, Manoel D, Barwich AS, Malnic B, Saraiva LR (2021) Odor coding in the mammalian olfactory epithelium. Cell Tissue Res 383 (1): 445–456. https://doi.org/10.1007/s00441-020-03327-1

  10. Ikegami K, de March CA, Nagai MH, Ghosh S, Do M, Sharm R, Bruguera ES, Lu YE, Fukutania Y, Vaidehid N, Yohd M, Matsunami H (2020) Structural instability and divergence from conserved residues underlie intracellular retention of mammalian odorant receptors. PNAS 117: 2957–2967. https://doi.org/10.1073/pnas.1915520117

  11. Lodovichi C, Belluscio L (2012) Odorant Receptors in the Formation of the Olfactory Bulb Circuitry. Physiology 27: 200–212. https://doi.org/10.1152/physiol.00015.2012

  12. Omura M, Takabatake Y, Lempert E, Benjamin-Hong S, D`Hulst C, Feinstein P (2022) A genetic platform for functionally profiling odorant receptors in olfactory cilia ex vivo. Science Signal 15: eabm6112. https://doi.org/10.1126/scisignal.abm6112

  13. Hayden S, Teeling EC (2014) The Molecular Biology of Vertebrate Olfaction. Anat Record 297: 2216–2226. https://doi.org/10.1002/ar.23031

  14. Kim B-R, Rha M-S, Cho H-J, Yoon J-H, Kim C-H (2023) Spatiotemporal dynamics of the development of mouse olfactory system from prenatal to postnatal period. Front Neuroanat 17: 1157224. https://doi.org/10.3389/fnana.2023.1157224

  15. Barry WA, Janet M (2005) Young Olfaction: Diverse Species, Conserved Principles Review. Neuron 48: 417–430. https://doi.org/10.1016/j.neuron.2005.10.022

  16. Connelly T, Yua Y, Grosmaitre X, Wang J, Santarelli LC, Savigner A, Qiao X, Wang Z, Storm DR, Ma M (2017) G protein-coupled odorant receptors underlie mechanosensitivity in mammalian olfactory sensory neurons. Proc Natl Acad Sci U S A 112: 590–595. https://doi.org/10.1073/pnas.1418515112

  17. Bigdaj EV, Fufachev DK, Petrov PR, Samojlov VO (2017) Mechanisms of Electromechanical and Electrochemical Coupling in Olfactory Cilia of the Frog (Rana temporaria). Biophysics 62: 240–246. https://doi.org/10.1134/S0006350917020051

  18. Liu Q, Li S, Lu C, Yu CR, Huang L (2018) G protein γ subunit Gγ13 is essential for olfactory function and aggressive behavior in mice. Neuroreport 29: 1333–1339. https://doi.org/10.1097/WNR.0000000000001122

  19. Li R-C, Molday LL, Lin C-C, Yau K-W (2022) Low signaling efficiency from receptor to effector in olfactory transduction: A quantified ligand-triggered GPCR pathway. Proc Natl Acad Sci U S A 119: e2121225119. https://doi.org/10.1073/pnas.2121225119

  20. Genovese F, Reisert J, Kefalov VJ (2021) Sensory Transduction in Photoreceptors and Olfactory Sensory Neurons: Common Features and Distinct Characteristics. Front Cell Neurosci 15: 761416. https://doi.org/10.3389/fncel.2021.761416

  21. Cong X, Ren W, Pacalon J, Xu R, Xu L, Li X, de March CA, Matsunami H, Yu H, Yu Y, Golebiowsk J (2022) Large-Scale G Protein-Coupled Olfactory Receptor–Ligand Pairing. ACS Cent Sci 8: 379–387. https://doi.org/10.1021/acscentsci.1c01495

  22. Jimenez RC, Casajuana-Martin N, García-Recio A, Alcántara L, Pardo L, Campillo M, Gonzalez A (2021) The mutational landscape of human olfactory G protein-coupled receptors. BMC Biology 19: 21. https://doi.org/10.1186/s12915-021-00962-0

