Координационная химия, 2023, T. 49, № 11, стр. 685-692

Синтез и строение (µ2-OP(O)Ph2)-связанного димерного амидного комплекса лантана {[${\text{Pzl}}_{2}^{{{\text{Me2}}}}$CP(O)Ph2]La[N(SiMe3)2](µ2-OP(O)Ph2)}2, содержащего тридентатный гетероскорпионатный лиганд. Исследование каталитической активности в полимеризации рац-лактида и ε-капролактона

Н. Ю. Радькова 1, А. В. Черкасов 1, А. А. Трифонов 12*

1 Институт металлоорганической химии им. Г.А. Разуваева РАН
Нижний Новгород, Россия

2 Институт элементоорганических соединений им. А.Н. Несмеянова РАН
Москва, Россия

* E-mail: trif@iomc.ras.ru

Поступила в редакцию 28.03.2023
После доработки 21.04.2023
Принята к публикации 03.05.2023

Аннотация

Получен димерный амидный комплекс лантана {[${\text{Pzl}}_{{\text{2}}}^{{{\text{Me2}}}}$CP(O)Ph2]La[N(SiMe3)2](µ2-OP(O)Ph2)}2 (PzlMe2 = 3,5-диметилпиразол), содержащий N,N,O-тридентатный гетероскорпионатный лиганд. Методом рентгеноструктурного анализа (CCDC № 2212274) установлено, что комплекс имеет биядерное строение, в котором ионы лантана связаны двумя мостиковыми моноанионными дифенилфосфинатными лигандами. Полученный комплекс лантана продемонстрировал высокую каталитическую активность в полимеризации с раскрытием цикла рац-лактида и ε-капролактона, обеспечивая количественную конверсию 500 эквивалентов мономера в полимер при комнатной температуре в течение 360–720 мин для рац-лактида и 10–30 мин для ε-капролактона. Образующиеся полилактиды характеризуются атактической микроструктурой (Pr = 0.54–0.56) и индексами полидисперсности 1.6–2.5; для поликапролактона PDI = 2.1–2.8.

Ключевые слова: амидный комплекс, гетероскорпионатный лиганд, полимеризация, рац-лактид, ε‑капролактон, РСА

Список литературы

  1. Hou Z., Nishiura M. // Nat. Chem. 2010. V. 2. P. 257. https://doi.org/10.1038/nchem.595

  2. Trifonov A.A., Lyubov D.M. // Coord. Chem. Rev. 2017. V. 340. P. 10. https://doi.org/10.1016/j.ccr.2016.09.013

  3. Carpentier J.-F., Gromada J., Mortreux A. // Coord. Chem. Rev. 2004. V. 248. P. 397. https://doi.org/10.1016/j.ccr.2004.02.002

  4. Friebe O.N., Obrecht W., Zimmermann M. // Adv. Polym. Sci. 2006, V. 204. P. 1. https://doi.org/10.1007/12_094

  5. Anwander R., Törnroos K.W., Zimmermann M. // Angew. Chem. Int. Ed. 2008. V. 47. P. 775. https://doi.org/10.1002/anie.200703514

  6. Cui D., Liu B., Wang B. et al. // Struct. Bond. 2010. V. 137. P. 49. https://doi.org/10.1007/430.2010.16

  7. Cotton S.A. // Coord. Chem. Rev. 1997. V. 160. P. 93. https://doi.org/10.1016/S0010-8545(96)01340-9

  8. Lyubov D.M., Tolpygin A.O., Trifonov A.A. // Coord. Chem. Rev. 2019. V. 392. P. 83. https://doi.org/10.1016/j.ccr.2019.04.013

  9. Aubrecht K.B., Chang K., Hillmyer M.A., Tolman W.B. // J. Polym. Sci. A. 2001. V. 39. P. 284. https://doi.org/10.1002/1099-0518(20010115)39

  10. Tolpygin A.O., Linnikova O.A., Glukhova T.A. et al. // RSC Adv. 2016. V. 6. P. 17913. https://doi.org/10.1039/C5RA27960G

  11. Nakayama Y., Yasuda H. // J. Organomet. Chem. 2004. V. 689. P. 4489. https://doi.org/10.1016/j.jorganchem.2004.05.056

