Известия РАН. Физика атмосферы и океана, 2023, T. 59, № 7, стр. 955-975

Российские исследования планетных атмосфер в 2019–2022 гг.

О. И. Кораблев *

Институт космических исследований РАН (ИКИ РАН)
117997 Москва, Профсоюзная 84/32, Россия

* E-mail: korab@cosmos.ru

Поступила в редакцию 31.08.2023
После доработки 08.11.2023
Принята к публикации 15.11.2023

Аннотация

Представлен обзор исследований атмосфер планет Солнечной системы, выполненных российскими учеными за 2019–2022 гг., подготовленный в Комиссии по атмосферам планет Национального геофизического комитета для Национального доклада по метеорологии и атмосферным наукам на 28-й Генеральной Ассамблее Международного союза геодезии и геофизики (IUGG-2023) в Берлине.

Ключевые слова: атмосфера, метеорология, планета, состав атмосферы, циркуляция атмосферы, суперротация, перенасыщение, атмосферные потери, метан, озон, малые составляющие атмосферы, пыль, облака, Венера, Марс, Сатурн, Титан, Плутон, спектроскопия

Список литературы

  1. Губенко В.Н., Кириллович И.А., Губенко Д.В., Андреев В.Е., Губенко Т.В. Активность мелкомасштабных внутренних волн в северной полярной атмосфере Венеры путем использования радиозатменных измерений интенсивности сигналов (Λ = 32 см) со спутников Венера-15 и -16 // Астр. Вестн. 2021. Т. 55. № 1. С. 3–12.

  2. Извекова Ю.Н., Попель С.И., Извеков О.Я. К вопросу о расчете параметров вихрей в приповерхностной атмосфере Mарса // Астр. Вестн. 2019. Т. 53. № 6. С. 415–422.https://doi.org/10.1134/S0038094619050058

  3. Кораблев О.И. Российские исследования планетных атмосфер в 2015–2018 гг. // Изв. РАН. Физика атмосферы и океана. 2020. Т. 56. № 2. С. 158–169. https://doi.org/10.1134/S0001433820020061

  4. Мингалев И.В., Родин А.В., Орлов К.Г. Численное моделирование общей циркуляции атмосферы Титана для условий равноденствия // Астр. Вестн. 2019. Т. 53. № 4. С. 291–308. https://doi.org/10.1134/S0038094619040051

  5. Национальный отчет России по метеорологии и атмосферным наукам в 2019–2022 гг.: XXXVIII Генеральная Ассамблея Международного союза геодезии и геофизики (Берлин, Германия, 11–20 июля 2023 г.) / Ред.: И.И. Мохов, А.А. Криволуцкий. Москва: МАКС Пресс, 2023. 440 с. https://doi.org/10.29003/m3460.978-5-317-07017-5

  6. Шапошников Д.С., Медведев А.С., Родин А.В. Моделирование фотодиссоциации водяного пара в сезон пылевых бурь на Марсе // Астр. Вестн. 2022. Т. 56. № 1.С. 27–35. https://doi.org/10.1134/S0038094622010051

  7. Шематович В.И. Атмосферные потери атомарного кислорода при протонных авроральных событиях на Марсе // Астр. Вестн. 2021. Т. 55. № 4. С. 322–333. https://doi.org/10.1134/S0038094621040079

  8. Шематович В.И., Бисикало Д.В., Жерар Ж.-К., Хубер Б. Кинетическая Монте-Карло модель высыпания протонов и атомов водорода с высокими энергиями в атмосферу Марса с учетом измеренного магнитного поля // Астр. Ж. 2019. Т. 96. № 10. С. 836–846. https://doi.org/10.1134/S1063772919100056

  9. Шематович В.И., Бисикало Д.В., Жилкин А.Г. Влияние вариаций протяженной водородной короны Марса на эффективность перезарядки с протонами солнечного ветра // Астр. Ж. 2021. Т. 98. № 3. С. 232–238. https://doi.org/10.1134/S1063772921030033

