Лесоведение, 2023, № 6, стр. 690-696

Photosynthesis of widespread lichen species in pine forests of Central Siberia

D. A. Polosukhina ab*, A. V. Makhnykina ab, V. E. Aryasov a, D. V. Trusov ab, A. S. Prokushkin ab

a Sukachev Institute of Forest SB RAS
660036 Krasnoyarsk, Akademgorodok, 50/28, Russia

b Siberian Federal University
660041 Krasnoyarsk, Svobodny Prospect, 79, Russia

* E-mail: dana_polo@mail.ru

Поступила в редакцию 7.04.2022
После доработки 1.09.2022
Принята к публикации 21.02.2023

Аннотация

Lichens and other terrestrial photosynthetic unicellular organisms of the planet consume nearly 14.3 billion tons of atmospheric CO2. Due to climate change, such important components of the forest ground cover as lichens are very vulnerable. This study evaluates the photosynthetic activity in widespread lichens by measuring the indices of net photosynthesis, dark respiration, and prompt fluorescence. Hence, cryptogams of pine forests in Central Siberia near the Zotino tall tower observatory (ZOTTO) are characterized as highly active. Cladonia stellaris (Opiz.) Brodo and Cladonia rangiferina (L.) are the main representatives of ground cover species. The purpose of this study was to determine the photosynthetic activity in dominant species of ground cover lichens during a growing season. We found the seasonal dynamics of photosynthesis with the lowest values being observed in June, and the highest ones in August. Dark respiration peaks in June and is the lowest in September. Fluorescence values are within the range of 6.7 ± 0.3. The species under study that grow on podzol soils in pine forests show fast kinetic activation.

Keywords: Cladonia stellaris, Cladonia rangiferina, photosynthetic activity, photosynthesis, carbon balance, fluorescence.

Список литературы

  1. Beer S., Björk M., Gademann R., Ralph P. Measurements of photosynthetic rates in seagrasses // Global Seagrass Research Methods. Chapter 9. The Netherlands: Elsevier Publishing, 2001. P. 183–198.

  2. Bianchi T.S. The evolution of biogeochemistry: revisited // Biogeochemistry. 2021. V. 154. № 2. P. 141–181.

  3. Bjerke J.W., Bokhorst S., Callaghan T.V., Zielke M., Phoenix G.K. Rapid photosynthetic recovery of a snow-covered feather moss and Peltigera lichen during sub-Arctic midwinter warming // Plant Ecology & Diversity. 2013. V. 6. P. 383–392.

  4. Bjerke J.W., Bokhorst S., Callaghan T.V., Phoenix G.K. Persistent reduction of segment growth and photosynthesis in a widespread and important sub-Arctic moss species after cessation of three years of experimental winter warming // Functional Ecology. 2017. V. 31. №. 1. P. 127–134.

  5. Bjerke J.W. Ice encapsulation rather protects than disturbs the freezing lichen // Plant Biology. 2009. V. 11. P. 227–235.

  6. Bonan G.B. Forests and climate change: Forcings, feedbacks and climate benefits of forests // Science. 2008. V. 320. P. 1444–1449.

  7. Bryant D., Nielsen D., Tangley L., Sizer N., Miranda M., Brown P., Johnson N., Malk A., Miller K. The last frontier forests: ecosystems and economies on the edge. What is the status of the worlds remaining large natural forest ecosystems? // Environmental Science. 1997. P.39.

  8. Czerepanov S.K. Vascular Plants of Russia and Adjacent States // Cambridge University Press, 1994. 990 p.

  9. Elbert W., Weber B., Burrows S., Steinkamp J., Büdel B., Andreae M., Pöschl U. Contribution of cryptogamic covers to the global cycles of carbon and nitrogen // Nature Geoscience. 2012. V. 5. P. 459-462.

  10. Goltsev V., Zaharieva I., Chernev P., Kouzmanova M., Kalaji H.M., Yordanov I., Krasteva V., Alexandrov V., Stefanov D., Allakhverdiev S.I., Strasser R.J. Drought-induced modifications of photosynthetic electron transport in intact leaves: analysis and use of neural networks as a tool for a rapid non-invasive estimation // Biochimica et Biophysica Acta (BBA) – Bioenergetics. 2012. V. 1817. P. 1490–1498.

  11. Heinz Walz GmbH junior-PAM Teaching Chlorophyll Fluorometer Manual / Heinz Walz GmbH 2.154/09.20 Second Edition, September 20 © Heinz Walz GmbH, 2020. 83 p.

  12. Ignatov M., Ignatova E. Flora mkhov srednei chasti evropeiskoi Rossii (Moss flora of the middle European Russia), Sphagnaceae–Hedwigiaceae. Moscow: KMK Scientific Press Ltd. 1. 2003.

  13. Ignatov M., Ignatova E. Flora mkhov srednei chasti Evropeiskoi Rossii (Moss flora of the middle European Russia) Fontinalaceae–Amblystegiaceae. Moscow: KMK Scientific Press Ltd. 2. 2004.

  14. Maxwell K., Johnson G.N., Chlorophyll fluorescence – a practical guide // J. Experimental Botany. 2000. V. 51. № 345. P. 659–668.