  23. Li F, Ponissery-Saidu S, Yee KK, Wang H, Chen M-L, Iguchi N, Zhang G, Jiang P, Reisert J, Huang L (2013) Heterotrimeric G Protein Subunit G 13 Is Critical to Olfaction. J Neurosci 33: 7975–7984. https://doi.org/10.1523/JNEUROSCI.5563-12.2013

  24. Wong ST, Trinh K, Hacker B, Chan GCK, Lowe G, Gaggar A, Xia Z, Gold GH, Storm DR (2000) Disruption of the Type III Adenylyl Cyclase Gene Leads to Peripheral and Behavioral Anosmia in Transgenic Mice. Neuron 27: 487–497. https://doi.org/10.1016/s0896-6273(00)00060-x

  25. Ostrom KF, LaVigne JE, Brust TF, Seifert R, Dessauer CW, Watts VJ, Ostrom RS (2022) Physiological roles of mammalian transmembrane adenylyl cyclase isoforms. Physiol Rev 102 (2): 815–857. https://doi.org/10.1152/physrev.00013.2021

  26. Hanoune J, Defer N (2001) Regulation and role of adenylyl cyclase isoforms. Annu Rev Pharmacol Toxicol 41: 145–174. https://doi.org/10.1146/annurev.pharmtox.41.1.145

  27. Bakalyar HA, Reed RR (1990) Identification of a specialized adenylyl cyclase that may mediate odorant detection. Science 250: 1403–1406. https://doi.org/10.1126/science.2255909

  28. Devasani K, Yao Y (2022) Expression and functions of adenylyl cyclases in the CNS. Fluids Barriers CNS 19: 23. https://doi.org/10.1186/s12987-022-00322-2

  29. Liu X, Zhou Y, Li S, Yang D, Jiao M, Liu X, Wang Z (2020) Type 3 adenylyl cyclase in the main olfactory epithelium participates in depression-like and anxiety-like behaviours. J Affect Disord 268: 28–38. https://doi.org/10.1016/j.jad.2020.02.041

  30. Qiu L, LeBel RP, Storm DR, Chen X (2016) Type 3 adenylyl cyclase: a key enzyme mediating the cAMP signaling in neuronal cilia. Int J Physiol Pathophysiol Pharmacol 8: 95–108.

  31. Challis RC, Tian H, Yin W, Ma M (2016) Genetic Ablation of Type III Adenylyl Cyclase Exerts Region-Specific Effects on Cilia Architecture in the Mouse Nose. PLoS One 11: e0150638. https://doi.org/10.1371/journal.pone.0150638

  32. Ou Y, Ruan Y, Cheng M, Moser JJ, Rattner JB, van der Hoorn FA (2009) Adenylate cyclase regulates elongation of mammalian primary cilia. Exp Cell Res 315: 2802–2817. https://doi.org/10.1016/j.yexcr.2009.06.028

  33. Chesler AT, Zou D-J, Le Pichon CE, Peterlin ZA, Matthews GA, Pei X, Miller MC, Firestein S (2007) A G protein/cAMP signal cascade is required for axonal convergence into olfactory glomeruli. Proc Natl Acad Sci U S A 104: 1039–1044. https://doi.org/10.1073/pnas.0609215104

  34. Kulaga HM, Leitch CC, Eichers ER, Badano JL, Lesemann A, Hoskins BE, Lupski JR, Beales PL, Reed RR, Katsanis N (2004) Loss of BBS proteins causes anosmia in humans and defects in olfactory cilia structure and function in the mouse. Nat Genet 36: 994–998. https://doi.org/10.1038/ng1418

  35. Mair RG, Gestel RC, Blank DL (1982) Changes in morphology and physiology of olfactory receptor cilia during development. Neuroscience 7: 3091–3103. https://doi.org/10.1016/0306-4522(82)90232-9

  36. Cao G, Lam H, Jude JA, Karmacharya N, Kan M, Jester W, Koziol-White C, Himes BE, Chupp GL, An SS, Panettieri RA Jr (2022) Inhibition of ABCC1 Decreases cAMP Egress and Promotes Human Airway Smooth Muscle Cell Relaxation. Am J Respir Cell Mol Biol 66(1): 96–106. https://doi.org/10.1165/rcmb.2021-0345OC