  10. Шематович В.И., Калиничева Е.С. Убегание атомов кислорода из атмосферы при протонных полярных сияниях на Марсе // Астр. Ж. 2020. Т. 97. № 7. С. 608–616. https://doi.org/10.1134/S1063772920080089

  11. Alday J., Trokhimovskiy A., Irwin P.G.J., et al. Isotopic fractionation of water and its photolytic products in the atmosphere of Mars // Nature Astron. 2021a.V. 5. P. 943–950. https://doi.org/10.1038/s41550-021-01389-x

  12. Alday J., Wilson C.F., Irwin P.G.J., et al. Isotopic Composition of CO2 in the Atmosphere of Mars: Fractionation by Diffusive Separation Observed by the ExoMars Trace Gas Orbiter // J. Geophys. Res. (Planets). 2021b. V. 126. id. e06992. https://doi.org/10.1029/2021JE006992

  13. Alday J., Wilson C.F., Irwin P.G.J., et al. Oxygen isotopic ratios in Martian water vapour observed by ACS MIR on board the ExoMars Trace Gas Orbiter // Astron. Astrophys. 2019. V. 630.id. A91. https://doi.org/10.1051/0004-6361/201936234

  14. Aoki S., Daerden F., Viscardy S., et al. Annual Appearance of Hydrogen Chloride on Mars and a Striking Similarity With the Water Vapor Vertical Distribution Observed by TGO/NOMAD // Geophys. Res. Lett. 2021. V. 48. id. e92506. https://doi.org/10.1029/2021GL092506

  15. Aoki S., Vandaele A.C., Daerden F., et al.Global Vertical Distribution of Water Vapor on Mars: Results From 3.5 Years of ExoMars-TGO/NOMAD Science Operations // J. Geophys. Res. (Planets). 2022. V. 127. id. e07231 https://doi.org/10.1029/2022JE007231

  16. Belyaev D.A., Fedorova A.A., Trokhimovskiy A., et al. Thermal Structure of the Middle and Upper Atmosphere of Mars From ACS/TGO CO2 Spectroscopy // J. Geophys. Res. (Planets). 2022. V.127. id. e2022JE007286. https://doi.org/10.1029/2022JE007286

  17. Belyaev D.A., Fedorova A.A., Trokhimovskiy A., et al.Revealing a High Water Abundance in the Upper Mesosphere of Mars With ACS Onboard TGO // Geophys. Res. Lett. 2021. V. 48. id. e93411. https://doi.org/10.1029/2021GL093411

  18. Bertaux J.-L., Khatuntsev I.V., Hauchecorne A., et al.Influence of Venus topography on the zonal wind and UV albedo at cloud top level: The role of stationary gravity waves // J. Geophys. Res. (Planets). 2016. V. 121. P. 1087–1101. https://doi.org/10.1002/2015JE004958

  19. Borkov Y.G., Solodov A.M., Solodov A.A., Perevalov V.I. Line intensities of the 01111-00001 magnetic dipole absorption band of 12C16O2: Laboratory measurements // J. Molec. Spectr. 2021. V. 376. id. 111418. https://doi.org/10.1016/j.jms.2021.111418

  20. Braude A.S., Montmessin F., Olsen K.S., et al. No detection of SO2, H2S, or OCS in the atmosphere of Mars from the first two Martian years of observations from TGO/ACS // Astron. Astrophys. 2022. V. 658. id. A86. https://doi.org/10.1051/0004-6361/202142390

  21. Brown Z.L., Medvedev A.S., Starichenko E.D., et al. Evidence for Gravity Waves in the Thermosphere of Saturn and Implications for Global Circulation // Geophys. Res. Lett. 2022. V. 49. id. e97219. https://doi.org/10.1029/2021GL097219

  22. Chaffin M.S., Chaufray J.-Y., Stewart I., et al.Unexpected variability of Martian hydrogen escape // Geophys. Res. Lett. 2014. V. 41. P. 314–320. https://doi.org/10.1002/2013GL058578

  23. Chaffin M.S., Kass D.M., Aoki S., et al. Martian water loss to space enhanced by regional dust storms // Nature Astron. 2021. V. 5. P. 1036–1042. https://doi.org/10.1038/s41550-021-01425-w

