Координационная химия, 2023, T. 49, № 11, стр. 719-728

Комплексы 1,1,1,5,5,6,6,6-октафторгексан-2,4-дионата серебра с π-донорными лигандами: синтез, строение, термические свойства

Е. С. Викулова 1*, И. Ю. Ильин 1, Т. С. Сухих 1, П. К. Артамонова 2, Н. Б. Морозова 1

1 Институт неорганической химии им. А.В. Николаева СО РАН
Новосибирск, Россия

2 Новосибирский государственный технический университет
Новосибирск, Россия

* E-mail: lazorevka@mail.ru

Поступила в редакцию 28.12.2022
После доработки 21.02.2023
Принята к публикации 13.03.2023

Аннотация

Для расширения библиотеки прекурсоров серебра, пригодных для применения в процессах химического газофазного осаждения, синтезировано два новых комплекса Ag(I) с 1,1,1,5,5,6,6,6-октафторгексан-2,4-дионат-ионом (Ofhac) и π-донорными нейтральными лигандами: винилтриэтилсиланом (VTES) и циклооктадиеном-1,5 (COD). Соединения охарактеризованы методами элементного анализа, ИК- и ЯМР-спектроскопии. Комплекс [Ag(VTES)(Ofhac)] (I) является жидким при нормальных условиях, температура его кристаллизации <–20°С. Обработка I бензолом приводит к образованию кристаллов [Ag4(C6H6)2(Ofhac)4] (II), что подтверждено методами ЯМР и РСА (CCDC № 2232810). Строение [Ag(COD)(Ofhac)]2 (III) установлено с помощью РСА (CCDC № 2232809). Биядерные молекулы образованы за счет μ21(O):κ1(O')-функции Ofhac-лигандов (Ag–O 2.458(2)–2.461(2) Å), COD проявляет κ222-координацию (Ag–C 2.420(17)–2.684(11) Å). Термические свойства I и III в сравнении с аналогами, содержащими 1,1,1,5,5,5-гексафторпентан-2,4-дионат-ион (Hfac), изучены методом термогравиметрии.

Ключевые слова: серебро, β-дикетонат, циклооктадиен-1,5, винилтриэтилсилан, РСА, термогравиметрия

Список литературы

  1. Leskelä M., Ritala M., Nilsen O. // MRS Bull. 2011. V. 36. № 11. P. 877. https://doi.org/10.1557/mrs.2011.240

  2. Piszczek P., Radtke A. // Noble and Precious Metals – Properties, Nanoscale Effects and Applications / Eds. Seehra M.S., Bristow A.D. London: IntechOpen, 2018. P. 187. https://doi.org/10.5772/intechopen.71571

  3. Hagen D.J., Pemble M.E., Karppinen M. // Appl. Phys. Rev. 2019. V. 6. № 4. Art. 041309. https://doi.org/10.1063/1.5087759

  4. Wack S., Lunca Popa P., Adjeroud N. et al. // ACS Appl. Mater. Interfaces. 2020. V. 12. № 32. P. 36329. https://doi.org/10.1021/acsami.0c08606

  5. Mandia D.J., Zhou W., Albert J. et al. // Chem. Vapor Depos. 2015. V. 21. № 1–3. P. 4. https://doi.org/10.1002/cvde.201400059

  6. Radtke, A., Grodzicka, M., Ehlert M. et al. // J. Clin. Med. 2019. V. 8. № 3. P. 334. https://doi.org/10.3390/jcm8030334

  7. Basova T.V., Vikulova E.S., Dorovskikh S.I. et al. // Mater. Des. 2021. V. 204. Art. 109672. https://doi.org/10.1016/j.matdes.2021.109672

  8. Liu X., Gan K., Liu H. et al. // Dental Mater. 2017. V. 33. № 9. P. e348. https://doi.org/10.1016/j.dental.2017.06.014

  9. Geng H., Poologasundarampillai G., Todd N. et al. // ACS Appl. Mater. Interfaces. 2017. V. 9. № 25. P. 21169. https://doi.org/10.1021/acsami.7b05150

  10. Radtke A., Jędrzejewski T., Kozak W. et al. // Nanomaterials. 2017. V. 7. № 7. 193. https://doi.org/10.3390/nano7070193

  11. Nazarov D., Ezhov I., Yudintceva N. et al. // J. Funct. Biomater. 2022. V. 13. № 2. 62. https://doi.org/10.3390/jfb13020062