  37. Erofeeva N, Meshalkina D, Firsov M (2023) Multiple Roles of cAMP in Vertebrate Retina. Cells 12 (8): 1157. https://doi.org/10.3390/cells12081157

  38. Patra, C, Foster K, Corley JE, Dimri M, Brady MF (2022) Biochemistry, cAMP. In: StatPearls. StatPearls Publ.

  39. Slika H, Mansour H, Nasser SA, Shaito A, Kobeissy F, Orekhov AN, Pintus G, Eid AH (2023). Epac as a tractable therapeutic target. Eur J Pharmacol 945: 175645. https://doi.org/10.1016/j.ejphar.2023.175645

  40. Boczek, T, Cameron EG, Yu W, Xia X, Shah SH, Castillo Chabeco B, Galvao J, Nahmou M, Li J, Thakur H, Goldberg JL, Kapiloff MS (2019) Regulation of Neuronal Survival and Axon Growth by a Perinuclear cAMP Compartment. J Neurosci 39 (28): 5466–5480. https://doi.org/10.1523/JNEUROSCI.2752-18.2019

  41. Pun RYK, Kleene SJ (2003) Contribution of Cyclic-Nucleotide-Gated Channels to the Resting Conductance of Olfactory Receptor Neurons. Biophys J 84: 3425–3435. https://doi.org/10.1016/S0006-3495(03)70064-2

  42. Zaccolo M, Di Benedetto G, Lissandron V, Mancuso L, Terrin A, Zamparo I (2006) Restricted diffusion of a freely diffusible second messenger: mechanisms underlying compartmentalized cAMP signaling. Biochem Soc Trans 34: 495–497. https://doi.org/10.1042/BST0340495

  43. Di Benedetto G, Iannucci LF, Surdo NC, Zanin S, Conca F, Grisan F, Gerbino A, Lefkimmiatis K (2021) Compartmentalized Signaling in Aging and Neurodegeneration. Cells 10 (2): 464. https://doi.org/10.3390/cells10020464

  44. Turetsky BI, Moberg PJ (2009) An odor-specific threshold deficit implicates abnormal intracellular cyclic AMP signaling in schizophrenia. Am J Psychiatry 166: 226–233. https://doi.org/10.1176/appi.ajp.2008.07071210

  45. Ronnett GV, Moon C (2002) G proteins and olfactory signal transduction. Annu Rev Physiol 64: 189–222. https://doi.org/10.1146/annurev.physiol.64.082701.102219

  46. Murphy GJ, Isaacson JS (2003) Presynaptic Cyclic Nucleotide-Gated Ion Channels Modulate Neurotransmission in the Mammalian Olfactory Bulb. Neuron 37: 639–647. https://doi.org/10.1016/s0896-6273(03)00057-6

  47. Takeuchi H, Kurahashi T (2005) Mechanism of Signal Amplification in the Olfactory Sensory Cilia. J Neurosci 25: 11084–11091. https://doi.org/10.1523/JNEUROSCI.1931-05.2005

  48. Ressler KJ, Sullivan SL, Buck LB (1994) A molecular dissection of spatial patterning in the olfactory system. Curr Opin Neurobiol 4: 588–596. https://doi.org/10.1016/0959-4388(94)90061-2

  49. Takeuchi H, Kurahashi T (2003) Identification of second messenger mediating signal transduction in the olfactory receptor cells. J Gen Physiol 122: 557–567. https://doi.org/10.1085/jgp.200308911

  50. Breer H (1993) Olfactory receptor cells: recognition and transduction of chemical signals. Cytotechnology 11: 13–16. https://doi.org/10.1007/BF00749052

  51. Serizawa S, Miyamichi K, Nakatani H, Suzuki M, Saito M, Yoshihara Y, Sakano H (2003) Negative feedback regulation ensures the one receptor-one olfactory neuron rule in mouse. Science 302: 2088–2094. https://doi.org/10.1126/science.1089122

  52. Serizawa S, Miyamichi K, Takeuchi H, Yamagishi Y, Suzuki M, Sakano H (2006) A Neuronal Identity Code for the Odorant Receptor-Specific and Activity-Dependent Axon Sorting. Cell 127: 1057–1069. https://doi.org/10.1016/j.cell.2006.10.031