  24. Chistikov D.N. Magnetic dipole and quadrupole transitions in the ν2 + ν3 vibrational band of carbon dioxide // J. Chem. Phys. 2023. V. 158. id. 134307. https://doi.org/10.1063/5.0144201

  25. Daerden F., Neary L., Viscardy S., et al. Mars atmospheric chemistry simulations with the GEM-Mars general circulation model // Icarus. 2019. V. 326. P. 197–224. https://doi.org/10.1016/j.icarus.2019.02.030

  26. Deichuli V.M., Petrova T.M., Solodov A.M., et al. Water vapor absorption line parameters in the 6760-7430 cm-1 region for application to CO2-rich planetary atmosphere // J. Quant. Spectr. Rad. Transf. 2022. V. 293. P. 108 386. https://doi.org/10.1016/j.jqsrt.2022.108386

  27. Evdokimova D., Belyaev D., Montmessin F., et al. Improved calibrations of the stellar occultation data accumulated by the SPICAV UV onboard Venus Express // Planet. Space Sci. 2020. V. 184. id. 104868. https://doi.org/10.1016/j.pss.2020.104868

  28. Evdokimova D., Belyaev D., Montmessin F., et al. The Spatial and Temporal Distribution of Nighttime Ozone and Sulfur Dioxide in the Venus Mesosphere as Deduced From SPICAV UV Stellar Occultations // J. Geophys. Res. (Planets). 2021. V. 126. id. e06625. https://doi.org/10.1029/2020JE006625

  29. ExoMars Trace Gas Orbiter: One Martian Year of Science. Topical collection // J. Geophys. Res. (Planets). 2023. https://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/ (ISSN)2169-9100.ExoMarsTGO1.

  30. Fan S., Guerlet S., Forget F., et al. Thermal Tides in the Martian Atmosphere Near Northern Summer Solstice Observed by ACS/TIRVIM Onboard TGO // Geophys. Res. Lett. 2022. V. 49. id. e97130. https://doi.org/10.1029/2021GL097130

  31. Fedorova A.A., Montmessin F., Korablev O., et al. Stormy water on Mars: The distribution and saturation of atmospheric water during the dusty season // Science. 2020. V. 367. P. 297–300. https://doi.org/10.1126/science.aay9522

  32. Fedorova A., Montmessin F., Korablev O., et al. Multi-Annual Monitoring of the Water Vapor Vertical Distribution on Mars by SPICAM on Mars Express // J. Geophys. Res. (Planets). 2021. V. 126. id. e06616. https://doi.org/10.1029/2020JE006616

  33. Fedorova A., Montmessin F., Trokhimovskiy A., et al. A Two-Martian Years Survey of the Water Vapor Saturation State on Mars Based on ACS NIR/TGO Occultations // J. Geophys. Res. (Planets). 2023. V. 128. id. e2022JE007348. https://doi.org/10.1029/2022JE007348

  34. Fedorova A., Trokhimovskiy A., Lefèvre F., et al.Climatology of the CO Vertical Distribution on Mars Based on ACS TGO Measurements // J. Geophys. Res. (Planets). 2022. V. 127. id. e07195. https://doi.org/10.1029/2022JE007195

  35. Fleurbaey H., Grilli R., Mondelain D., Kassi S., Yachmenev A., Yurchenko S. N., Campargue A. Electric-quadrupole and magnetic-dipole contributions to the ν2+ ν3 band of carbon dioxide near 3.3 μm // J. Quant. Spectr. Rad. Transf. 2021. V. 266. id. 107558. https://doi.org/10.1016/j.jqsrt.2021.107558

  36. Forget F., Korablev O., Venturini J., et al. Editorial: Topical Collection on Understanding the Diversity of Planetary Atmospheres // Space Sci. Rev. 2021. V. 217. id. 51. https://doi.org/10.1007/s11214-021-00820-z

  37. Gamache R.R., Vispoel B., Rey M., et al. Partition sums for non-local thermodynamic equilibrium conditions for nine molecules of importance in planetary atmospheres // Icarus. 2022. V. 378. id. 114947. https://doi.org/10.1016/j.icarus.2022.114947

