Лёд и Снег, 2023, T. 63, № 3, стр. 410-425

First 10Be dates of Late Holocene moraines of the Kashkatash and Irik glaciers, Northern Caucasus

O. N. Solomina 1, V. Jomelli 3, I. S. Bushueva 12*

1 Institute of Geography Russian Academy of Sciences
Moscow, Russia

2 Aix-Marseille University
Marseille, France

3 HSE University
Moscow, Russia

* E-mail: irinasbushueva@gmail.com

Поступила в редакцию 16.06.2023
После доработки 21.06.2023
Принята к публикации 21.06.2023

Аннотация

We present 11 10Be ages of the moraines of the Irik and Kashkatash glaciers that allowed identifying and dating several Late Holocene glacier advances for the first time, including a prominent advance exceeding the Little Ice Age (LIA) maximum that occurred at 1.6–1.7 ka at еру Irik Glacier. The advance is dated by the three very close 10Be ages of a moraine (1.57 ± 0.23 ka, 1.63 ± 0.23, and 1.68 ± 0.24 ka) located in the vicinity of the moraines of the Little Ice Age (LIA) maximum advance. The advance that occurred at 1.6–1.7 ka might be a possible analogue of the “Historical” stage described earlier in the Caucasus in literature basing at geomorphic evidence, speculations, and analogues with other mountain regions, but not dated. Another possibility is a potential correlation of this advance with the Late Antique Little Ice Age cooling in 536 to ~660 CE. The age of Irik Glacier advance is close to the humid period identified in the Garabashi (Baksan, Elbrus valley) lake sediments at 1500–1700 years BP. The magnitude of the identified glacier advances over the past two millennia was similar. Between the advance of 1.6–1.7 ka and the position of the glacier in 2022 CE the elevation of the Irik Glacier front increased by 520 m from 2490 to 3010 m asl. Four 10Be dates (0.7 + 0.11, 0.72 + 0.11, 0.77 + 0.11 and 0.82 + 0.18 ka) of the lateral moraine of the Kashkatash Glacier constrain the advance of the first stage of the LIA. The advance of the 13th century is also dated by 10Be at the Donguz-Orun and Chalaati glaciers located at the Northern and Southern slopes of the Caucasus, respectively. The corresponding cooling in ca 1250–1400 CE is identified in the sedimentary paleoclimatic proxies of Lake Karakel (Teberda valley). A later advance at the Kashkatash Glacier is constrained by only one 10Be date (0.53 ± 0.13 ka) and needs further confirmation. Till deposited between the 1490s and 1640s at the Greater Azau Glacier is close to the date of this advance of the Kashkatash Glacier. A cooling at that time is recorded in the proxies of Karakel Lake sediments (1500–1630 CE). Three other 10Be dates of two earlier advances at 0.25 + 0.04 ka and between 0.14 + 0.03 and 0.16 ± 0.02 ka at Kashkatash Glacier are indirectly supported by tree-ring, lake sediment, 14C, and historical data. Further research and new data is necessary to increase the credibility and accuracy of the dates of glacier advances of the Late Holocene in the Northern Caucasus.

Keywords: Late Holocene, glacier fluctuations, moraines, CRE dates, tree rings, lichenometry

Список литературы

  1. Alexandrin M.Y., Solomina O.N., Darin A.V. Variations of heat availability in the Western Caucasus in the past 1500 years inferred from a high-resolution record of bromine in the sediment of Lake Karakel. Quatern. International. 2023. https://doi.org/10.1016/j.quaint.2023.05.020

  2. Altberg V.J.O Sostoyanii lednikov Elbrusa i Glavnogo Kavkazskogo khrebta v basseine reki Baksan v period 1925–1927 godov. About the state of glaciers of Elbrus and the Greater Caucasus mountain range in the basin of Baksan River during 1925–1927. Ottisk iz Izvestij GGI. Proc. of the State Hydrological Institute. 1928, 22:79 –89. [In Russian].

  3. Arnold M., Merchel S., Bourlès D.L., Braucher R., Bene-detti L., Finkel R.C., Aumaître G., Gottdang A., Klein M. The French accelerator mass spectrometry facility ASTER: improved performance and developments Nuclear Instrumentation Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2010, 268: 1954–1959.

  4. Balco G. Contributions and unrealized potential contributions of cosmogenic-nuclide exposure dating to glacier chronology, 1990–2010. Quaternary Science Reviews. 2011, 30 :3–27.

  5. Balco G. Glacier Change and Paleoclimate Applications of Cosmogenic-Nuclide Exposure Dating. Annual Review of Earth and Planetary Sciences 2020, 48 (1): 21–48. https://doi.org/10.1146/annurev-earth-081619-05260

  6. Balco G, Stone J.O, Lifton N.A, Dunai T.J. A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quat Geochronol. 2008, 3: 174–195.