  53. Mombaerts P (1996) Targeting olfaction. Curr Opin Neurobiol 6: 481–486. https://doi.org/10.1016/s0959-4388(96)80053-5

  54. Munger SD, Leinders-Zufall T, Zufal F (2009) Subsystem Organization of the Mammalian Sense of Smell. Annu Rev Physiol 71: 115–140. https://doi.org/10.1146/annurev.physiol.70.113006.100608

  55. Rodriguez-Gil DJ, Bartel DL, Jaspers AW, Mobley AS, Imamura F, Greer CA (2015) Odorant receptors regulate the final glomerular coalescence of olfactory sensory neuron axons. Proc Natl Acad Sci U S A 112: 5821–5826. https://doi.org/10.1073/pnas.1417955112

  56. Mori K, Sakano H (2011) How Is the Olfactory Map Formed and Interpreted in the Mammalian Brain? Annu Rev Neurosci 34: 467–499. https://doi.org/10.1146/annurev-neuro-112210-112917

  57. Firestein S (2001) How the olfactory system makes sense of scents. Nature 413: 211–218. https://doi.org/10.1038/35093026

  58. Belluscio L, Lodovichi C, Feinstein P, Mombaerts P, Katz LC (2002) Odorant receptors instruct functional circuitry in the mouse olfactory bulb. Nature 419: 296–300. https:// doi.org/https://doi.org/10.1038/nature01001

  59. Wachowiak M, Cohen LB (2001) Representation of Odorants by Receptor Neuron Input to the Mouse Olfactory Bulb. Neuron 32: 723–735. https://doi.org/10.1002/1096-9861(20001009)426:1<68::aid-cne5>3.0.co;2-z10.1002/1096-9861(20001009)426:1<68::aid-cne5>3.0.co;2-zhttps://doi.org/10.1016/s0896-6273(01)00506-2

  60. Treloar HB, Feinstein P, Mombaerts P, Greer CA (2002) Specificity of glomerular targeting by olfactory sensory axons. J Neurosci 22: 2469–2477. https://doi.org/10.1523/JNEUROSCI.22-07-02469.2002

  61. Wang F, Nemes A, Mendelsohn M, Axel R (1998) Odorant receptors govern the formation of a precise topographic map. Cell 93: 47–60. https://doi.org/10.1016/s0092-8674(00)81145-9

  62. Strotmann J, Levai O, Fleischer J, Schwarzenbacher K, Breer H (2004) Olfactory Receptor Proteins in Axonal Processes of Chemosensory Neurons. J Neurosci 24: 7754–7761. https://doi.org/10.1523/JNEUROSCI.2588-04.2004

  63. Lodovichi C (2020) Role of Axonal Odorant Receptors in Olfactory Topography. Neurosci Insights 15: 2633105520923411. https://doi.org/10.1177/2633105520923411

  64. Maritan M, Monaco G, Zamparo I, Zaccolo M, Pozzan T, Lodovichi C (2009) Odorant receptors at the growth cone are coupled to localized cAMP and Ca2+ increases. Proc Natl Acad Sci U S A 106: 3537–3542. https://doi.org/10.1073/pnas.0813224106

  65. Greer PL, Greenberg ME (2008) From synapse to nucleus: calcium-dependent gene transcription in the control of synapse development and function. Neuron 59: 846–860. https://doi.org/10.1016/j.neuron.2008.09.002

  66. Imai T, Suzuki M, Sakano H (2006) Odorant receptor-derived cAMP signals direct axonal targeting. Science 314: 657–661. https://doi.org/10.1126/science.1131794

  67. Dang P, Fisher SA, Stefanik DJ, Kim J, Raper JA (2018) Coordination of olfactory receptor choice with guidance receptor expression and function in olfactory sensory neurons. PLoS Genet 14: e1007164. https://doi.org/10.1371/journal.pgen.1007164

  68. Zamparo I, Francia S, Franchi SA, Redolfi N, Costanzi E, Kerstens A, Fukutani Y, Battistutta R, Polverino de Laureto P, Munck S, De Strooper B, Matsunami H, Lodovichi C (2019) Axonal odorant receptors mediate axon targeting. Cell Rep 29: 4334–4348. https://doi.org/10.1016/j.celrep.2019.11.099