  38. Gordon I.E., Rothman L.S., Hargreaves R.J., et al. The HITRAN2020 molecular spectroscopic database // J. Quant. Spectr. Rad. Transf. 2022. V. 277. id. 107949. https://doi.org/10.1016/j.jqsrt.2021.107949

  39. Gorinov D.A., Zasova L.V., Khatuntsev I.V., et al. Winds in the Lower Cloud Level on the Nightside of Venus from VIRTIS-M (Venus Express) 1.74 μm Images // Atmosphere. 2021. V. 12. id. 186. https://doi.org/10.3390/atmos12020186

  40. Guerlet S., Ignatiev N., Forget F., et al.Thermal Structure and Aerosols in Mars’ Atmosphere From TIRVIM/ACS Onboard the ExoMars Trace Gas Orbiter: Validation of the Retrieval Algorithm // J. Geophys. Res. (Planets). 2022. V. 127. id. e07062. https://doi.org/10.1029/2021JE007062

  41. Guzewich S.D., Fedorova A.A., Kahre M.A., Toigo A.D. Studies of the 2018/Mars Year 34 Planet-Encircling Dust Storm // J. Geophys. Res. (Planets). 2020. V. 125. id. e06700. https://doi.org/10.1029/2020JE006700

  42. Holmes J.A., Lewis S.R., Patel M.R., et al. Enhanced water loss from the martian atmosphere during a regional-scale dust storm and implications for long-term water loss // Earth Planet. Sci. Lett. 2021. V. 571. id. 117109. https://doi.org/10.1016/j.epsl.2021.117109

  43. Holmes J.A., Lewis S.R., Patel M.R., et al. Global Variations in Water Vapor and Saturation State Throughout the Mars Year 34 Dusty Season J. Geophys. Res. (Planets). 2022. V. 127. id. e2022JE007203. https://doi.org/10.1029/2022JE007203

  44. Imamura T., Mitchell J., Lebonnois S., et al.Superrotation in Planetary Atmospheres // Space Sci. Rev. 2020. V. 216. id. 87. https://doi.org/10.1007/s11214-020-00703-9

  45. Karlovets E.V., Gordon I.E., Rothman L.S., et al. The update of the line positions and intensities in the line list of carbon dioxide for the HITRAN2020 spectroscopic database // J. Quant. Spectr. Rad. Transf. 2021. V. 276. id. 107 896. https://doi.org/10.1016/j.jqsrt.2021.107896

  46. Karman T., Gordon I. E., van der Avoird A., et al.Update of the HITRAN collision-induced absorption section // Icarus. 2019. V. 328. P. 160–175. https://doi.org/10.1016/j.icarus.2019.02.034

  47. Kazakov K.V., Vigasin A.A. Vibrational magnetism and the strength of magnetic dipole transition within the electric dipole forbidden v2 + v3 absorption band of carbon dioxide // Molec. Phys. 2021. V. 119:12. id. e1934581. https://doi.org/10.1080/00268976.2021.1934581

  48. Khatuntsev I.V., Patsaeva M.V., Titov D.V., et al. Cloud level winds from the Venus Express Monitoring Camera imaging // Icarus. 2013. V. 226. P. 140–158. https://doi.org/10.1016/j.icarus.2013.05.018

  49. Khatuntsev I.V., Patsaeva M.V., Titov D.V., et al. Twelve-Year Cycle in the Cloud Top Winds Derived from VMC/Venus Express and UVI/Akatsuki Imaging // Atmosphere. 2022b. V. 13:12. id. 2023. https://doi.org/10.3390/atmos13122023

  50. Khatuntsev I.V., Patsaeva M.V., Titov D.V., et al. Winds in the Middle Cloud Deck From the Near-IR Imaging by the Venus Monitoring Camera Onboard Venus Express // J. Geophys. Res. (Planets). 2017. V. 122. P. 2312–2327. https://doi.org/10.1002/2017JE005355