  15. Klimchenko A.V., Verkhovets S.V., Slinkina O.A., Koshurnikova N.N. Stocks in coarse woody debris in the middle taiga ecosystems located along the Yenisei River // Geography and Natural Resources. 2011. V. 2. P. 91–97.

  16. Kolomeichuk L.V., Efimova M.V., Zlobin I.E., Kreslavski Vl.D., Murgan O.K., Kovtun I.S., Khripach Vl.A., Kuznetsov Vl.V., Allakhverdiev S.I. 24-Epibrassinolide alleviates the toxic effects of NaCl on photosynthetic processes in potato plants // Photosynthesis Research. 2020. V. 146. P. 151–163.

  17. Koven C., Arora V.K., Cadule P., Fisher R.A., Jones C.D., Lawrence D.M., Lewis J., Lindsey K., Mathesius S., Meinshausen M., Mills M., Nicholls Z., Sanderson B.M., Swart N.C., Wieder W.R., Zickfeld K. 23rd Century surprises: Long-term dynamics of the climate and carbon cycle under both high and net negative emissions scenarios // Earth System Dynamics Discussions. 2021. https://doi.org/10.5194/esd-2021-23

  18. Kovtun I.S., Kukharenko N.E, Kusnetsov V.V., Khripach V.A., Efimova M.V. Effect of Lactone- and Ketone-Containing Brassinosteroids on Photosynthetic Activity of Barley Leaves during Aging // Russian J. Plant Physiology. 2021. V. 68. P. 440–450.

  19. Longton R.E. The role of bryophyte and lichens in terrestrial ecosystems // Bryophyte and Lichens in a Changing Environment; Bates J.W., Farmer A.M., Eds. 1992. P. 32–76.

  20. Moser T.J., Nash T.H., Link S. Diurnal gross photosynthetic patterns and potential seasonal CO2 assimilation in Cladonia stellaris and Cladonia rangiferina // Canadian J. Botany. 1983. V. 61(3). P. 642–55.

  21. Opredelitel’ lishainikov SSSR. Vyp. 1, 4, 5 [Handbook of the lichens of the USSR. Iss. 1, 4, 5]. Iss. 1, 4, 5. Leningrad, 1971, 412 p.; 1977, 344 p.; 1978, 204 p.

  22. Panov A.V., Heintzenberg J., Birmili W., Otto R., Chi X., Zrazhevskaya G.K., Timokhina A.V., Verkhovets S.V., Andrea M., Onuchin A.A. Sources, seasonal variability, and trajectories of atmospheric aerosols over Central Siberian forest ecosystems // Dokl. Earth Sc. 2011. V. 441. P. 1710–1714.

  23. Panov A.V., Onuchin A.A., Koshurnikova N.N. Phytomass structure and dynamics at cuttings in the Central Siberia lichen pine forests // Vestnik KrasGAU. 2009. № 12. P. 129–133.

  24. Pleshikov F.I. Forest ecosystems of the Yenisei meridian (research of the international geosphere-biosphere program). Novosibirsk: Nauka, 2002. 356 p.

  25. Polosukhina D.A., Masyagina O.V., Prokushkin A.S. Carbon photoassimilation by dominant species of mosses and lichens in pine forests of Central Siberia // IOP Conf. Ser.: Earth Environ. Sci. 2020. V. 611. https://doi.org/10.1088/1755-1315/611/1/012031

  26. Portable Gas Exchange Fluorescence System GFS-3000 Handbook of Operation/Heinz Walz GmbH, 2019. 266 p.

  27. Ryu Y., Berry J.A., Baldocchi D.D. What is global photosynthesis? History, uncertainties and opportunities // Remote Sensing of Environment. 2019. V. 223. P. 95–114.

  28. Trefilova O.V., Vedrova E.F., Kuz’michev V.V. The annual carbon cycle in green-moss pine forests of the Yenisey plain forest science // Lesovedenie. 2011. № 1. P. 3–12.

  29. Węgrzyn M.H., Fałowska P., Alzayany K., Waszkiewicz K., Dziurowicz P., Wietrzyk-Pełka P. Seasonal changes in the photosynthetic activity of terrestrial lichens and mosses in the lichen Scots pine forest habitat // Diversity. 2021. V. 13(12). P. 642. https://doi.org/10.3390/d13120642

  30. Whitehead D., Gower S.T. Photosynthesis and light-use efficiency by plants in a Canadian boreal forest ecosystem // Tree Physiology. 2001. V. 21. P. 925–929.

  31. Winkler A.J., Myneni R.B., Hannart A., Sitch S., Haverd V., Lombardozzi D., Arora V.K., Pongratz J., Nabel J.E.M.S., Goll D.S., Kato E., Tian H., Arneth A., Friedlingstein P., Jain A.K, Zaehle S., Brovkin V. Slow-down of the greening trend in natural vegetation with further rise in atmospheric CO2 // Biogeosciences. 2021. V. 18. P. 4985–5010. https://doi.org/10.5194/bg-18-4985-2021

Дополнительные материалы отсутствуют.