  69. Takeuchi H, Sakano H (2014) Neural map formation in the mouse olfactory system. Cell Mol Life Sci 71: 3049–3057. https://doi.org/10.1007/s00018-014-1597-0

  70. Astic L, Saucier D (1986) Anatomical mapping of the neuroepithelial projection to the olfactory bulb in the rat. Brain Res Bull 16: 445–454. https://doi.org/10.1016/0361-9230(86)90172-3

  71. Tsuboi A, Miyazaki T, Imai T, Sakano H (2006) Olfactory sensory neurons expressing class I odorant receptors converge their axons on an antero-dorsal domain of the olfactory bulb in the mouse. Eur J Neurosci 23: 1436–1444. https://doi.org/10.1111/j.1460-9568.2006.04675.x

  72. Бигдай ЕВ, Самойлов ВО (2020) Обонятельная дисфункция как индикатор ранней стадии заболевания COVID-19. Интеграт физиол 1: 187–195. [Bigdai EV, Samoilov VO (2020) Olfactory dysfunction as an early indicator of COVID-19 disease. Integrat fiziol 1: 187–195. (In Russ)]. https://doi.org/10.33910/2687-1270-2020-1-3-187-195

  73. Kaupp UB, Alvarez L (2016) Sperm as microswimmers – navigation and sensing at the physical limit. Eur Phys J Spec Top 225: 2119–2139. https://doi.org/10.1140/epjst/e2016-60097-1

  74. Ali MA, Wang Y, Qin Z, Yuan X, Zhang Y, Zeng C (2021) Odorant and Taste Receptors in Sperm Chemotaxis and Cryopreservation: Roles and Implications in Sperm Capacitation, Motility and Fertility. Genes 12 (4): 488. https://doi.org/10.3390/genes12040488

  75. Oh SJ (2018) System-Wide Expression and Function of Olfactory Receptors in Mammals. Genomics Inform 16: 2–9. https://doi.org/10.5808/GI.2018.16.1.2

  76. Borgmann-Winter KE, Wang H-Y, Ray R, Willis BR, Moberg PJ, Rawson NE, Gur RE, Turetsky BI, Hahn C-G (2016) Altered G Protein Coupling in Olfactory Neuroepithelial Cells From Patients With Schizophrenia. Schizophr Bull 42: 377–385. https://doi.org/10.1093/schbul/sbv129

  77. Бигдай ЕВ, Самойлов ВО, Синегубов АА (2021) Комплексные нарушения обонятельной сенсорной системы при шизофрении. Успехи физиол наук 52: 93–104. [Bigdai EV, Samoilov VO, Sinegubov AA (2021) Complex disorders of the olfactory sensory system in schizophrenia. Uspekhi fiziol nauk 52: 93–104. (In Russ)]. https://doi.org/10.31857/S0301179821020028

  78. Zheng C, Feinstein P, Bozza T, Rodriguez I, Mombaerts P (2000) Peripheral olfactory projections are differentially affected in mice deficient in a cyclic nucleotide-gated channel subunit. Neuron 26: 81–91. https://doi.org/10.1016/S0896-6273(00)81140-X

  79. Sakano H (2020) Developmental regulation of olfactory circuit formation in mice. Dev Growth Differ 62: 199–213. https://doi.org/10.1111/dgd.12657

  80. Col JAD, Matsuo T, Storm DR, Rodriguez I (2007) Adenylyl cyclase-dependent axonal targeting in the olfactory system. Development 134: 2481–2489. https://doi.org/10.1242/dev.006346

  81. Zou D-J, Chesler AT, Le Pichon CE, Kuznetsov A, Pei X, Hwang EL, Firestein S (2007) Absence of adenylyl cyclase 3 perturbs peripheral olfactory projections in mice. J Neurosci 27: 6675–6683. https://doi.org/10.1523/JNEUROSCI.0699-07.2007

  82. Key B, ST John J (2002) Axon Navigation in the Mammalian Primary Olfactory Pathway: Where to Next. Chem Senses 27: 245–260. https://doi.org/10.1093/chemse/27.3.245