  7. Baume O., Marcinek J. Gletscher und Landschaften des Elbrusgebietes. Die Lawienentatigkeit. Verlag Gotha, Gotha. 1998 [In German].

  8. Borchers Brian, Marrero S., Balco G., Caffee M., Goehring B., Lifton N., Nishiizumi K., Phillips F., Schaefer J., Stone J. Geological calibration of spallation production rates in the CRONUS-Earth project. Quaternary Geochronology. 2016, 31: 188–198.

  9. Bush N.A.O Sostoyanii lednikov severnogo sklona Kavkaza v 1907, 1909, 1911  i  1913 godah. About state of glaciers of the Northern slope of the Caucasus in 1907, 1909, 1911 and 1913. Izvestiya Imperatorskogo geograficheskogo obschestva po obschey geografii. IRGO notes on general geography. 1914, 50 (5–9): 461–510 [In Russian].

  10. Büntgen U., Myglan V.S., Ljungqvist F.C., McCormick M., Di Cosmo N., Sigl M., Kirdyanov A.V. Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD. Nature geoscience. 2016, 9 (3): 231–236. https://doi.org/10.1038/ngeo2652

  11. Bushueva I.S., Solomina O.N., Jomelli V. History of Alibek Glacier based on Earth remote sensing images, bioindication and cosmogenic (14C and 10Be). Led i Sneg. Snow and Ice. 2015, 55 (3): 97–106. [In Russian].https://doi.org/10.15356/2076-6734-2015-3-97-106

  12. Bushueva I.S., Solomina O.N. Kolebaniya lednika Kashkatash za poslednie chetire stoletiya po kartograficheskim, dendrohronologicheskim i lichenometricheskim dannim. Fluctuations of Kashkatash Glacier over last 400 years using cartographical, dendrochronological and lichonometrical data. Led i sneg. Ice and Snow. 2012, 2 (118): 121–130 [In Russian].https://doi.org/10.15356/2076-6734-2012-2-121-130

  13. Braucher R., Guillou V., Bourlès D.L., Arnold M., Aumaître G., Keddadouche K., Nottoli E. Preparation of Aster in-house 10Be/9Be standard solutions. Nuclear Instruments and Methods in Physics Research. 2015, 361: 335–340.

  14. Chmeleff J., von Blanckenburg F., Kossert K., Jakob D. Determination of the 10Be half-life by multicollector ICP-MS and liquid scintillation counting. Nucl. Instrum. Methods Phys. Res. 2010, Sect. B 268 (2), 192–199. https://doi.org/. 09.012https://doi.org/10.1016/j.nimb.2009

  15. Deline P., Orombelli G. Glacier fluctuations in the western Alps during the Neoglacial, as indicated by the Miage morainic amphitheatre (Mont Blanc massif, Italy). Boreas. 2005, 34: 456–467. https://doi.org/10.1080/03009480500231369

  16. Dolgova E. June–September temperature reconstruction in the Northern Caucasus based on blue intensity data. Dendrochronologia. 2016, 39: 17–23. https://doi.org/10.1016/j.dendro.2016.03.002

  17. Grachev A.M., Novenko E.Y., Grabenko E.A., Alexand-rin M.Y., Zazovskaya E.P., Konstantinov E.A., Solomina O.N. The Holocene paleoenvironmental history of Western Caucasus (Russia) reconstructed by multi-proxy analysis of the continuous sediment sequence from Lake Khuko. The Holocene. 2021, 31 (3): 368–379. https://doi.org/10.1177/0959683620972782

  18. Grove J.M. Little Ice Ages: Ancient and Modern. 2004. Vol. 1 and 2, 2nd ed. London, New York: Routledge. https://doi.org/10.1017/S0016756805400771

  19. Holzhauser H., Magny M., Zumbühl H.J. Glacier and lake-level variations in west-central Europe over the last 3500 years. Holocene. 2005, 15 (6): 789–801. https://doi.org/10.1191/0959683605hl853ra

  20. Hormes A., Müller B.U., Schlüchter C. The Alps with little ice: evidence for eight Holocene phases of reduced glacier extent in the Central Swiss Alps. The Holocene. 2001: 255–265. https://doi.org/10.1191/095968301675275728

  21. Jomelli V., Grancher D., Naveau P., Cooley D., Brunstein D. Assessment study of lichenometric methods for dating surfaces. Journ. of Geomorphology. 2007, 86 (1–2): 131–143. https://doi.org/10.1016/j.geomorph.2006.08.010

  22. Jomelli V., Francou B. Comparing characteristics of rockfall talus and snow avalanche landforms in an alpine environment using a new methodological approach. Geomorphology. 2000, 35: 181–192.