  12. Piers W.E., Emslie D.J.H. // Coord. Chem. Rev. 2002. V. 233–234. P. 131. https://doi.org/10.1016/S0010-8545(02)00016-4

  13. Howe R.G., Tredget C.S., Lawrence S.C. et al. // Chem. Commun. 2006. P. 223. https://doi.org/10.1039/B513927A

  14. Zeimentz P.M., Arndt S., Elvidge B.R., Okuda J. // Chem. Rev. 2006. V. 106. P. 2404. https://doi.org/10.1021/cr050574s

  15. Hou Z., Luo Y., Li X. // J. Organomet. Chem. 2006. V. 691. P. 3114. https://doi.org/10.1016/j.jorganchem.2006.01.055

  16. Molander G.A., Romero J.A.C. // Chem. Rev. 2002. V. 102. P. 2161. https://doi.org/10.1021/cr010291+

  17. Trifonov A.A., Basalov I.V., Kissel A.A. // Dalton Trans. 2016. V. 45. P. 19172. https://doi.org/10.1039/C6DT03913H

  18. Kissel A.A., Lyubov D.M., Mahrova T.V. et al. // Dalton Trans. 2013. V. 42. P. 9211. https://doi.org/10.1039/C3DT33108C

  19. Khristolyubov D.O., Lyubov D.M., Trifonov A.A. // Russ. Chem. Rev. 2021. V. 90. P. 529. https://doi.org/10.1070/RCR4992

  20. Shannon R.D. // Acta Crystallogr. A. 1976. V. 32. P. 751. https://doi.org/10.1107/S0567739476001551

  21. Jia Y.Q. // J. Solid State Chem. 1991. V. 95. P. 184. https://doi.org/10.1016/0022-4596(91)90388-x

  22. Morss L.R. // Chem. Rev. 1976. V. 76. P. 827. https://doi.org/10.1021/cr60304a007

  23. Trifonov A.A. // Coord. Chem. Rev. 2010. V. 254. P. 1327. https://doi.org/10.1016/j.ccr.2010.01.008

  24. Otero A., Lara-Sanchez A., Castro-Osma J.A. et al. // New J. Chem. 2015. V. 39. P. 7672. https://doi.org/10.1039/C5NJ00930H

  25. Bochkarev M.N., Zakharov L.N., Kalinina G.S. // Top Organomet. Chem. 1999. P. 285.

  26. Barker J., Kilner M. // Coord. Chem. Rev. 1994. V. 133. P. 219. https://doi.org/10.1016/0010-8545(94)80059-6

  27. Trifonov A.A. // Russ. Chem. Rev. 2007. V. 76. P. 1051. https://doi.org/10.1070/RC2007v076n11ABEH003693

  28. Yap G.P.A. // Acta Crystallogr. C. 2013. V. 69. P. 937. https://doi.org/10.1107/S0108270113019902

  29. Trofimenko S. Scorpionates: The Coordination Chemistry of Polypyrazolylborate Ligands, London: Imperial College Press, 1998.

  30. Reger D.L. // Comments Inorg. Chem. 1999. V. 21. P. 1. https://doi.org/10.1080/02603599908020413

  31. Otero A., Fernandez-Baeza J., Antinolo A. et al. // Dalton Trans. 2004. P. 1499. https://doi.org/10.1039/B401425A

  32. Pettinari C., Pettinari R. // Coord. Chem. Rev. 2005. V. 249. P. 525. https://doi.org/10.1016/j.ccr.2004.05.010

  33. Mou Z., Liu B., Liu X. et al. // Macromolecules. 2014. V. 47. P. 2233. https://doi.org/10.1021/ma500209t

  34. Ballard D.G.H., Coutis A., Holton J. et al. // Chem. Commun. 1978. P. 994. https://doi.org/10.1039/C39780000994

  35. Burger B.J., Thompson M.E., Cotter W.D., Bercaw J.E. // J. Am. Chem. Soc. 1990. V. 112. P. 1566. https://doi.org/10.1021/ja00160a041

  36. Hou Z., Zhang Y., Nishiura M., Wakatsuki Y. // Organometallics. 2003. V. 22. P. 129. https://doi.org/10.1021/om020742w

