Коллоидный журнал, 2023, T. 85, № 3, стр. 328-338

Формирование структур ядро–оболочка с возможностью pН-чувствительного высвобождения инкапсулированных соединений

А. О. Кузнецов 1, Ю. Н. Власичева 1, Е. В. Ленгерт 2, А. В. Ермаков 2*

1 Российский химико-технологический университет им. Д.И. Менделеева
125047 Москва, Миусская площадь, 9, стр. 6, Россия

2 Первый Московский государственный медицинский университет им. И.М. Сеченова (Сеченовский университет), институт молекулярной тераностики
119991 Москва, ул. Трубецкая, д. 8, стр. 2, Россия

* E-mail: ermakov_a_v_2@staff.sechenov.ru

Поступила в редакцию 05.04.2023
После доработки 23.04.2023
Принята к публикации 27.04.2023

Аннотация

Разработка систем доставки лекарственных веществ является важным трендом современной биомедицины. За последние пять лет наблюдается тенденция к усложнению разрабатываемых систем доставки лекарств с получением сложных многокомпонентных носителей, с целью совершенствования направленности и селективности их действия. Для этого используются различные свойства тканей, характерныx для того или иного участка организма, что может быть использовано для разделения действия носителей. Одним из таких факторов служит рН среды, который строго регулируется организмом и является константой в той или иной области организма. В связи с этим в данной работе мы разрабатываем подход для формирования комплексных частиц со структурой ядро-оболочка на основе мезопористых частиц карбоната кальция и кремнезема класса AMS-6. Исследованы загрузочная способность и кинетика высвобождения модельного вещества (конъюгата красителя TRITC с бычьим сывороточным альбумином BSA) из полученных комплексных частиц. Полученные в работе носители имеют перспективы применения в качестве лекарственных носителей с рН-зависимой кинетикой высвобождения инкапсулированного препарата.

Список литературы

  1. Chowdhury N.K., Deepika, Choudhury R., Sonawane G.A., Mavinamar S., Lyu X., Pandey R.P., Chang C.-M. Nanoparticles as an effective drug delivery system in COVID-19 // Biomedicine & Pharmacotherapy. 2021. V. 143. P. 112162. https://doi.org/10.1016/j.biopha.2021.112162

  2. Maleki Dizaj S., Sharifi S., Ahmadian E., Eftekhari A., Adibkia K., Lotfipour F. An update on calcium carbonate nanoparticles as cancer drug/gene delivery system // Expert Opinion on Drug Delivery. 2019. V. 16. № 4. P. 331–345. https://doi.org/10.1080/17425247.2019.1587408

  3. Wani S.U.D., Ali M., Masoodi M.H., Khan N.A., Zargar M.I., Hassan R., Mir S.A., Gautam S.P., Gangadharappa H.V., M. Osmani R.A. A review on nanoparticles categorization, characterization and applications in drug delivery systems // Vibrational Spectroscopy. 2022. V. 121. P. 103407. https://doi.org/10.1016/j.vibspec.2022.103407

  4. Ghosh S., Jayaram P., Kabekkodu S.P., Satyamoorthy K. Targeted drug delivery in cervical cancer: Current perspectives // European Journal of Pharmacology. 2022. V. 917. P. 174751. https://doi.org/10.1016/j.ejphar.2022.174751

  5. Liu R., Luo C., Pang Z., Zhang J., Ruan S., Wu M., Wang L., Sun T., Li N., Han L., Shi J., Huang Y., Guo W., Peng S., Zhou W., Gao H. Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment // Chinese Chemical Letters. 2023. V. 34. № 2. P. 107518. https://doi.org/10.1016/j.cclet.2022.05.032

  6. Yawalkar A.N., Pawar M.A., Vavia P.R. Microspheres for targeted drug delivery − A review on recent applications // Journal of Drug Delivery Science and Technology. 2022. V. 75. P. 103659. https://doi.org/10.1016/j.jddst.2022.103659

  7. Shah A., Aftab S., Nisar J., Ashiq M.N., Iftikhar F.J. Nanocarriers for targeted drug delivery // Journal of Drug Delivery Science and Technology. 2021. V. 62. P. 102426. https://doi.org/10.1016/j.jddst.2021.102426

  8. Pushpalatha R., Selvamuthukumar S., Kilimozhi D. Nanocarrier mediated combination drug delivery for chemotherapy – A review // Journal of Drug Delivery Science and Technology. 2017. V. 39. P. 362–371. https://doi.org/10.1016/j.jddst.2017.04.019

  9. Croissant J.G., Fatieiev Y., Khashab N.M. Degradability and clearance of silicon, organosilica, silsesquioxane, silica mixed oxide, and mesoporous silica nanoparticles // Advanced Materials. 2017. V. 29. № 9. P. 1604634. https://doi.org/10.1002/adma.201604634