  51. Khatuntsev I.V., Patsaeva M.V., Zasova L.V., et al. Winds From the Visible (513 nm) Images Obtained by the Venus Monitoring Camera Onboard Venus Express // J. Geophys. Res. (Planets). 2022a. V. 127. id. e07032. https://doi.org/10.1029/2021JE007032

  52. Knutsen E.W., Montmessin F., Verdier L., et al. Water Vapor on Mars: A Refined Climatology and Constraints on the Near-Surface Concentration Enabled by Synergistic Retrievals // J. Geophys. Res. (Planets). 2022. V. 127. id. e07252. https://doi.org/10.1029/2022JE007252

  53. Knutsen E.W., Villanueva G.L., Liuzzi G., et al. Comprehensive investigation of Mars methane and organics with ExoMars/NOMAD // Icarus. 2021. V. 357. id. 114266. https://doi.org/10.1016/j.icarus.2020.114266

  54. Korablev O.I. Studies of planetary atmospheres in Russia (2011–2014) // Izv. Atmos. Ocean. Phys. 2016. V. 52. P. 483–496. https://doi.org/10.1134/S0001433816050066

  55. Korablev O.I. Trace species in planetary atmospheres: Some results of TGO ExoMars // Astron. Astrophys. Trans. 2021. V. 32. P. 289–304.

  56. Korablev O., Montmessin F., Trokhimovskiy A., et al. The Atmospheric Chemistry Suite (ACS) of Three Spectrometers for the ExoMars 2016 Trace Gas Orbiter // Space Sci. Rev. 2018. V. 214. id. 7. https://doi.org/10.1007/s11214-017-0437-6

  57. Korablev O., Olsen K.S., Trokhimovskiy A., et al. Transient HCl in the atmosphere of Mars // Science Advances. 2021. V. 7. id. eabe4386. https://doi.org/10.1126/sciadv.abe4386

  58. Korablev O., Vandaele A.C., Montmessin F., et al.No detection of methane on Mars from early ExoMars Trace Gas Orbiter observations // Nature. 2019. V. 568. P. 517–520. https://doi.org/10.1038/s41586-019-1096-4

  59. Krasnopolsky V.A. A photochemical model of Pluto’s atmosphere and ionosphere // Icarus. 2020a. V. 335. id. 113 374. https://doi.org/10.1016/j.icarus.2019.07.008

  60. Krasnopolsky V. A. On the methylacetylene abundance and nitrogen isotope ratio in Pluto’s atmosphere // Planet. Space Sci. 2020b.V. 192. id. 105044. https://doi.org/10.1016/j.pss.2020.105044

  61. Krasnopolsky V.A. Photochemistry of HCl in the martian atmosphere // Icarus. 2022. V. 374. id. 114807. https://doi.org/10.1016/j.icarus.2021.114807

  62. Krasnopolsky V.A. Photochemistry of water in the martian thermosphere and its effect on hydrogen escape // Icarus. 2019. V. 321. P. 62–70.https://doi.org/10.1016/j.icarus.2018.10.033

  63. Krasnopolsky V.A. Seasonal and latitudinal variations of the HDO/H2O ratio in the martian atmosphere // Planet. Space Sci. 2021. V. 208. id. 105345. https://doi.org/10.1016/j.pss.2021.105345

  64. Kurgansky M.V. An estimate of convective vortex activity at the InSight landing site on Mars // Icarus. 2021. V. 358. id. 114200. https://doi.org/10.1016/j.icarus.2020.114200

  65. Kurgansky M.V. On determination of the size-frequency distribution of convective vortices in pressure time-series surveys on Mars // Icarus. 2020. V. 335. id. 113389. https://doi.org/10.1016/j.icarus.2019.113389

  66. Kurgansky M.V. On the statistical distribution of pressure drops in convective vortices: Applications to Martian dust devils // Icarus. 2019. V. 317. P. 209–214. https://doi.org/10.1016/j.icarus.2018.08.004

  67. Kurgansky M.V. Statistical Distribution of Atmospheric Dust Devils on Earth and Mars // Boundary-Layer Meteorol. 2022. V. 184. P. 381. https://doi.org/10.1007/s10546-022-00713-w