  37. Li X., Hou Z. // Macromolecules. 2005. V. 38. P. 6767. https://doi.org/10.1021/ma051323o

  38. Otero A., Lara-Sánchez A., Nájera C. et al. // Organometallics. 2012. V. 31. P. 2244. https://doi.org/10.1021/om2011672

  39. Pettinari C., Pettinari R. // Coord. Chem. Rev. 2005. V. 249. P. 663. https://doi.org/10.1016/j.ccr.2004.08.017

  40. Otero A., Fernández-Baeza J., Antinolo A. et al. // J. Am. Chem. Soc. 2004. V. 126. P. 1330. https://doi.org/10.1021/ja0391558

  41. Schädle D., Maichle-Mössmer C., Schädle C., Anwander R. // Chem. Eur. J. 2014. V. 21. P. 662. https://doi.org/10.1002/chem.201404792

  42. Marques N., Sella A., Takats J. // Chem. Rev. 2002. V. 102. P. 2137. https://doi.org/10.1021/cr010327y

  43. Trofimenko S. // Polyhedron. 2004. V. 23. P. 197. https://doi.org/10.1016/j.poly.2003.11.013

  44. Bigmore H.R., Lawrence S.C., Mountford P., Tredget C.S. // Dalton Trans. 2005. P. 635. https://doi.org/10.1039/B413121E

  45. Gibson V.C., Spitzmesser S.K. // Chem. Rev. 2003. V. 103. P. 283. https://doi.org/10.1021/cr980461r

  46. Martínez J., Otero A., Lara-Sánchez A. et al. // Organometallics. 2016. V. 35. P. 1802. https://doi.org/10.1021/acs.organomet.6b00203

  47. Bradley D.C., Ghotra J.S., Hart F.A. // Dalton Trans. 1973. V. 10. P. 1021. https://doi.org/10.1039/DT9730001021

  48. Barakat I., Dubois P., Jerome R., Teyssie P. // J. Polym. Sci. A. 1993. V. 31. P. 505. https://doi.org/10.1002/pola.1993.080310222

  49. APEX3. Madison (WI, USA): Bruker AXS Inc., 2018.

  50. Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D. // J. Appl. Cryst. 2015. V. 48. P. 3. https://doi.org/10.1107/S1600576714022985

  51. Sheldrick G. // Acta Crystallogr. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218

  52. Krieck S., Koch A., Hinze K. et al. // Eur. J. Inorg. Chem. 2016. P. 2332. https://doi.org/10.1002/ejic.201501263

  53. Wingerter S., Pfeiffer M., Baier F. et al. // Z. Anorg. Allg. Chem. 2000. V. 626. P. 1121. https://doi.org/10.1002/(SICI)1521-3749(200005)626:5 <1121::AID-ZAAC1121>3.0.CO;2-I

  54. Beswick M.A., Cromhout N.L., Harmer C.N. et al. // Chem. Commun. 1997. P. 583. https://doi.org/10.1039/A608202E

  55. Al-Shboul T.M.A., Volland G., Görls H. et al. // Inorg. Chem. 2012. V. 51. P. 7903. https://doi.org/10.1021/ic300975s

  56. Zhang Z., Xu X., Li W. et al. // Inorg. Chem. 2009. V. 48. P. 5715. https://doi.org/10.1021/ic802177y

  57. Litlabø R., Zimmermann M., Saliu K. et al. // Angew. Chem. Int. Ed. 2008. V. 47. P. 9560. https://doi.org/10.1002/anie.200803856

  58. Dong X., Robinson J.R. // Chem. Sci. 2020. V. 11. P. 8184. https://doi.org/10.1039/D0SC03507F

  59. Sugiyama H., Korobkov I., Gambarotta S. // Inorg. Chem. 2004. V. 43. P. 5771. https://doi.org/10.1021/ic049820t

  60. Gu X.-Y., Han X.-Z., Yao Y.-M. et al. // J. Organomet. Chem. 2010. V. 695. P. 2726. https://doi.org/10.1016/j.jorganchem.2010.07.037

  61. Zhang J., Qiu J., Yao Y. et al. // Organometallics. 2012. V. 31. P. 3138. https://doi.org/10.1021/om300036a

Дополнительные материалы отсутствуют.