  23. Katalog lednikov SSSR. USSR Glacier Inventory. V. 8. North Caucasus. Pt. 5. Basins of Malka and Baksan rivers. Leningrad: Hydrometeoizdat, 1970: 145 p. [In Russian].

  24. Korschinek Gunther, Bergmaier A., Faestermann T., Gerstmann U.C., Knie K., Rugel G., Wallner A. A new value for the half-life of 10Be by heavy-ion elastic recoil detection and liquid scintillation counting. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2010, 268 (2): 187–191.

  25. Kovalev P.V. Sovremennoe oledenenie basseina reki Baksan. Modern glaciation of the Baksan River basin. Materiali kavkazskoi ekspedicii po programme MGG. Data of Caucasian expedition by the program of International Geophysical Year. 1961, 2: 3–106 [In Russian].

  26. Le Roy M., Nicolussi K., Deline P., Astrade L., Edouard J.L., Miramont C., Arnaud F. Calendar-dated glacier variations in the Western European Alps during the Neoglacial: the Mer de Glace record, Mont Blanc massif. Quaternary Science Reviews. 2015, 108: 1–22. https://doi.org/10.1016/j.quascirev.2014.10.033

  27. Lifton N., Sato T., Dunai T.J. Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes. Earth Planet. Sci. Lett. 2014, 386: 149–160. https://doi.org/10.1016/j.epsl.2013.10.052

  28. Martin L.C.P., Blard P.H., Balco G., Lavé J., Delunel R., Lifton N., Laurent V. The CREp program and the ICE-D production rate calibration database: A fully parameterizable and updated online tool to compute cosmic-ray exposure ages. Quaternary geochronology. 2017, 38: 25–49.

  29. Merchel S., Arnold M., Aumaître G., Benedetti L., Bourlès D.L., Braucher R., Alfimov V., Freeman S.P.H.T., Steier P., Wallner A. Towards more precise 10Be and 36Cl data from measurements at the 10−14 level: Influence of sample preparation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2008, 266 (22): 4921–4926. https://doi.org/10.1016/j.nimb.2008.07.031

  30. Military Topographers Map, 1887–1890. 1:42 000, Office of military topographers, 4th Cartographic Factory Geokartprom, Rostov-Don.

  31. Murari M.K., Owen L.A., Dortch J.M., Caffee M.W., Dietsch C., Fuchs M., Haneberg W.C., Sharma M.C., Townsend-Small A. Timing and climatic drivers for glaciation across monsoon-influenced regions of the Himalayan-Tibetan orogen. Quaternary Science Reviews. 2014, 88C: 159–182. https://doi.org/10.1016/j.quascirev.2014.01.013

  32. Nicolussi K., Roy M.L., Schlüchter C., Stoffel M., Wacker L. The glacier advance at the onset of the Little Ice Age in the Alps: New evidence from Mont Miné and Morteratsch glaciers. The Holocene. 2022, 32 (41): 09596836221088247. https://doi.org/10.1177/09596836221088247

  33. Oledenenie El’brusa. Elbrus glaciations / Ed. G.K. Tushinskiy. Moscow: MSU, 1968: 345 p. [In Russian].

  34. Uppala, Sakari M., Kållberg P.W., Adrian J., Simmons U. Andrae V., Bechtold Da Costa, Fiorino M., Gibson J.K. The ERA-40 re-analysis. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography. 2005, 131 (612): 2961–3012.

  35. Prirodnye processy na territorii Kabardino-Balkarii. Environmental processes in the territory of Kabardino-Balkaria. Moscow–Nal’chik: RAS, 2004: 438 p. [In Russian].

  36. Schimmelpfennig I., Schaefer J.M., Akçar N., Koffman T., Ivy-Ochs S., Schwartz R., Schlüchter C. A chronology of Holocene and Little Ice Age glacier culminations of the Steingletscher, Central Alps, Switzerland, based on high-sensitivity beryllium-10 moraine dating. Earth and Planetary Science Letters. 2014, 393: 220–230. https://doi.org/10.1016/j.epsl.2014.02.046

  37. Shishkov V.A., Kuderina T.M., Mikhalenko V.N., Kuzmenkova N.V., Zazovskaya E.P., Solomina O.N. Garabashi lake as a paleoarchive (Elbrus area, Caucasus). Geophysical Research Abstracts. 2019, 21. EGU2019-15885-2. EGU General Assembly. CC Attribution 4.0 license.

  38. Seinova I.B., Zolotarev E.V. Ledniki i seli Prielbrusiya. Glaciers and debris flows of vicinity of the Mt. Elbrus. Moscow: Nauchnyj mir. The scientific world. 2001 [In Russian].