  83. Nakashima A, Ihara N, Shigeta M, Kiyonari H, Ikegaya Y, Takeuchi H (2019) Structured spike series specify gene expression patterns for olfactory circuit formation. Science 365: eaaw5030. https://doi.org/10.1126/science.aaw5030

  84. Cho JH, Prince JEA, Cloutier J-F (2009) Axon guidance events in the wiring of the mammalian olfactory system. Mol Neurobiol 39: 1–9. https://doi.org/10.1007/s12035-008-8047-7

  85. van der Linden CJ, Gupta P, Bhuiya AI, Riddick KR, Hossain K, Santoro SW (2020) Olfactory Stimulation Regulates the Birth of Neurons That Express Specific Odorant Receptors. Cell Rep 33: 1–26. https://doi.org/10.1016/j.celrep.2020.108210

  86. Durante MA, Kurtenbach S, Sargi ZB, Harbour JW, Choi R, Kurtenbach S, Goss GM, Matsunami H, Goldstein BJ (2020) Single-cell analysis of olfactory neurogenesis and differentiation in adult humans. Nature Neurosci 23 (3): 323–326. https://doi.org/10.1038/s41593-020-0587-9

  87. Dang, P, Fisher SA, Stefanik DJ, Kim J, Raper JA (2018) Coordination of olfactory receptor choice with guidance receptor expression and function in olfactory sensory neurons. PLoS Genetics 14 (1): e1007164. https://doi.org/10.1371/journal.pgen.1007164

  88. Feinstein P, Bozza T, Rodriguez I, Vassalli A, Mombaerts P (2004) Axon guidance of mouse olfactory sensory neurons by odorant receptors and the beta2-adrenergic receptor. Cell 117: 833–846. https://doi.org/10.1016/j.cell.2004.05.013

  89. Belluscio L, Gold GH, Nemes A, Axel R (1998) Mice deficient in G(olf) are anosmic. Neuron 20: 69–81. https://doi.org/10.1016/S0896-6273(00)80435-3

  90. Lorenzon P, Redolfi N, Podolsky MJ, Zamparo I, Franchi SA, Pietra G, Boccaccio A, Menin A, Murthy VN, Lodovichi C (2015) Circuit formation and function in the olfactory bulb of mice with reduced spontaneous afferent activity. J Neurosci 35: 146–160. https://doi.org/10.1523/JNEUROSCI.0613-14.2015

  91. Redolfi N, Lodovichi C (2021) Spontaneous afferent activity carves olfactory circuits. Front Cell Neurosci 15: 637536. https://doi.org/10.3389/fncel.2.021.637536

  92. Qiu Q, Wu Y, Ma L, Xu W, Hills M Jr, Ramalingam V, Yu CR (2021) Acquisition of innate odor preference depends on spontaneous and experiential activities during critical period. eLife 10: e60546. https://doi.org/10.7554/eLife.60546

  93. Kleene SJ (2008) The electrochemical basis of odor transduction in vertebrate olfactory cilia. Chem Senses 33: 839–859. https://doi.org/10.1093/chemse/bjn048

  94. Lindemann B (2001) Predicted profiles of ion concentrations in olfactory cilia in the steady state. Biophys J 80: 1712–1721. https://doi.org/10.1016/S0006-3495(01)76142-5

  95. Miyamoto T, Restrepo D, Teeter J (1992) Voltage-dependent and odorant-regulated currents in isolated olfactory receptor neurons of the channel catfish. J Gen Physiol 99: 505–529. https://doi.org/10.1085/jgp.99.4.505

  96. Nakashima A, Takeuchi H, Imai T, Saito H, Kiyonari H, Abe T, Chen M, Weinstein LS, Yu CR, Storm DR, Nishizumi H, Sakano H (2013) Agonist-independent GPCR activity regulates anterior-posterior targeting of olfactory sensory neurons. Cell 154: 1314–1325. https://doi.org/10.1016/j.cell.2013.08.033

  97. Song HJ, Ming GL, Poo MM (1997) cAMP-induced switching in turning direction of nerve growth cones. Nature 388: 275–279. https://doi.org/10.1038/40864