  68. Lebonnois S., Hourdin F., Eymet V., et al. Superrotation of Venus’ atmosphere analyzed with a full general circulation model // J. Geophys. Res. (Planets). 2010. V. 115. id. E06006. https://doi.org/10.1029/2009JE003458

  69. Lefèvre F., Trokhimovskiy A., Fedorova A., et al. Relationship Between the Ozone and Water Vapor Columns on Mars as Observed by SPICAM and Calculated by a Global Climate Model // J. Geophys. Res. (Planets). 2021. V. 126. id. e06838. https://doi.org/10.1029/2021JE006838

  70. Limaye S.S., Zelenyi L., Zasova L. Introducing the Venus Collection–Papers from the First Workshop on Habitability of the Cloud Layer // Astrobiology. 2021. V. 21. P. 1157–1162. https://doi.org/10.1089/ast.2021.0142

  71. Luginin M., Fedorova A., Ignatiev N., et al. Properties of Water Ice and Dust Particles in the Atmosphere of Mars During the 2018 Global Dust Storm as Inferred From the Atmospheric Chemistry Suite // J. Geophys. Res. (Planets). 2020. V. 125. id. e06419. https://doi.org/10.1029/2020JE006419

  72. Luo Y., Mischna M.A., Lin J.C., et al. Mars Methane Sources in Northwestern Gale Crater Inferred From Back Trajectory Modeling // Earth Space Sci. 2021. V. 8. id. e01915. https://doi.org/10.1029/2021EA001915

  73. Määttänen A., Lefèvre F., Verdier L., et al.Ozone vertical distribution in Mars Years 27-30 from SPICAM/MEX UV occultations // Icarus. 2022. V. 387. id. 115162. https://doi.org/10.1016/j.icarus.2022.115162

  74. Marcq E., Baggio L., Lefèvre F., et al.Discovery of cloud top ozone on Venus // Icarus. 2019. V. 319. P. 491–498. https://doi.org/10.1016/j.icarus.2018.10.006

  75. Marcq E., Lea Jessup K., Baggio L., et al.Climatology of SO2 and UV absorber at Venus’ cloud top from SPICAV-UV nadir dataset // Icarus. 2020. V. 335. id. 113 368. https://doi.org/10.1016/j.icarus.2019.07.002

  76. Montmessin F., Belyaev D.A., Lefèvre F., et al.Reappraising the Production and Transfer of Hydrogen Atoms From the Middle to the Upper Atmosphere of Mars at Times of Elevated Water Vapor // J. Geophys. Res. (Planets). 2022. V. 127. id. e07217. https://doi.org/10.1029/2022JE007217

  77. Montmessin F., Bertaux J.-L., Lefèvre F., et al. A layer of ozone detected in the nightside upper atmosphere of Venus // Icarus. 2011. V. 216. P. 82–85. https://doi.org/10.1016/j.icarus.2011.08.010

  78. Montmessin F., Korablev O.I., Trokhimovskiy A., et al. A stringent upper limit of 20 pptv for methane on Mars and constraints on its dispersion outside Gale crater // Astron. Astrophys. 2021. V. 650. id. A140. https://doi.org/10.1051/0004-6361/202140389

  79. Montmessin F., Fouchet T., Forget F. Modeling the annual cycle of HDO in the Martian atmosphere. // J. Geophys. Res.2005. V. 110:E3. id. E10004. https://doi.org/10.1029/2004JE002357

  80. Moores J.E., King P.L., Smith C.L., et al. The Methane Diurnal Variation and Microseepage Flux at Gale Crater, Mars as Constrained by the ExoMars Trace Gas Orbiter and Curiosity Observations // Geophys. Res. Lett. 2019. V. 46. P. 9430–9438. https://doi.org/10.1029/2019GL083800

  81. Mumma M.J., Villanueva G.L., Novak R.E., et al.Strong Release of Methane on Mars in Northern Summer 2003 // Science. 2009. V. 323. P. 1041–1045. https://doi.org/10.1126/science.1165243