  10. Trofimov A., Ivanova A., Zyuzin M., Timin A. Porous inorganic carriers based on silica, calcium carbonate and calcium phosphate for controlled/modulated drug delivery: Fresh outlook and future perspectives // Pharmaceutics. 2018. V. 10. № 4. P. 167. https://doi.org/10.3390/pharmaceutics10040167

  11. Wilhelm S., Tavares A.J., Dai Q., Ohta S., Audet J., Dvorak H.F., Chan W.C.W. Analysis of nanoparticle delivery to tumours // Nature Reviews Materials. 2016. V. 1. № 5. P. 16014. https://doi.org/10.1038/natrevmats.2016.14

  12. Nandwana V., De M., Chu S., Jaiswal M., Rotz M., Meade T.J., Dravid V.P. Theranostic magnetic nanostructures (MNS) for cancer. In: Mirkin C., Meade T., Petrosko S., Stegh A. (Eds). Nanotechnology-Based Precision Tools for the Detection and Treatment of Cancer. Cancer Treatment and Research, vol 166. Springer, Cham, 2015. P. 51–83.https://doi.org/10.1007/978-3-319-16555-4_3

  13. Kolar S., Jurić S., Marijan M., Vlahoviček-Kahlina K., Vinceković M. Applicability of alginate-based composite microspheres loaded with aqueous extract of Stevia rebaudiana Bertoni leaves in food and pharmaceutical products // Food Bioscience. 2022. V. 50. P. 101970. https://doi.org/10.1016/j.fbio.2022.101970

  14. Yang M., Abdalkarim S.Y.H., Yu H.-Y., Asad R.A.M., Ge D., Zhou Y. Thermo-sensitive composite microspheres incorporating cellulose nanocrystals for regulated drug release kinetics // Carbohydrate Polymers. 2023. V. 301. P. 120350. https://doi.org/10.1016/j.carbpol.2022.120350

  15. Bil M., Mrówka P., Kołbuk D., Święszkowski W. Multifunctional composite combining chitosan microspheres for drug delivery embedded in shape memory polyester-urethane matrix // Composites Science and Technology. 2021. V. 201. P. 108481. https://doi.org/10.1016/j.compscitech.2020.108481

  16. Ojagh S.M.A., Vahabzadeh F., Karimi A. Synthesis and characterization of bacterial cellulose-based composites for drug delivery // Carbohydrate Polymers. 2021. V. 273. P. 118587. https://doi.org/10.1016/j.carbpol.2021.118587

  17. Reza Soltani E., Ahmad Panahi H., Moniri E., Torabi Fard N., Raeisi I., Beik J., Yousefi Siavoshani A. Construction of a pH/temperature dual-responsive drug delivery platform based on exfoliated MoS2 nanosheets for effective delivery of doxorubicin: Parametric optimization via central composite design // Materials Chemistry and Physics. 2023. V. 295. P. 127159. https://doi.org/10.1016/j.matchemphys.2022.127159

  18. Lengert E.V., Koltsov S.I., Li J., Ermakov A.V., Parakhonskiy B.V., Skorb E.V., Skirtach A.G. Nanoparticles in polyelectrolyte multilayer layer-by-layer (LbL) films and capsules—key enabling components of hybrid coatings // Coatings. 2020. V. 10. № 11. P. 1131. https://doi.org/10.3390/coatings10111131

  19. Khan A.N., Ermakov A., Sukhorukov G., Hao Y. Radio frequency controlled wireless drug delivery devices // Applied Physics Reviews. 2019. V. 6. № 4. https://doi.org/10.1063/1.5099128

  20. Alsehli M. Polymeric nanocarriers as stimuli-responsive systems for targeted tumor (cancer) therapy: Recent advances in drug delivery // Saudi Pharmaceutical Journal. 2020. V. 28. № 3. P. 255–265. https://doi.org/10.1016/j.jsps.2020.01.004

  21. Abdella S., Abid F., Youssef S.H., Kim S., Afinjuomo F., Malinga C., Song Y., Garg S. pH and its applications in targeted drug delivery // Drug Discovery Today. 2023. V. 28. № 1. P. 103414. https://doi.org/10.1016/j.drudis.2022.103414

  22. Tang H., Zhao W., Yu J., Li Y., Zhao C. Recent development of pH-responsive polymers for cancer nanomedicine // Molecules. 2018. V. 24. № 1. P. 4. https://doi.org/10.3390/molecules24010004

  23. Kolawole O.M., Cook M.T. In situ gelling drug delivery systems for topical drug delivery // European Journal of Pharmaceutics and Biopharmaceutics. 2023. V. 184. P. 36–49. https://doi.org/10.1016/j.ejpb.2023.01.007

  24. Al Ragib A., Chakma R., Dewan K., Islam T., Kormoker T., Idris A.M. Current advanced drug delivery systems: Challenges and potentialities // Journal of Drug Delivery Science and Technology. 2022. V. 76. P. 103727. https://doi.org/10.1016/j.jddst.2022.103727

