Микробиология, 2023, T. 92, № 5, стр. 527-532

Особенности деструкции полилактида в присутствии представителей рода Bacillus

В. В. Миронов a*, Е. С. Трофимчук b, В. В. Острикова a, А. В. Плуталова b, М. А. Москвина b, А. А. Щелушкина a, Е. В. Черникова b, Д. Ш. Соколова a

a Институт микробиологии им. С.Н. Виноградского, Федеральный исследовательский центр “Фундаментальные основы биотехнологии” Российской академии наук
119071 Москва, Россия

b Химический факультет МГУ имени М.В. Ломоносова
119991 Москва, Россия

* E-mail: 7390530@gmail.com

Поступила в редакцию 25.04.2023
После доработки 10.05.2023
Принята к публикации 11.05.2023

Аннотация

В работе показано, что микроорганизмы рода Bacillus по-разному воздействуют на деструкцию упаковочного материала из полилактида. Деструкцию проводили на агаризованной среде при температуре 55°C и рН 5.9 в течение 14 сут. Впервые обнаружено, что при инкубации с культурой B. licheniformis S8 абиотический гидролиз значительно замедляется и проходит параллельно с основным ‒ ферментативным с последовательным отщеплением мономерных звеньев от конца макромолекулы и образованием низкомолекулярных продуктов, используемых микроорганизмами в качестве субстрата, что способствует уменьшению массы полилактида на 5.1% при сохранении его молекулярной массы и снижении дисперсности молекулярных масс. В присутствии бактерий B. amyloliquefaciens, B. subtilis subsp. spizizenii и B. subtilis subsp. inaquosorum масса полимера не снижалась, однако значительно уменьшалась молекулярная масса, как при абиотическом гидролизе.

Ключевые слова: полилактид, биодеструкция, масса образца, молекулярная масса, Bacillus licheniformis, Bacillus amyloliquefaciens, Bacillus subtilis subsp. spizizenii, Bacillus subtilis subsp. inaquosorum

Список литературы

  1. Миронов В.В., Трофимчук Е.С., Загустина Н.А., Иванова О.А., Вантеева А.В., Бочкова Е.А., Острикова В.В., Чжан Ш. Твердофазная биодеградация полилактида (обзор) // Прикл. биохимия и микробиология. 2022. Т. 58. С. 537‒550.

  2. Mironov V.V., Trofimchuk E.S., Zagustina N.A., Ivanova O.A., Vanteeva A.V., Bochkova E.A., Ostrikova V.V., Zhang S. Solid-phase biodegradation of polylactide (review) // Appl. Biochem. Microbiol. 2022. V. 58. P. 537‒550.

  3. Соколова Д.Ш. Образование биоэмульгаторов и поверхностно-активных веществ галотолерантными и термотолерантными штаммами Bacillus licheniformis S10 и S8 // Материалы Cедьмого московского межд. конгресса “Биотехнология: состояние и перспективы развития”. Москва. 19–22.03.2013. Ч. 2. С. 206.

  4. Belbella A., Vauthier Ch., Fessi H., Devissaguet J.-Ph., Puisieux F. In vitro degradation of nanospheres from poly(D,L-lactides) of different molecular weights and polydispersities // Int. J. Pharmaceut. 1996. V. 129. P. 95‒102.

  5. Mironov V., Vanteeva A., Sokolova D., Merkel A., Nikolaev Y. Microbiota dynamics of mechanically separated organic fraction of municipal solid waste during composting // Microorganisms. 2021a. V. 9. Art. 1877.

  6. Mironov V., Vanteeva A., Merkel A. Microbiological activity during co-composting of food and agricultural waste for soil amendment // Agronomy. 2021b. V. 11. Art. 928.

  7. De Jong S., Arias E., Rijkers D., van Nostrum C., Bosch J.K.-V.D., Hennink W. New insights into the hydrolytic degradation of poly(lactic acid): Participation of the alcohol terminus // Polymer. 2001. V. 42. P. 2795–2802.

  8. Hosni A.S., Pittman J.K., Robson G.D. Microbial degradation of four biodegradable polymers in soil and compost demonstrating polycaprolactone as an ideal compostable plastic // Waste Manag. 2019. V. 97. P. 105–114.

  9. Husárová L., Pekărová S., Stloukal P., Kucharzcy P., Verney V., Commereuc S., Ramone A., Koutny M. Identification of important abiotic and biotic factors in the biodegradation of poly(l-lactic acid) // Int. J. Biol. Macromol. 2014. V. 71. P. 155–162.

  10. Ivleva N.P. Chemical analysis of microplastics and nanoplastics: challenges, advanced methods, and perspectives // Chem. Rev. 2021. V. 121. P. 11886–11936.

  11. Kale G., Auras R., Singh S.P. Comparison of the degradability of poly(lactide) packages in composting and ambient exposure conditions // Packag. Technol. Sci. 2007. V. 20. P. 49–70.

  12. Karamanlioglu M., Preziosi R., Robson G.D. Abiotic and biotic environmental degradation of the bioplastic polymer poly(lactic acid): a review // Polym. Degrad. Stab. 2017. V. 137. P. 122–130.

  13. Lee S.H., Yeo S.Y. Improvement of hydrophilicity of polylactic acid (PLA) fabrics by means of a proteolytic enzyme from Bacillus licheniformis // Fibers and Polymers. 2016. V. 17. P. 1154‒1161.

  14. Mitchell M.K., Hirt D.E. Degradation of PLA fibers at elevated temperature and humidity // Polym. Eng. Sci. 2015. V. 55. P. 1652–1660.

  15. Prema S., Uma Maheswari Devi Palempalli. Degradation of polylactide film by depolymerase from Bacillus amyloliquefaciens // Int. J. Sci. Engin. Res. 2014. V. 5. P. 520–525.

  16. Prema S., Uma Maheswari Devi Palempalli. Degradation of polylactide plastic by PLA depolymerase isolated from thermophilic Bacillus // Int. J. Curr. Microbiol. App. Sci. 2015. V. 4. P. 645–654.

  17. Pantani R., De Santis F., Auriemma F., De Rosa C., Di Girolamo R. Effects of water sorption on poly(lactic acid) // Polymer. 2016. V. 99. P. 130–139.

  18. Richert A., Dąbrowska G.B. Enzymatic degradation and biofilm formation during biodegradation of polylactide and polycaprolactone polymers in various environments // Int. J. Biol. Macromol. 2021. V. 176. P. 226–232.

  19. Schliecker G., Schmidt C., Fuchs S., Kissel T. Characterization of a homologous series of d,l-lactic acid oligomers; a mechanistic study on the degradation kinetics in vitro // Biomaterials. 2003. V. 24. P. 3835–3844.

  20. Stepczyńska M., Rytlewski P. Enzymatic degradation of flax-fibers reinforced polylactide // Int. Biodeterior. Biodegr. 2016. V. 126. P. 160–166.

  21. Yuan J., Ma J., Sun Y., Zhou T., Zhao Y., Yu F. Microbial degradation and other environmental aspects of microplastics/plastics // Sci. Total Environ. 2020. V. 715. Art. 136968.

  22. Zaaba N.F., Jaafar M. A review on degradation mechanisms of polylactic acid: hydrolytic, photodegradative, microbial, and enzymatic degradation // Polym. Eng. Sci. 2020. V. 60. P. 2061–2075.

Дополнительные материалы отсутствуют.