  82. Olsen K.S., Fedorova A.A., Trokhimovskiy A., et al. Seasonal Changes in the Vertical Structure of Ozone in the Martian Lower Atmosphere and Its Relationship to Water Vapor // J. Geophys. Res. (Planets). 2022. V. 127. id. e2022JE007213. https://doi.org/10.1029/2022JE007213

  83. Olsen K.S., Lefèvre F., Montmessin F., et al.First detection of ozone in the mid-infrared at Mars: implications for methane detection // Astron. Astrophys. 2020. V. 639. id. A141. https://doi.org/10.1051/0004-6361/202038125

  84. Olsen K.S., Lefèvre F., Montmessin F., et al.The vertical structure of CO in the Martian atmosphere from the ExoMars Trace Gas Orbiter // Nature Geosci. 2021a. V. 14. P. 67–71. https://doi.org/10.1038/s41561-020-00678-w

  85. Olsen K.S., Trokhimovskiy A., Braude A.S., et al. Upper limits for phosphine (PH3) in the atmosphere of Mars // Astron. Astrophys. 2021c. V. 649. id. L1. https://doi.org/10.1051/0004-6361/202140868

  86. Olsen K.S., Trokhimovskiy A., Montabone L., et al. Seasonal reappearance of HCl in the atmosphere of Mars during the Mars year 35 dusty season // Astron. Astrophys. 2021b. V. 647. id. A161. https://doi.org/10.1051/0004-6361/202140329

  87. Patsaeva M.V., Khatuntsev I.V., Zasova L.V., et al.Solar-Related Variations of the Cloud Top Circulation Above Aphrodite Terra From VMC/Venus Express Wind Fields // J. Geophys. Res. (Planets). 2019. V. 124. P. 1864–1879. https://doi.org/10.1029/2018JE005620

  88. Perevalov V.I., Trokhimovskiy A.Y., Lukashevskaya A.A., et al. Magnetic dipole and electric quadrupole absorption in carbon dioxide // J. Quant. Spectr. Rad. Transf. 2021. V. 259. id. 107408. https://doi.org/10.1016/j.jqsrt.2020.107408

  89. Pinto J.P., Li J., Mills F.P., Marcq E., Evdokimova D., Bely-aev D., Yung Y.L. Sulfur monoxide dimer chemistry as a possible source of polysulfur in the upper atmosphere of Venus // Nature Comm. 2021. V. 12:1. P. 1–6. https://doi.org/10.1038/s41467-020-20451-2

  90. Rajendran K., Lewis S.R., Holmes J.A., et al.Enhanced Super-Rotation Before and During the 2018 Martian Global Dust Storm // Geophys. Res. Lett. 2021. V. 48. id. e94634. https://doi.org/10.1029/2021GL094634

  91. Rossi L., Vals M., Alday J., et al.The HDO Cycle on Mars: Comparison of ACS Observations With GCM Simulations // J. Geophys. Res. (Planets). 2022. V. 127. id. e07201. https://doi.org/10.1029/2022JE007201

  92. Rossi L., Vals M., Montmessin F., et al.The Effect of the Martian 2018 Global Dust Storm on HDO as Predicted by a Mars Global Climate Model // Geophys. Res. Lett. 2021. V. 48. id. e90962. https://doi.org/10.1029/2020GL090962

  93. Shaposhnikov D.S., Medvedev A.S., Rodin A.V., et al. Martian Dust Storms and Gravity Waves: Disentangling Water Transport to the Upper Atmosphere // J. Geophys. Res. (Planets). 2022. V. 127. id. e07102. https://doi.org/10.1029/2021JE007102

  94. Shaposhnikov D.S., Medvedev A.S., Rodin A.V., Hartogh P. Seasonal Water “Pump” in the Atmosphere of Mars: Vertical Transport to the Thermosphere // Geophys. Res. Lett. 2019. V. 46. P. 4161–4169. https://doi.org/10.1029/2019GL082839