  25. Shaikh M.A.J., Gupta G., Afzal O., Gupta M.M., Goyal A., Altamimi A.S.A., Alzarea S.I., Almalki W.H., Kazmi I., Negi P., Singh S.K., Dua K. Sodium alginate-based drug delivery for diabetes management: A review // International Journal of Biological Macromolecules. 2023. V. 236. P. 123986. https://doi.org/10.1016/j.ijbiomac.2023.123986

  26. Hegde V., Uthappa U.T., Altalhi T., Jung H.-Y., Han S.S., Kurkuri M.D. Alginate based polymeric systems for drug delivery, antibacterial/microbial, and wound dressing applications // Materials Today Communications. 2022. V. 33. P. 104813. https://doi.org/10.1016/j.mtcomm.2022.104813

  27. Karim A., Rehman A., Feng J., Noreen A., Assadpour E., Kharazmi M.S., Lianfu Z., Jafari S.M. Alginate-based nanocarriers for the delivery and controlled-release of bioactive compounds // Advances in Colloid and Interface Science. 2022. V. 307. P. 102744. https://doi.org/10.1016/j.cis.2022.102744

  28. Kianersi S., Solouk A., Saber-Samandari S., Keshel S.H., Pasbakhsh P. Alginate nanoparticles as ocular drug delivery carriers // Journal of Drug Delivery Science and Technology. 2021. V. 66. P. 102889. https://doi.org/10.1016/j.jddst.2021.102889

  29. López-Menchero J.R., Ogawa M., Mauricio J.C., Moreno J., Moreno-García J. Effect of calcium alginate coating on the cell retention and fermentation of a fungus-yeast immobilization system // LWT. 2021. V. 144. P. 111250. https://doi.org/10.1016/j.lwt.2021.111250

  30. Gao C., Qiu H., Zeng W., Sakamoto Y., Terasaki O., Sakamoto K., Chen Q., Che S. Formation mechanism of anionic surfactant-templated mesoporous silica // Chemistry of Materials. 2006. V. 18. № 16. P. 3904–3914. https://doi.org/10.1021/cm061107+

  31. Atluri R., Hedin N., Garcia-Bennett A.E. Hydrothermal phase transformation of bicontinuous cubic mesoporous material AMS-6 // Chemistry of Materials. 2008. V. 20. № 12. P. 3857–3866. https://doi.org/10.1021/cm702440n

  32. Sergeeva A., Sergeev R., Lengert E., Zakharevich A., Parakhonskiy B., Gorin D., Sergeev S., Volodkin D. Composite magnetite and protein containing CaCO3 crystals. External manipulation and vaterite → calcite recrystallization-mediated release performance // ACS Applied Materials and Interfaces. 2015. https://doi.org/10.1021/acsami.5b05848

  33. Garcia-Bennett A.E., Kupferschmidt N., Sakamoto Y., Che S., Terasaki O. Synthesis of mesocage structures by kinetic control of self-assembly in anionic surfactants // Angewandte Chemie International Edition. 2005. V. 44. № 33. P. 5317–5322. https://doi.org/10.1002/anie.200500113

  34. German S.V., Novoselova M.V., Bratashov D.N., Demina P.A., Atkin V.S., Voronin D.V, Khlebtsov B.N., Parakhonskiy B.V., Sukhorukov G.B., Gorin D.A. High-efficiency freezing-induced loading of inorganic nanoparticles and proteins into micron- and submicron-sized porous particles // Scientific Reports. 2018. V. 8. № 1. P. 17763. https://doi.org/10.1038/s41598-018-35846-x

  35. Rezk A.I., Obiweluozor F.O., Choukrani G., Park C.H., Kim C.S. Drug release and kinetic models of anticancer drug (BTZ) from a pH-responsive alginate polydopamine hydrogel: Towards cancer chemotherapy // International Journal of Biological Macromolecules. 2019. V. 141. P. 388–400. https://doi.org/10.1016/j.ijbiomac.2019.09.013

  36. Ilgin P., Ozay H., Ozay O. Synthesis and characterization of pH responsive alginate based-hydrogels as oral drug delivery carrier // Journal of Polymer Research. 2020. V. 27. № 9. P. 251. https://doi.org/10.1007/s10965-020-02231-0

  37. Coppi G., Iannuccelli V., Bernabei M., Cameroni R. Alginate microparticles for enzyme peroral administration // International Journal of Pharmaceutics. 2002. V. 242. № 1–2. P. 263–266. https://doi.org/10.1016/S0378-5173(02)00171-0

  38. Mukhopadhyay P., Maity S., Chakraborty S., Rudra R., Ghodadara H., Solanki M., Chakraborti A.S., Prajapati A.K., Kundu P.P. Oral delivery of quercetin to diabetic animals using novel pH responsive carboxypropionylated chitosan/alginate microparticles // RSC Advances. 2016. V. 6. № 77. P. 73210–73221. https://doi.org/10.1039/C6RA12491G

Дополнительные материалы отсутствуют.