  39. Solomina O.N., Alexandrovskiy A.L., Zazovskaya E.P., Konstantinov E.A., Shishkov V.A., Kuderina T.M., Bushueva I.S. Late-Holocene advances of the Greater Azau Glacier (Elbrus area, Northern Caucasus) revealed by 14C dating of paleosols. The Holocene. 2022, 32 (5): 468–481. https://doi.org/10.1177/09596836221074029

  40. Solomina O.N., Bushueva I.S., Polumieva P.D., Dolgova E.A., Dokukin M.D. History of the Donguz-Orun Glacier from bioindication, historical, cartographic sources and remote sensing data. Led i Sneg. Ice and Snow. 2018, 58 (4): 448–461 [In Russian].https://doi.org/10.15356/2076-6734-2018-4-448-461

  41. Solomina O.N., Bushueva I.S., Dolgova E.A., Jomelli V., Alexandrin M.J., Mikhalenko V.N., Matskovsky V.V. Glacier variations in the Northern Caucasus compared to climatic reconstructions over the past millennium. Glob. Planet change. 2016, 140: 28–58. https://doi.org/10.1016/j.gloplacha.2016.02.008

  42. Solomina O.N., Bushueva I.S., Volodicheva N.A., Dolgova E.A. Age of moraines of the Bolshoy Azau Glacier in the upper course of the Baksan River valley according to dendrochronological data. Led i Sneg. Ice and Snow. 2021, 61 (2): 271–290 [In Russian].https://doi.org/10.31857/S2076673421020088

  43. Solovyev S.P. Izuchenie lednikov Severngo Kavkaza za 25 let (1907–1932 goda). Study of glaciers on the Northern Caucasus over 25 years (1907-1932). Izvestiya Gosudarstvennogo geograficheskogo obshchestva. Proc. of the State Geographical Society.1934, 66 (4): 525–555 [In Russian].

  44. Tielidze L.G. Glacier change over the last century, Caucasus Mountains, Georgia, observed from old topographical maps, Landsat and ASTER satellite imagery. The Cryosphere, 2016, 10: 713–725. https://doi.org/, 2016https://doi.org/10.5194/tc-10-713-2016

  45. Tielidze L.G., Solomina O.N., Jomelli V., Dolgova E.A., Bushueva I.S., Mikhalenko V.N., Brauche R., ASTER Team. Change of Chalaati Glacier (Georgian Caucasus) since the Little Ice Age based on dendrochronological and Beryllium‑10 data. Led i Sneg. Ice and Snow. 2020, 60 (3): 453–470. https://doi.org/10.31857/S2076673420030052

  46. Turmanina V.I. Perspektivy primenenija fitoindikacionnyh metodov v gljaciologii. Perspectives of applying phytoindicational methods in glaciology. In: Tushinskiy G.K. (Ed.), Fitoindikacionnye metody v gljacilogii. Phytoindication methods in glaciology. Moscow: MGU Press, 1971: 5–19 [In Russian].

  47. Tushinsky G.K. Glyatsiologicheskie raboti na Elbruse. Glaciological studies on the Elbrus. Informatsionniy sbornik o rabotah po Mejdunarodnomu geofizicheskomu godu. Informational collection on the studies of the International Geophysical Year. Moscow: PUBLISHER, 1958: 3–28 [In Russian].

  48. Tushinsky G.K., Turmanina V.A. Rhytms of the glacial processes of the past millennium. In Rhytms of the glacial processes. Moscow: MSU, 1979: 154–159.

  49. Volodicheva N.A., Voitkovskiy K.F. Evolutsiya lednikovoi sistemi Elbrusa. Evolution of Elbrus glacial system. In: Konischev V.I., Saf’yanov G.A. (Eds.). Geografiya, obschestvo i okrujauschaya sreda. Struktura, dinamika i evolutsiya prirodnih geosystem. Geography, society and environment. Structure, dynamics and evolution of natural geosystems. Moscow: Gorodets, 2004: 44–50 [In Russian].

  50. Ward, Greame K., Wilson S.R. Procedures for comparing and combining radiocarbon age determinations: a critique. Archaeometry. 1978, 20 (1): 19–31.

  51. Yang B., Brauning A., Dong Z., Zhang Z., Keqing J. Late Holocene monsoonal temperate glacier fluctuations on the Tibetan Plateau. Global and Planetary Change 2008, 60: 126–140. https://doi.org/10.1016/j.gloplacha.2006.07.035

  52. Zolotarev E.A. Evolutsiya oledeneniya Elbrusa. Evolution of Elbrus glaciation. Moscow: Nauchnyj mir. The scientific world. 2009. [In Russian].

Дополнительные материалы отсутствуют.