  95. Starichenko E.D., Belyaev D.A., Medvedev A.S., et al. Gravity Wave Activity in the Martian Atmosphere at Altitudes 20–160 km From ACS/TGO Occultation Measurements // J. Geophys. Res. (Planets). 2021. V. 126. id. e06899. https://doi.org/10.1029/2021JE006899

  96. Stcherbinine A., Montmessin F., Vincendon M., et al.A Two Martian Years Survey of Water Ice Clouds on Mars With ACS Onboard TGO // J. Geophys. Res. (Planets). 2022. V. 127. id. e2022JE007502. https://doi.org/10.1029/2022JE007502

  97. Stcherbinine A., Vincendon M., Montmessin F., et al.Martian Water Ice Clouds During the 2018 Global Dust Storm as Observed by the ACS-MIR Channel Onboard the Trace Gas Orbiter // J. Geophys. Res. (Planets). 2020. V. 125. id. e06300. https://doi.org/10.1029/2019JE006300

  98. Streeter P.M., Lewis S.R., Patel M.R., et al.Asymmetric Impacts on Mars’ Polar Vortices From an Equinoctial Global Dust Storm // J. Geophys. Res. (Planets). 2021.V. 126. id. e06774. https://doi.org/10.1029/2020JE006774

  99. Trokhimovskiy A., Fedorova A.A., Olsen K.S., et al. Isotopes of chlorine from HCl in the Martian atmosphere // Astron. Astrophys. 2021. V. 651. id. A32. https://doi.org/10.1051/0004-6361/202140916

  100. Trokhimovskiy A., Perevalov V., Korablev O., et al.First observation of the magnetic dipole CO2 absorption band at 3.3 μm in the atmosphere of Mars by the ExoMars Trace Gas Orbiter ACS instrument // Astron. Astrophys. 2020. V. 639. id. A142. https://doi.org/10.1051/0004-6361/202038134

  101. Vals M., Rossi L., Montmessin F., et al.Improved Modeling of Mars’ HDO Cycle Using a Mars’ Global Climate Model // J. Geophys. Res. (Planets). 2022. V. 127. id. e07192. https://doi.org/10.1029/2022JE007192

  102. Vandaele A. C., Korablev O., Daerden F., et al.Martian dust storm impact on atmospheric H2O and D/H observed by ExoMars Trace Gas Orbiter // Nature. 2019. V. 568. P. 521–525. https://doi.org/10.1038/s41586-019-1097-3

  103. Vlasov P., Ignatiev N., Guerlet S., et al.Martian Atmospheric Thermal Structure and Dust Distribution During the MY 34 Global Dust Storm From ACS TIRVIM Nadir Observations // J. Geophys. Res. (Planets). 2022. V. 127. id. e07272. https://doi.org/10.1029/2022JE007272

  104. Webster C.R., Mahaffy P.R., Atreya S.K., et al.Background levels of methane in Mars’ atmosphere show strong seasonal variations // Science. 2018. V. 360. P. 1093–1096. https://doi.org/10.1126/science.aaq0131

  105. Webster C.R., Mahaffy P.R., Pla-Garcia J., et al.Day-night differences in Mars methane suggest nighttime containment at Gale crater // Astron. Astrophys. 2021. V. 650. id. A166. https://doi.org/10.1051/0004-6361/202040030

  106. Yachmenev A., Campargue A., Yurchenko S.N., et al. Electric quadrupole transitions in carbon dioxide // J. Chem. Phys. 2021. V. 154. id. 211104. https://doi.org/10.1063/5.0053279

  107. Young R.M.B., Millour E., Guerlet S., et al. Assimilation of Temperatures and Column Dust Opacities Measured by ExoMars TGO-ACS-TIRVIM During the MY34 Global Dust Storm // J. Geophys. Res. (Planets). 2022. V. 127. id. e07312. https://doi.org/10.1029/2022JE007312

  108. Zasova L.V., Gorinov D.A., Eismont N.A., et al. Venera-D: A Design of an Automatic Space Station for Venus Exploration // Solar Syst. Res. 2020. V. 53. P.506. https://doi.org/10.1134/S0038094619070244

Дополнительные материалы отсутствуют.