  98. Kosaka T, Kosaka K (2005) Intraglomerular dendritic link connected by gap junctions and chemical synapses in the mouse main olfactory bulb: Electron microscopic serial section analyses. Neuroscience 131: 611–625. https://doi.org/10.1016/j.neuroscience.2004

  99. Vaughn MJ, Haas JS (2022) On the Diverse Functions of Electrical Synapses. Front Cell Neurosci 16: 910015. https://doi.org/10.3389/fncel.2022.910015

  100. Schubert C, Schulz K, Träger S, Plath A-L, Omriouate A, Rosenkranz SC, Morellini F, Friese MA, Hirnet D (2022) Neuronal Adenosine A1 Receptor is Critical for Olfactory Function but Unable to Attenuate Olfactory Dysfunction in Neuroinflammation. Front Cell Neurosci 16: 912030. https://doi.org/10.3389/fncel.2022.912030

  101. Tavakoli A, Schmaltz A, Schwarz D, Margrie TW, Schaefer AT, Kollo M (2018) Quantitative Association of Anatomical and Functional Classes of Olfactory Bulb Neurons. J Neurosci 38(33): 7204–7220. https://doi.org/10.1523/JNEUROSCI.0303-18.2018

  102. Palumbos SD, Skelton R, McWhirter R, Mitchel A, Swann I, Von Stetin SHS, Miller DM (2021) cAMP controls a trafficking mechanism that maintains the neuron specificity and subcellular placement of electrical synapses. Development Cell 56: 3235–3249. https://doi.org/10.1016/j.devcel.2021.10.011

  103. West AE, Greenberg ME (2011) Neuronal activity-regulated gene transcription in synapse development and cognitive function. Cold Spring Harb Perspect Biol 3: a005744. https://doi.org/10.1101/cshperspect.a005744

  104. Chen X, Xu J, Li B, Guo W, Zhang J, Hu J (2018) Olfactory impairment in first-episode schizophrenia: a case-control study, and sex dimorphism in the relationship between olfactory impairment and psychotic symptoms. BMC Psychiatry 18 (1): 199. https://doi.org/10.1186/s12888-018-1786-8

  105. Dahmani L, Patel RM, Yang Y, Chakravarty MM, Fellows LK, Bohbot VD (2018) An intrinsic association between olfactory identification and spatial memory in humans. Nat Commun 9: 4162. https://doi.org/10.1038/s41467-018-06569-4

  106. Zald DH, Pardo JV (1997) Emotion, olfaction, and the human amygdala: amygdala activation during aversive olfactory stimulation. Proc Natl Acad Sci U S A 94: 4119–4124. https://doi.org/10.1073/pnas.94.8.4119

  107. Le Coz M, Lévêque L, Da Silva MP, Le Callet P (2022) From Olfaction to Emotions: An Interactive and Immersive Experience. In: ACM IMX Workshop EmotionIMX: Considering Emotions in Multimedia Experience – ACM Int Confer on Interact Media Exp: IMX. 127–133. https://doi.org/10.6084/m9.figshare.20069384.v1

  108. Zelano C, Sobel N (2005) Humans as an animal model review for systems-level organization of olfaction. Neuron 48: 431–454. https://doi.org/10.1016/j.neuron.2005.10.009

  109. Obi-Nagata K, Temma Y, Hayashi-Takagi A (2019) Synaptic functions and their disruption in schizophrenia: From clinical evidence to synaptic optogenetics in an animal model. Proc Jpn Acad Ser B Phys Biol Sci 95: 179–197. https://doi.org/10.2183/pjab.95.014

  110. Martin E, Lasseigne AM, Miller AC (2020) Understanding the Molecular and Cell Biological Mechanisms of Electrical Synapse Formation. Front Neuroanat 14: 12. https://doi.org/10.3389/fnana.2020.00012

  111. Tardito D, Tura GB, Bocchio L, Bignotti S, Pioli R, Racagni G, Perez J (2000) Abnormal levels of cAMP-dependent protein kinase regulatory subunits in platelets from schizophrenic patients. Neuropsychopharmacology 23: 216–219. https://doi.org/10.1016/S0893-133X(99)00161-X

Дополнительные материалы отсутствуют.