  12. Zanotto L., Benetollo F., Natali M. et al. // Chem. Vapor Depos. 2004. V. 10. № 4. P. 207. https://doi.org/10.1002/cvde.200306290

  13. Mishra S., Daniele, S. // Chem. Rev. 2015. V. 115. № 16. P. 8379. https://doi.org/10.1021/cr400637c

  14. Liu H., Battiato S., Pellegrino A.L. et al. // Dalton Trans. 2017. V. 46. № 33. P. 10986. https://doi.org/10.1039/C7DT01647F

  15. Grodzicki A., Łakomska I., Piszczek P. et al. // Coord. Chem. Rev. 2005. V. 249. № 21–22. P. 2232. https://doi.org/10.1016/j.ccr.2005.05.026

  16. Szłyk E., Szczęsny R., Wojtczak A. // Dalton Trans. 2010. V. 39. № 7. P. 1823. https://doi.org/10.1039/B911741E

  17. Madajska K., Dobrzańska L., Muzioł T. et al. // Polyhedron. 2022. V. 227. Art. 116149. https://doi.org/10.1016/j.poly.2022.116149

  18. Sato H., Sugawara S. // Inorg. Chem. 1993. V. 32. № 10. P. 1941. https://doi.org/10.1021/ic00062a011

  19. Chi K.M., Chen K.H., Peng S.M. et al. // Organometallics. 1996. V. 15. № 10. P. 2575. https://doi.org/10.1021/om960013e

  20. Bailey A., Corbitt T.S., Hampden-Smith M.J. et al. // Polyhedron, 1993. V. 12. № 14. P. 1785. https://doi.org/10.1016/S0277-5387(00)84613-6

  21. Partenheimer W., Johnson E.H. // Inorg. Chem. 1972. V. 11. № 11. P. 2840. https://doi.org/10.1021/ic50117a052

  22. Карякин Ю.В., Ангелов И.И. Чистые химические вещества. М.: Химия, 1974. 408 с.

  23. Кочелаков Д.В., Викулова Е.С., Куратьева Н.В. и др. // Журн. cтруктур. химии. 2023. Т. 64. № 1. Art. 104595. https://doi.org/10.26902/JSC_id104595

  24. Fadeeva V.P., Tikhova V.D., Deryabina Y.M. et al. // J. Struct. Chem. 2014. V. 55. № 5. P. 972. https://doi.org/10.1134/S0022476614050278

  25. Тихова В.Д., Фадеева В.П., Никуличева О.Н. и др. // Химия в интересах устойчивого развития. 2022. Т. 30. С. 660. (Tikhova V.D., Fadeeva V.P., Nikulicheva O.N. et al. // Chem. Sustain Dev. 2022. V. 30. P. 640). https://doi.org/10.15372/CSD2022427

  26. Гордон А., Форд Р. Спутник химика. М.: Мир, 1976. С. 200.

  27. Vikulova E.S., Sukhikh T.S., Gulyaev S.A. et al. // Molecules. 2022. V. 27. № 3. P. 677. https://doi.org/10.3390/molecules27030677

  28. Fulmer G.R., Miller A.J.M., Sherden N.H. et al. // Organometallics. 2010. V. 29. P. 2176. https://doi.org/10.1021/om100106e

  29. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053273314026370

  30. Sheldrick G. // Acta Crystallogr. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218

  31. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. -Appl. Crystallogr. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726

  32. Evans W.J., Giarikos D.G., Josell D. et al. // Inorg. Chem. 2003. V. 42. № 25. P. 8255. https://doi.org/10.1021/ic034649r

  33. Schmidbaur H., Schier A. // Angew. Chem. 2015. V. 54. № 3. P. 746. https://doi.org/10.1002/anie.201405936

  34. Doppelt P., Baum T.H., Ricard L. // Inorg. Chem. 1996. V. 35. № 5. P. 1286. https://doi.org/10.1021/ic9410102

  35. Black K., Singh J., Mehta D. et al. // Sci. Rep. 2016. V. 6. № 1. P. 1. https://doi.org/10.1038/srep20814

  36. Jurczyk J., Glessi C., Madajska K. et al. // J. Therm. Anal. Calorim. 2022. V. 147. № 3. P. 2187. https://doi.org/10.1007/s10973-021-10616-6

Дополнительные материалы отсутствуют.